
M A N N I N G

Arek Borucki

IN ACTION

Building on the Atlas Data Platform

THIRD EDITION

MongoDB Sharded Cluster Architecture

This MongoDB sharded cluster configuration includes multiple app servers
connected to routers (mongos), which direct queries to the appropriate

shard. Three shards, each of which is a replica set, hold segments of
the data. Also, an embedded config shard contains the config servers

(along with user data), which hold the cluster’s metadata. Starting with
MongoDB 8.0, config servers can also store user data when configured

as a config shard. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

Application

Driver

Driver

Primary

Shard1

Secondary

Secondary

Primary

Shard2

Secondary

Secondary

Primary

Shard3

Secondary

Secondary

Primary

Shard4: Config shard

Secondary

Secondary

Praise for the Second Edition

A thorough manual for learning, practicing, and implementing MongoDB with real-world examples.

—Jeet Marwah, Acer Inc.

A must-read to properly use MongoDB and model your data in the best possible way.

—Hernan Garcia, Betterez Inc.

Awesome! MongoDB in a nutshell.

—Hardy Ferentschik, Red Hat

Provides all the necessary details to get you jump-started with MongoDB.

—Gregor Zurowski, independent software development consultant

This book is going beyond the ordinary information. If you want to be successful with your deployment
and development of NoSQL databases, you have to read this book.

—Jürgen Hoffmann, Red Hat

MANN I NG
Shelter Island

Arek Borucki

MongoDB 8.0 in Action,
Third Edition

Building on the Atlas Data Platform

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

© 2025 Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN 9781633436077
Printed in the United States of America

The author and publisher have made every effort to ensure that the information in this book was correct
at press time. The author and publisher do not assume and hereby disclaim any liability to any party for
any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result
from negligence, accident, or any other cause, or from any usage of the information herein.

	 Development editor: 	 Rebecca Senninger
	 Technical editor: 	 Christopher Dellaway
	 Review editor: 	 Kishor Rit
	 Production editor: 	 Kathy Rossland
	 Copy editor: 	 Keir Simpson
	 Proofreader: 	 Melody Dolab
	 Technical proofreader: 	 Doug Warren
	 Typesetter: 	 Tamara ŠveliÊ SabljiÊ
	 Cover designer: 	 Marija Tudor

In memory of my dear parents, Ela (1942–2014) and
Bogumił (1938–97) Borucki. Your wisdom and support shaped my path,

and your presence lives on in my heart and memories.
To my beloved wife, Kasia Jakubów, for your endless love, patience,

and encouragement. Your unwavering support means everything to me.
And to my dear friend Juergen Schaecher, whose influence sparked my journey

with MongoDB—thank you for setting me on this path.

vi

brief contents
Part 1		 A database for modern web applications..................1

	 1	 ■ 	 Understanding the world of MongoDB  3
	 2	 ■ 	 Getting started with Atlas and MongoDB data  14
	 3	 ■ 	 Communicating with MongoDB  34
	 4	 ■ 	 Executing CRUD operations  57
	 5	 ■ 	 Designing a MongoDB schema  92
	 6	 ■ 	 Building aggregation pipelines  121
	 7	 ■ 	 Indexing for query performance  140
	 8	 ■ 	 Executing multidocument ACID transactions  180
	 9	 ■ 	 Using replication and sharding  196

Part 2		 MongoDB Atlas data platform.............................. 241
	 10	 ■ 	 Delving into Database as a Service  243
	 11	 ■ 	 Carrying out full-text search using Atlas Search  262
	 12	 ■ 	 Learning semantic techniques and Atlas Vector Search  302
	 13	 ■ 	 Developing AI applications locally with the Atlas CLI  335
	 14	 ■ 	 Building retrieval-augmented generation AI chatbots  358
	 15	 ■ 	 Building event-driven applications  384
	 16	 ■ 	 Optimizing data processing with Atlas Data Federation  430
	 17	 ■ 	 Archiving online with Atlas Online Archive  437

	 viibrief contents 	 vii

	 18	 ■ 	 Querying Atlas using SQL  449
	 19	 ■ 	 Creating charts, database triggers, and functions  459

Part 3		 MongoDB security and operations........................ 479
	 20	 ■ 	 Understanding Atlas and MongoDB security features  481
	 21	 ■ 	 Operational excellence with Atlas  507

viii

contents
preface   xviii
acknowledgments   xx
about this book   xxii
about the author   xxvi
about the cover illustration   xxvii

Part 1	 A database for modern web applications...1

	 1	 Understanding the world of MongoDB  3
	 1.1	 Examining the document-oriented data model  4

	 1.2	 Scaling data horizontally  6

	 1.3	 Exploring the MongoDB ecosystem  8
Learning the core MongoDB server features  9 ■ Learning
MongoDB Atlas concepts  9

	 1.4	 Enhancing the TCMalloc version  11

	 1.5	 Discovering MongoDB Query API  11

	 2	 Getting started with Atlas and MongoDB data  14
	 2.1	 Setting up your first Atlas cluster using Atlas CLI  15

Installing the Atlas CLI  15 ■ Creating an Atlas account  15
Creating an organization  16 ■ Creating an Atlas project  17
Creating a MongoDB Atlas cluster  18 ■ Navigating the Atlas
user interface  19

	 ixcontents 	 ix

	 2.2	 Loading a sample data set  19

	 2.3	 Adding an IP address to the project access list  20

	 2.4	 Creating a user  21

	 2.5	 Establishing a connection to MongoDB through MongoDB
Shell  21

	 2.6	 Managing data with databases, collections, and
documents  23

Working with dynamic schema  23 ■ Working with databases  25
Working with collections  26 ■ Working with documents  31

	 3	 Communicating with MongoDB  34
	 3.1	 Interacting via MongoDB Wire Protocol  35

	 3.2	 Discovering mongosh  35
Connecting to MongoDB Atlas  36 ■ Connecting to self-hosted
deployments  36 ■ Performing operations  36 ■ Viewing
mongosh logs  38 ■ Running scripts in mongosh  38
Configuring mongosh  40 ■ Using .mongoshrc.js  42

	 3.3	 Playing with MongoDB Compass  43

	 3.4	 Connecting using MongoDB drivers  45

	 3.5	 Using the Node.js driver  45

	 3.6	 Employing Python drivers  49
PyMongo  49 ■ Motor  51 ■ PyMongo vs. Motor  53

	 3.7	 Integrating Ruby drivers  53

	 3.8	 Learning Mongoid  55

	 4	 Executing CRUD operations  57
	 4.1	 Connecting to mongosh for CRUD operations  58

	 4.2	 Inserting documents  58

	 4.3	 Updating documents  61
Using update operators  62 ■ Updating many documents  63

	 4.4	 Updating arrays  64
Adding elements to an array  64 ■ Removing elements from an
array  66 ■ Updating array elements  67 ■ Updating using
array filters  68

	 4.5	 Replacing documents  70

x contentsx

	 4.6	 Reading documents  71
Using logical operators  72 ■ Using comparison operators  74
Working with projections  75 ■ Searching for null values and
absent fields  76

	 4.7	 Performing regular-expression searches  77

	 4.8	 Querying arrays  78

	 4.9	 Querying embedded/nested documents  81
Querying on a nested field with dot notation  82 ■ Matching
an embedded/nested document  83 ■ Querying an array of
embedded documents  83

	 4.10	 Sorting, skipping, and limiting  84
The sort operation  84 ■ The skip operation  84 ■ The limit
operation  85

	 4.11	 Deleting documents  85

	 4.12	 Using bulkWrite()  86

	 4.13	 Understanding cursors  88
Using manual iteration  88 ■ Returning an array of
all documents  89

	 4.14	 Employing MongoDB Stable API  89

	 5	 Designing a MongoDB schema  92
	 5.1	 Organizing the MongoDB data model  93

Determining the workload of the application  93 ■ Mapping the
schema relationship  95 ■ Applying a design pattern  97

	 5.2	 Embedding vs. referencing  98

	 5.3	 Understanding schema design patterns  101
Approximation pattern  102 ■ Archive pattern  102 ■ Attribute
pattern  103 ■ Bucket pattern  104 ■ Computed pattern  105
Document Versioning pattern  106 ■ Extended Reference
pattern  106 ■ Outlier pattern  107 ■ Polymorphic pattern  108
Preallocation pattern  109 ■ Schema Versioning pattern  110
Subset pattern  111 ■ Tree pattern  112

	 5.4	 Schema validations  113
Specifying JSON schema validation  114 ■ Testing a schema
validation rule  115 ■ Modifying schema validator behavior  117
Bypassing schema validation  118

	 5.5	 MongoDB schema antipatterns  119

	 xicontents 	 xi

	 6	 Building aggregation pipelines  121
	 6.1	 Understanding the aggregation framework  122

Writing an aggregation pipeline  123 ■ Viewing the aggregation
pipeline stages  124 ■ Using $set and $unset instead of
$project  127 ■ Scenarios for $set and $unset operators  128
Scenario for the $project operator  129 ■ Saving the results
of aggregation pipelines  129

	 6.2	 Joining collections  131
Creating a MongoDB view using $lookup  132 ■ Using
$lookup with $mergeobjects  133

	 6.3	 Deconstructing arrays with $unwind  134

	 6.4	 Working with accumulators  136

	 6.5	 Using the MongoDB Atlas aggregation pipeline builder  137

	 7	 Indexing for query performance  140
	 7.1	 MongoDB query planner  141

Viewing query plan cache information  141 ■ MongoDB plan
cache purges  145

	 7.2	 Supported index types  145
Creating single field indexes  146 ■ Understanding compound
indexes  151 ■ Using multikey indexes  156 ■ Using
text indexes  158 ■ Creating wildcard indexes  160
Geospatial indexes  162 ■ Hashed indexes  164

	 7.3	 Dropping indexes  165

	 7.4	 MongoDB index attributes  165
Partial indexes  165 ■ Sparse indexes  166 ■ Time-to-live
indexes  167 ■ Hidden indexes  169

	 7.5	 Understanding index builds  170
Monitoring in-progress index builds  171 ■ Terminating
in-progress index builds  172

	 7.6	 Managing indexes  172
Discovering the $indexStats aggregation pipeline stage  172
Modifying indexes  173 ■ Controlling index use with hint ()  174
Using indexes with $OR queries  174 ■ Using indexes with the
$NE, $NIN, and $NOT operators  175 ■ Ensuring that indexes
fit in RAM  175 ■ Sorting on multiple fields  176 ■ Introducing
covered queries  177

	 7.7	 When to not use an index  177

xii contentsxii

	 8	 Executing multidocument ACID transactions  180
	 8.1	 WiredTiger storage engine  181

Snapshots and checkpoints  181 ■ Journaling  182
Compression  182 ■ Memory use  182

	 8.2	 Single-document transaction  182

	 8.3	 Defining ACID  183

	 8.4	 Multidocument transactions  184
Differentiating the Core and Callback APIs  184 ■ Using
transactions with mongosh  185 ■ Using transactions with
the Callback API  187

	 8.5	 MongoDB transaction considerations  194

	 9	 Using replication and sharding  196
	 9.1	 Ensuring data high availability with replication  197

Distinguishing replica set members  197 ■ Electing primary
replica-set member  200 ■ Understanding the oplog collection  201

	 9.2	 Understanding change streams  206
Connections for a change stream  207 ■ Changing streams with
Node.js  209 ■ Modifying the output of a change stream  210

	 9.3	 Scaling data horizontally through sharding  211
Viewing sharded cluster architecture  212 ■ Creating sharded
clusters via Atlas CLI  214 ■ Working with a shard key  216
Choosing a shard key  216 ■ Using a shard-key analyzer  217
Detecting shard-data imbalance or uneven data distribution  222
Resharding a collection  222 ■ Understanding chunk
balancing  224 ■ Administrating chunks  225
Automerging chunks  228

	 9.4	 MongoDB 8.0 sharded cluster features  229
Embedding config servers in sharded clusters  230 ■ Moving
unsharded collections seamlessly between shards  230
Fragmentation  231 ■ Faster resharding  231
Unsharding collections  232

	 9.5	 Managing data consistency and availability  233
Write Concern  233 ■ Read Concern  235 ■ Read
Preference  237

	 xiiicontents 	 xiii

Part 2	 MongoDB Atlas data platform................ 241

	 10	 Delving into Database as a Service  243
	 10.1	 Shared M0 and Flex clusters  244

	 10.2	 Dedicated clusters  247
Atlas clusters for low-traffic applications  248 ■ Atlas clusters
for high-traffic applications  249 ■ Autoscaling clusters and
storage  249 ■ Customizing Atlas cluster storage  251

	 10.3	 Atlas Global Clusters  253

	 10.4	 Going multiregion with workload isolation  254
Adding electable nodes for high availability  256 ■ Adding
read-only nodes for local reads  256 ■ Using analytics nodes
for workload isolation  256

	 10.5	 Using predefined replica set tags for querying  257
Routing queries to analytics nodes  258 ■ Isolating normal
application secondary reads from analytics nodes  258
Routing local reads for geographically distributed applications  258

	 10.6	 Understanding the Atlas custom Write Concerns  259

	 11	 Carrying out full-text search using Atlas Search  262
	 11.1	 Implementing full-text search  263

	 11.2	 Understanding Apache Lucene  265

	 11.3	 Getting to know Atlas Search  267
Learning Atlas Search architecture  268 ■ Using Atlas Search
Nodes  269 ■ Atlas Search indexes  270

	 11.4	 Building an Atlas Search index  274

	 11.5	 Running Atlas Search queries  278
Using the $search aggregation pipeline stage  279
Executing the $searchMeta aggregation pipeline stage  294

	 11.6	 Learning Atlas Search commands  297

	 11.7	 Using Atlas Search Playground  298

	 12	 Learning semantic techniques and Atlas Vector Search  302
	 12.1	 Starting with embeddings  303

Converting text to embeddings  305 ■ Understanding vector
databases  308

xiv contentsxiv

	 12.2	 Using embeddings with Atlas Vector Search  309
Building an Atlas Vector Search index  310 ■ Selecting a Vector
Search source  310 ■ Defining your Vector Search index  312
Creating an Atlas Vector Search index  314

	 12.3	 Running Atlas Vector Search queries  315
Querying with embeddings  316 ■ Using prefiltering with Atlas
Vector Search  320

	 12.4	 Executing vector search with programming languages  322
Using vector search with JavaScript  322 ■ Using vector search
and prefiltering with Python  323 ■ Using vector search with
prefilters in Ruby  325

	 12.5	 Using Atlas Triggers for automated embeddings
creation  326

	 12.6	 Workload isolation with vector search dedicated nodes  331

	 12.7	 Improving Atlas Vector Search performance  331

	 13	 Developing AI applications locally with the Atlas CLI  335
	 13.1	 Introducing local Atlas clusters  336

	 13.2	 Creating an Atlas cluster locally with Atlas CLI  337
Configuring Docker  338 ■ Building your first local
Atlas cluster  340

	 13.3	 Managing your local Atlas cluster  341
Stopping, starting, checking, and deleting your local cluster  341
Loading a sample data set  344

	 13.4	 Diving into a local Atlas cluster  346
Displaying processes  349 ■ Executing into the container  350

	 13.5	 Creating search indexes  352
Executing full-text search locally  352 ■ Executing vector
search locally  355

	 14	 Building retrieval-augmented generation AI chatbots  358
	 14.1	 Gaining insight into retrieval-augmented generation  359

	 14.2	 Embedding LangChain in the RAG ecosystem  360

	 14.3	 Introducing the MongoDB Atlas Vector Search RAG
template  362

	 xvcontents 	 xv

	 14.4	 Getting started with AI chatbots  362
Describing LangChain capabilities  363 ■ Starting with the
LangChain CLI  364

	 14.5	 Creating an AI-powered MongoDB chatbot  364
Setting up a new application  365 ■ Inserting embeddings
into MongoDB Atlas  367 ■ Creating an Atlas Vector Search
index  374 ■ Testing a chatbot with LangServe  376
Communicating programmatically with a chatbot  381

	 15	 Building event-driven applications  384
	 15.1	 Understanding event-driven technology  385

	 15.2	 Examining the concepts of stream processing  387
Differentiating event time and processing time  387
Using time windows  388

	 15.3	 Starting with Atlas Stream Processing  388

	 15.4	 Exploring Atlas Stream Processing  390
Discovering Atlas Stream Processing components  390
Understanding Atlas Stream Processing capabilities  392

	 15.5	 Structuring a stream processor aggregation pipeline  394
Taking a deep dive into the $source aggregation stage  395
Using the stream processor $validate aggregation stage  400
Viewing all supported aggregation pipeline stages  400

	 15.6	 Mastering Atlas Stream Processing  402
Adopting new stream processor methods  402 ■ Using the Atlas
CLI with stream processing  402 ■ Creating your first stream
processor  404 ■ Learning the anatomy of a stream processor  406
Setting up a streams Connection Registry  419 ■ Ensuring
persistence in stream processing  420

	 15.7	 Controlling the stream processing flow  425
Capturing the state  425 ■ Using a dead-letter queue  425

	 15.8	 Securing Atlas Stream Processing  426
Discovering new roles  427 ■ Learning new privilege actions  427
Protecting network access  427 ■ Auditing events  427

xvi contentsxvi

	 16	 Optimizing data processing with Atlas Data Federation  430
	 16.1	 Querying Amazon S3 and Azure Blob Store data via the Query

API  430

	 16.2	 Learning Atlas Data Federation architecture  432

	 16.3	 Deploying an Atlas Federated Database instance  433

	 16.4	 Limitations of Atlas Data Federation  434

	 16.5	 Charges for Atlas Data Federation  435

	 17	 Archiving online with Atlas Online Archive  437
	 17.1	 Archiving your data  438

Seeing how Atlas archives data  438 ■ Deleting archived
documents  440

	 17.2	 Initializing Online Archive  440

	 17.3	 Connecting and querying Online Archive  444

	 17.4	 Restoring archived data  446

	 18	 Querying Atlas using SQL  449
	 18.1	 Introducing the Atlas SQL interface  450

	 18.2	 Connecting to the Atlas SQL interface  451
Enabling the interface  451 ■ Accessing the interface  452

	 18.3	 Querying MongoDB using SQL  453
Aggregation pipeline Atlas SQL syntax  453 ■ Short-form Atlas
SQL syntax  454 ■ UNWIND and FLATTEN with
Atlas SQL  455

	 19	 Creating charts, database triggers, and functions  459
	 19.1	 Visualizing data with Atlas Charts  460

Using natural language to build visualizations  462
Using billing dashboards  465

	 19.2	 Atlas Application Services  466
Triggering server-side logic with Atlas Database Triggers  467
Writing Atlas Functions  474

	 xviicontents 	 xvii

Part 3	 MongoDB security and operations......... 479

	 20	 Understanding Atlas and MongoDB security features  481
	 20.1	 Understanding the shared responsibility model  482

	 20.2	 Managing authentication  485
Choosing an Atlas database cluster authentication method  486
Integrating with HashiCorp Vault  487 ■ Choosing the
authentication method  488

	 20.3	 Handling authorization  488
Understanding the principle of least privilege  489
Differentiating Atlas user roles  489 ■ Using MongoDB
RBAC  490

	 20.4	 Auditing Atlas  492

	 20.5	 Encrypting data in Atlas  495
Encrypting data in transit  495 ■ Encrypting data at rest  496
Managing encryption keys yourself  496 ■ Encrypting during
processing  497

	 20.6	 Securing the network  500
Using an IP access list  500 ■ Peering networks  501
Using private endpoints  502

	 20.7	 Implementing defense in depth  503

	 21	 Operational excellence with Atlas  507
	 21.1	 Crafting backup strategies and practices  508

Discovering Atlas backup methods  508 ■ Restoring an
Atlas cluster  512

	 21.2	 Inspecting the performance of your Atlas cluster  516
Finding slow queries  516 ■ Improving your schema  520
Using native MongoDB diagnostic commands  521

	 21.3	 Alerting and logging  524
Setting alert conditions  524 ■ Logging in Atlas  526

	 21.4	 Upgrading your Atlas cluster  527

		 index  531

xviii

preface
My journey with MongoDB has been both extensive and deeply immersive. As a
MongoDB Champion, I have had the privilege of participating in numerous MongoDB
events and training sessions, contributing to the development of certification-exam
questions, and have also been a speaker at various conferences, sharing my expertise
and real-world experiences.

Professionally, I work as an SRE/DevOps engineer, managing some of the most com-
plex and largest-scale deployments in Europe. One of my most significant experiences
involved managing one of the continent’s largest MongoDB farms, with clusters that
exceeded 100 TB. Each cluster consisted of 130 nodes and implemented microshard-
ing, a technique that allows multiple MongoDB processes to run on the same host.
These clusters were not just massive in scale but also mission-critical, responsible for
handling passenger flight information. The need for lightning-fast search capabilities
made MongoDB an indispensable part of these high-stakes operations. Through this
hands-on experience, I used many of MongoDB’s advanced features, which I explore in
detail throughout this book.

This journey also introduced me to MongoDB Atlas, the fully managed Database as
a Service (DBaaS). It was in this high-pressure environment that I first recognized the
power and convenience of Atlas, especially in reducing the operational overhead of
managing massive clusters. Atlas’s ability to handle scaling, backup management, and
performance optimization with minimal intervention was a game-changer.

Beyond working with large-scale enterprise applications, I have seen MongoDB
thrive in the startup ecosystem. One such project involved a customer relationship
management (CRM) system, in which MongoDB proved its value not only in scalability
but also in agility and performance. This experience, however, also highlighted the

	 xixpreface 	 xix

challenges of running self-managed MongoDB instances, particularly the complexity of
replicating collections from MongoDB to Elasticsearch to enable full-text search capa-
bilities. It was through overcoming these challenges that I truly appreciated the built-in
capabilities of MongoDB Atlas, which offers full-text search natively, eliminating the
need for such complex integrations.

This book is a culmination of my hands-on experience, real-world challenges, and
deep technical insights. My goal is to provide a comprehensive guide to MongoDB,
whether you are building a small application or managing a multiterabyte enterprise
system. I cover not only best practices and technical optimizations but also strategic
insights to help you make the right architectural decisions for your needs.

I invite you to join me on this journey as we delve into MongoDB’s capabilities and
unlock its full potential together.

xx

acknowledgments
First and foremost, I want to express my deepest gratitude to my wife, Kasia Jakubow,
for her unwavering support and patience throughout the journey of writing this book.
Her encouragement and understanding made this project possible.

I am also incredibly grateful to the production team at Manning for their guidance
and assistance in bringing this book to life. A special thank you to Jonathan Gennick
for giving me the opportunity to write this book and believing in my vision. My sincere
appreciation goes to Rebecca Senninger for her invaluable feedback and meticulous
review of the manuscript.

Heartfelt thanks to technical editor Chris Dellaway, a fellow MongoDB Champion,
for his review and insightful tips that greatly enriched the content of this book. Chris
has worked professionally with MongoDB databases since 2016 and currently holds
four MongoDB certifications. In recognition of his significant contributions to the
MongoDB community, Chris was honored with the MongoDB 2023 William Zolo Award
for Community Excellence.

I would also like to extend my gratitude to the team at MongoDB for their support
throughout this process. Special thanks to Rachelle Palmer and Rita Rodrigues for
supporting my book idea and backing me along the way. My appreciation also goes to
Veronica Cooley-Perry for her outstanding coordination of the workflow, ensuring that
everything stayed on track. Bree Grosshandler deserves recognition for creating the
beautiful images that complement this book so well.

Huge thanks to technical proofreader Doug Warren and to everyone involved in
the technical review process at MongoDB, including Asya Kamsky, Rita Rodrigues, Joel
Lord, Manuel Fontan, Sigfrido Narváez, Eoin Brazil, and Ger Hartnett. Your insights
and expertise were invaluable in refining the technical aspects of this book.

	 xxiacknowledgments 	 xxi

To all the reviewers: Advait Patel, Akshay Phadke, Alain Lompo, Alankrit Kharbanda,
A.J. Bhandal, Anandaganesh Balakrishnan, Andres Sacco, Asaad Saad, Eddú Melén-
dez Gonzales, Ganesh Swaminathan, Giampiero Granatella, Giuseppe Catalano, Jaume
López, Kalai Chelvi Erudia Nathan, Kim Lokoy, Leonardo Gomes da Silva, Matteo
Rossi, Maulik Modi, Maurizio Bonifazi, Mihaela Barbu, Oscar F. Gil C., Peter Szabo,
Piti Champeethong, Rajasekhar Reddy Genupula, Richard Meinsen, Rohan Pasalkar,
Shantanu Kumar, Simon Verhoeven, Venkata Yanamadala, and Vinicios Wentz. Your
suggestions helped make this book better.

To each and every one of you, I extend my sincere appreciation. Your contributions
made this book what it is, and I am truly grateful.

xxii

about this book
This book provides a comprehensive guide to MongoDB version 8.0 and the MongoDB
Atlas data platform, covering everything from fundamental concepts to advanced tech-
niques for building, scaling, and optimizing modern web applications. You will learn
how to use different types of indexes for query optimization, scale data horizontally
using sharding, and use advanced features such as full-text search, vector search, and
change streams to enhance search capabilities, real-time analytics, and event-driven
architectures in AI-powered applications.

Who should read this book
This book is for developers who want to build scalable applications with MongoDB
and MongoDB Atlas DevOps and SRE professionals who are responsible for database
deployment, monitoring, and scaling; data architects seeking to design efficient data-
base schemas and optimize query performance; and engineers working with AI appli-
cations, full-text search, event-driven architectures, or real-time analytics.

How this book is organized: A road map
The book is divided into three parts:

¡	Part 1 provides an overview of MongoDB:

–	 Chapter 1—Introducing MongoDB, document-oriented data modeling, and
the flexible schema. This chapter lays the groundwork for understanding how
MongoDB structures data differently from relational databases.

–	 Chapter 2—Getting started with Atlas, setting up clusters, and managing data.
You learn how to deploy a MongoDB instance quickly using Atlas and explore
its essential features.

	 xxiiiabout this book 	 xxiii

–	 Chapter 3—Connecting to MongoDB using MongoDB Shell (mongosh), Com-
pass, and various programming language drivers. This chapter covers differ-
ent tools and methods for efficient interaction with MongoDB.

–	 Chapter 4—Executing create, read, update, and delete (CRUD) operations,
scripting with mongosh, and working with time-series collections. Hands-on
examples demonstrate how to manipulate and query data effectively.

–	 Chapter 5—Designing schemas, embedding and referencing data, and validat-
ing schema structures. This chapter is a journey into data modeling strategies
to ensure optimal database performance and maintainability.

–	 Chapter 6—Building aggregation pipelines for data processing and optimiza-
tion. You explore how to transform and analyze data using MongoDB’s power-
ful aggregation framework.

–	 Chapter 7—Indexing strategies, performance tuning, and query execution
analysis. This chapter focuses on improving query performance through stra-
tegic indexing and query optimization.

–	 Chapter 8—Understanding atomicity, consistency, isolation, and durability
(ACID) transactions in MongoDB and best practices for multidocument trans-
actions. Learn how MongoDB handles transactions to ensure data consistency
across multiple operations.

–	 Chapter 9—Replication for high availability and horizontal scaling with shard-
ing. This chapter examines the fundamentals of data distribution and replica-
tion to enhance fault tolerance and scalability.

¡	Part 2 covers the Atlas developer data platform:

–	 Chapter 10—Exploring MongoDB Atlas as a DBaaS and its developer-centric
tools. This chapter provides insights into Atlas’s managed features and shows
why it simplifies database operations.

–	 Chapter 11—Implementing full-text search using Atlas Search and Apache
Lucene. You learn how to use search indexing to build fast, scalable search
applications.

–	 Chapter 12—Using Atlas Vector Search for AI-driven applications and similar-
ity search. This chapter explains how vector-based search enhances AI applica-
tions with semantic retrieval.

–	 Chapter 13—Using the Atlas command-line interface (CLI). The CLI enables
local development and testing of AI applications by allowing you to spin up a
local Atlas cluster, load data, and perform both full-text and vector searches,
enabling rapid iteration without cloud deployment.

–	 Chapter 14—Building retrieval-augmented generation (RAG) AI chatbots with
LangChain and MongoDB. Learn how to develop intelligent chatbots that
retrieve and generate relevant responses dynamically.

–	 Chapter 15—Developing event-driven applications with Atlas Stream Processing.
You see how to process real-time data streams and trigger database-driven events.

xxiv about this bookxxiv

–	 Chapter 16—Querying Amazon S3 and Azure Blob Storage using the MongoDB
Query API, which enables seamless access to distributed data. Explore the
architecture of Atlas Data Federation, deploy a federated database instance,
and understand its limitations and pricing model.

–	 Chapter 17—Archiving aging or infrequently accessed data with Atlas Online
Archive for seamless storage optimization. Initialize the archive, apply
archiving strategies, connect and query archived data, delete archived docu-
ments, and restore data when necessary.

–	 Chapter 18—Querying Atlas using SQL and integrating business-intelligence
(BI) tools. This chapter is a guide to using SQL-based queries in MongoDB
and connecting it to BI platforms.

–	 Chapter 19—Creating Atlas Charts, database triggers, and serverless functions.
This chapter walks through MongoDB Atlas’s visualization and automation
capabilities for data-driven applications.

¡	Part 3 covers security and operations:

–	 Chapter 20—Securing your data with Atlas. This topic involves managing
authentication and authorization, enforcing least-privilege access, integrat-
ing with HashiCorp Vault, and configuring encryption in transit, at rest, and
during processing. Strengthen network protection through IP access lists, vir-
tual private cloud (VPC) peering, and private endpoints.

–	 Chapter 21—Achieving operational reliability with Atlas. This topic involves
implementing robust backup strategies, monitoring performance, and tuning
your cluster. Restore data, identify slow queries, optimize schema design, con-
figure alerts, analyze logs, and manage cluster upgrades effectively.

About the code
This book contains many examples of source code in numbered listings and inline
with normal text. In both cases, source code is formatted in a fixed-width font like

this to separate it from ordinary text. Sometimes, code is also in bold to highlight
code that has changed from earlier steps in the chapter, such as when a new feature
adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Also, comments in the source code were removed from the listings when
the code was described in the text. Code annotations accompany many of the listings,
highlighting important concepts.

All source-code examples, command-line scripts, and supplementary materials ref-
erenced throughout this book are available in the companion GitHub repository at
https://github.com/arekborucki/MongoDB-in-Action.

The repository is organized by chapter, and each directory contains practical mate-
rials aligned with the book’s content. It serves as a hands-on companion for exploring

https://github.com/arekborucki/MongoDB-in-Action

	 xxvabout this book 	 xxv

MongoDB and the Atlas developer data platform in real-world contexts. The repository
includes the following, among other things:

¡	Code examples written in JavaScript (Node.js), Python, and shell scripts

¡	Aggregation pipelines, indexing strategies, and query optimization examples

¡	Use cases for Atlas Search, including autocomplete, fuzzy search, and synonym
mapping

¡	Atlas Vector Search samples demonstrating similarity search and AI-driven
retrieval

¡	Real-time stream processing examples using Atlas Stream Processing

¡	Data life-cycle management using Online Archive and Data Federation

¡	Backup and restore utilities, including snapshot creation, point-in-time recovery,
and cluster restoration

¡	DevOps tools for performance tuning, schema validation, and automation
workflows

¡	Monitoring, alerting, and diagnostic scripts for managing MongoDB Atlas
clusters

This codebase is updated continually to reflect new MongoDB 8.0 features and
enhancements in the Atlas platform. It provides a practical reference for professionals
who are building reliable, scalable applications in the cloud.

You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/mongodb-in-action-third-edition. The
complete code for the examples in the book is also available for download on the Man-
ning website at https://www.manning.com/books/mongodb-in-action-third-edition.

liveBook discussion forum
Purchase of MongoDB 8.0 in Action, Third Edition, includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/mongodb-in-action-third-edition/discussion.

Manning’s commitment to our readers is to provide a venue where meaningful dia-
logue between individual readers and between readers and authors can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest that you
try asking the author some challenging questions lest their interest stray! The forum
and the archives of previous discussions will be accessible on the publisher’s website as
long as the book is in print.

https://livebook.manning.com/book/mongodb-in-action-third-edition
https://www.manning.com/books/mongodb-in-action-third-edition
https://livebook.manning.com/book/mongodb-in-action-third-edition/discussion
https://livebook.manning.com/book/mongodb-in-action-third-edition/discussion

xxvi

about the author
Arek Borucki is an SRE/DevOps expert specializing
in MongoDB, NoSQL, Kubernetes, and cloud plat-
forms. He builds scalable, high-performance systems for
mission-critical workloads. As a MongoDB Champion
and co-author of official MongoDB and Atlas certifica-
tion exams, he shares his expertise through training,
technical content, and regular talks at global events like
MongoDB.local and the Data on Kubernetes Commu-
nity. His interests include real-time analytics, perfor-
mance tuning, automation, observability, and AI-driven
distributed systems. He helps teams apply best practices
to deliver efficient, resilient infrastructure.

xxvii

about the cover illustration
The figure on the cover of MongoDB 8.0 in Action, Third Edition, titled “Le Bourginion”
(a resident of the Burgundy region in northeastern France), is taken from a book by
Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

In those days, it was easy to identify where people lived and what their trade or station
in life was by their dress alone. Manning celebrates the inventiveness and initiative of
the computer business with book covers based on the rich diversity of regional culture
centuries ago, brought back to life by pictures from collections such as this one.

Part 1

A database for modern
web applications

Imagine that you’re running an online store with millions of products and
thousands of customers shopping at the same time. In a traditional relational
database, you might start to hit performance walls as your data grows. Tables get
larger, queries slow, and scaling vertically (adding more CPU or RAM) becomes
expensive and limited.

MongoDB was designed to solve these problems. Unlike relational databases
that rely on rigid schemas, monolithic architectures, and JOIN-heavy queries,
MongoDB embraces a flexible, document-oriented model and is built from the
ground up to scale horizontally. JOINs, although powerful, create tight coupling
between tables, making horizontal scaling across distributed systems much more
difficult. MongoDB prevents this problem by storing related data together in rich,
self-contained documents. Need more capacity? Add another server. MongoDB’s
automatic sharding takes care of distributing your data across nodes, allowing
your system to grow with your users.

Have you ever tracked your food delivery in real time, received a personalized
product recommendation while shopping online, or collaborated with teammates
in a shared document editor? If so, you’ve experienced the power of modern web
applications—and chances are that MongoDB was working behind the scenes.

Today’s applications are built to be fast, flexible, and evolving. They collect and
process enormous volumes of data, from user preferences and chat messages to
product catalogs and sensor readings. Traditional relational databases, with their

2 A database for modern web applications

rigid schemas and limited scalability, often struggle to keep up with the pace and
diversity of these demands.

MongoDB takes a different approach. It’s a document-oriented database designed
for the modern web. Instead of storing data in fixed tables with rows and columns,
MongoDB stores information as flexible, JSON-like documents that naturally map
to how developers think and code. This design makes it possible to build and iterate
on applications rapidly without being held back by schema changes or performance
bottlenecks.

In this first part of the book, you’ll dive into the world of MongoDB and see how
it powers cloud-native applications. Chapter 1 introduces the document data model
and shows how MongoDB enables flexible, schema-agnostic development. You’ll
also learn about MongoDB Atlas, a fully managed database service that lets you run
MongoDB clusters in the cloud with ease.

Chapter 2 guides you through your first hands-on experience with Atlas: spinning
up a cluster, importing data, and making your first queries. Chapter 3 introduces the
tools you’ll use to interact with MongoDB, from the mongosh shell and MongoDB
Compass to programming-language drivers like Node.js, Python, and Ruby.

In chapter 4, you’ll learn how to create, read, update, and delete documents—
the core operations that power every database application. Chapter 5 shifts focus to
schema design and data modeling. You’ll explore different approaches to structuring
documents and linking related data, whether through embedding or referencing.

Chapter 6 introduces aggregation pipelines, a powerful feature that allows you to
transform and analyze data within MongoDB. You’ll see how to group, filter, reshape,
and even output data from your collections using declarative pipeline stages.

Next, chapter 7 dives into indexing, which is a critical topic for performance.
You’ll learn about various index types and see how to use them to speed your queries.
Chapter 8 explores multidocument atomicity, consistency, isolation, and durability
(ACID) transactions, showing how MongoDB ensures data consistency in complex
operations.

Finally, chapter 9 turns your attention to scaling and resilience. You’ll discover
how MongoDB ensures high availability through replication and scales horizon-
tally using sharding, letting you handle massive volumes of data across distributed
systems.

Whether you’re building your first MongoDB app or looking to master the foun-
dations, this part of the book gives you the tools and understanding to start strong.

3

1Understanding the
world of MongoDB

This chapter covers

¡	Analyzing the document-oriented data model
¡	Breaking down MongoDB sharded cluster 		
	 components
¡	Exploring the core features of the MongoDB 		
	 server
¡	Understanding Atlas and its key features
¡	Taking a first glance at full-text search and
	 vector search

The landscape of database technology is undergoing a significant transformation,
ushering in an era of next-generation databases designed to meet the evolving
demands of modern applications. These cutting-edge systems offer unparalleled
flexibility, scalability, and performance, challenging traditional paradigms and set-
ting new standards for data management.

In this book, I explore MongoDB, the next-generation NoSQL database, and its
vast potential. MongoDB is a versatile, flexible, and scalable document database

4 Chapter 1  Understanding the world of MongoDB

suitable for a wide range of applications. It supports scaling out and includes features
like secondary indexes (e.g., faster lookups in e-commerce), range queries (e.g., chat
applications), sorting (e.g., ordering search results), change streams (e.g., real-time
updates in stock trading apps), aggregations (e.g., analytics dashboards), and geospa-
tial indexes (e.g., Uber Maps), making it a powerful tool for developers. MongoDB
Atlas, on the other hand, is a managed MongoDB Database as a Service (DBaaS) that
operates across multiple cloud platforms. Atlas enhances MongoDB’s core server capa-
bilities by adding features such as full-text search for ranking, relevance, wildcard, fuzzy,
or faceted search; vector search (pivotal in supporting retrieval-augmented generation
applications and generative AI); stream processing; SQL interface; and more, offering
advanced search and real-time data processing functions.

With built-in security, automated backups, and seamless scalability, Atlas simplifies
database management while ensuring high availability. This makes it a good choice for
startups and large enterprises looking to build reliable, data-driven applications.

1.1	 Examining the document-oriented data model
In modern software development, objects that encapsulate data and methods are cen-
tral, representing real-world entities such as customers, invoices, and flights. These
objects are ephemeral during program execution and must be stored permanently for
future use—a process known as persistence. Persistence ensures that the state of objects
is maintained across program runs, allowing for ongoing interaction with stored data.

Document databases cater to this need by enabling direct storage of objects without
significant data transformation, simplifying the persistence process. They support intu-
itive querying by allowing data to be filtered and aggregated directly through objects,
aligning with object-oriented programming principles. It’s important to note, however,
that MongoDB is versatile and equally suited to functional programming, as it accom-
modates various programming paradigms effectively.

Unlike traditional relational databases that use a strict schema, document databases
offer flexibility in data organization to optimize storage and retrieval for specific opera-
tions. Traditional relational databases are well suited to applications requiring complex,
precise transactional operations, such as financial systems, in which data integrity and
consistency are paramount. They are defined by a schema that describes all functional
elements (such as tables, rows, and relationships), providing a high degree of control
but requiring data to be formatted to fit into a structured table model. By contrast,
document databases like MongoDB operate on a flexible schema basis, meaning that
they do not require a predefined structure for data before it is stored. This flexibility
allows each document to store data in a dynamic structure that can include fields and
data types that vary from one document to another, significantly enhancing data access
efficiency by allowing the co-location of related data. This flexible schema architecture
makes these databases ideal for scenarios requiring rapid development and the abil-
ity to scale and adapt data structures on the fly, such as content management systems,
e-commerce platforms, and real-time big data analytics. By embedding related data as

	 5Examining the document-oriented data model

arrays or nested documents, document databases reduce the need for separate tables,
streamline data management, reduce reliance on separate storage structures, simplify
access through fewer read operations, and lower overall data retrieval costs.

MongoDB uses Binary JSON (BSON), a binary-encoded serialization of JSON-
like documents, to store objects. Although BSON maintains the lightweight, easy-to-
use characteristics of JSON, it extends these capabilities by supporting data types that
are not available in standard JSON, such as dates and binary data. This enhancement
enables MongoDB to handle more complex data structures effectively.

It’s important to note that although the way a document is represented can differ
across programming languages, most languages offer a data structure that aligns well
with the concept of a document. Structures like maps, hashes, and dictionaries are com-
monly used, providing a flexible means to organize and access data in the form of key-
value pairs. These structures naturally support the organization and access of data in
key-value pairs, a format that MongoDB uses efficiently to facilitate data manipulation
and retrieval across various applications. A simple document containing a book title
might look like this in JavaScript:

{ "title": "MongoDB 8.0 in Action" }

This example is straightforward; most documents in MongoDB are more complex, typ-
ically containing multiple key-value pairs, arrays, and nested documents. This struc-
ture allows storage of structured information in a way that’s both efficient and easy to
access. Storing more information within a single document can reduce read opera-
tions, improve query performance, and simplify data retrieval. Following is an example
of a MongoDB document with arrays and nested documents.

Listing 1.1  A MongoDB document with arrays and nested documents

{
 "_id": 1,
 "title": "MongoDB 8.0 in Action",
 "publisher": "Manning Publications",
 "status": "Available",
 "focusAreas": [
 "MongoDB Database System",
 "Atlas Platform"
],
 "publicationYear": 2025,
 "additionalDetails": {
 "embeddedDocument": {
 "description": "A comprehensive guide to mastering
MongoDB 8.0, including working with the Atlas
Platform and learning the latest features"
 }
 }
}

6 Chapter 1  Understanding the world of MongoDB

As we’ve seen, MongoDB stores data in flexible, JSON-like documents. To interact with
this data, the MongoDB Query API (previously known as MongoDB Query Language)
can be used, which provides an effective and versatile way to perform all database oper-
ations. The Query API is designed to be intuitive, allowing you to naturally express
queries that can range from the very simple to the highly complex. In later chapters,
we will dive into this language, examining its syntax and capabilities in detail. For now,
let’s look at three introductory examples of queries in MongoDB:

¡	Finding a book by title:

db.books.find({ "title": "MongoDB 8.0 in Action" })

This query would return the document(s) in which the title field is "MongoDB 8.0
in Action".

¡	Updating the publisher of a book:

db.books.updateOne(
 { "title": "MongoDB 8.0 in Action" },
 { $set: { "publisher": " Manning Publications Co" } }
)

This operation changes the publisher field of the matching document to
"Manning Publications Co".

¡	Removing documents based on publication status:

db.books.deleteMany({ "status": "out of print" })

This command deletes all documents in the books collection that have a status of
"out of print".

These queries illustrate the fundamental principles of the Query API design: its direct-
ness and effectiveness in data manipulation. Through these examples, we see how this
query language facilitates precise data querying and updating with minimal complex-
ity. This introduction paves the way for a deeper dive into its capabilities, highlighting
its role in efficient database operations and setting a foundation for the detailed explo-
ration to follow.

1.2	 Scaling data horizontally
Data sets for applications are growing rapidly, driven by more bandwidth and cheaper
storage, leading to applications managing large volumes of data, often in terabytes.
This growth challenges developers to scale their databases by scaling up, upgrading to
bigger servers with inherent cost and physical limits, or scaling out (partitioning data
across multiple machines), adding more servers to a cluster for a more cost-effective
and scalable solution, albeit with increased management complexity.

	 7Scaling data horizontally

MongoDB is optimized for scaling out, using its document-oriented model to dis-
tribute data efficiently across multiple servers. MongoDB’s document-oriented model
is well suited to distributing data because each document is self-contained, meaning
that all necessary information is stored in one place, reducing the need for the complex
joins between data that are common in relational databases. As a result, MongoDB can
efficiently manage and allocate data across servers, facilitating easy scaling. Because
documents don’t rely on others to function or fulfill queries, the system can quickly
retrieve data from the appropriate server, enhancing performance and scalability.

Figure 1.1 illustrates this scaling-out approach. The process that implements this
approach is known as sharding. Sharding distributes data across multiple machines,
automating data balancing and load distribution to simplify the management of data
scalability. This method allows MongoDB to handle large datasets and high-throughput
operations by partitioning data into shards, each of which can be hosted on different
servers. Adding new machines to accommodate growing data needs is seamless with
MongoDB, which intelligently redistributes data across the cluster.

Primary

Shard 1

Secondary

Secondary

Primary

Shard 2

Secondary

Secondary

Primary

Shard N

Secondary

Secondary

Primary

Config server

Secondary

Secondary

mongos

Application

Driver

mongos

Figure 1.1  MongoDB’s sharding architecture enables horizontal scaling by distributing data across
multiple servers. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

As shown in figure 1.1, the architecture surrounding a sharded MongoDB cluster
involves several key components:

¡	Application and driver—The application interacts with MongoDB through a driver,
which is responsible for connecting to the appropriate MongoDB instances. The
driver communicates with mongos to route queries to the correct shard.

¡	mongos (query routers)—mongos routers are responsible for distributing client
queries to the correct shards by using metadata from config servers. They sup-
port high availability and scalability through the deployment of multiple mongos

8 Chapter 1  Understanding the world of MongoDB

instances. If a proxy or load balancer is between the application and the mongos
routers, configuring it for client affinity is essential. Client affinity, or sticky sessions,
ensures that a load balancer or proxy directs a client to the same backend server
for all requests. In this setup, after a client connects to a specific mongos router,
all subsequent requests are routed to that same instance, ensuring session consis-
tency. For shard-level high availability, you can add more mongos instances on the
same hardware where they are already running or embed mongos routers directly
at the application level. Adding more mongos routers can lead to performance
degradation due to frequent communication with config servers. To avoid this
situation, I recommend keeping the number of mongos routers below 30.

¡	Config servers (replica set)—These servers store the metadata required to manage
the sharded environment, such as the layout of the shards and the location of
data within the shards. Operating as a replica set, they ensure redundancy and
high availability of this crucial metadata.

¡	Shard (replica set)—Within the sharded cluster, each shard is essentially a replica
set that acts as a single data partition. These shard replica sets ensure data redun-
dancy and availability, handling read and write operations. If the primary server
in a shard fails, one of the secondary servers can take over as the primary server
automatically, ensuring continuous database operations. MongoDB does not
have a strict maximum limit on the number of shards in a sharded cluster, but
practical limitations can arise due to the complexity of managing a large number
of shards, especially as the number increases into the hundreds.

TIP  Starting with MongoDB version 8.0, you can simplify cluster management
by integrating configuration servers with data nodes (shards). You can config-
ure a config server to store application data in addition to the usual sharded
cluster metadata. This integration reduces operational overhead and costs
associated with managing separate configuration servers.

1.3	 Exploring the MongoDB ecosystem
MongoDB is a general-purpose database that provides a broad range of features. It’s
available as a Community Edition (a free version designed for developers and small
teams looking to explore MongoDB’s capabilities without the cost of a full-fledged com-
mercial license) and MongoDB Enterprise Advanced (which offers operational and
security enhancements, including encrypted and in-memory storage engines, authen-
tication and authorization using OpenID Connect (OIDC) and OAuth 2.0, as well as
auditing capabilities). MongoDB Enterprise Advanced also includes entitlements to
use comprehensive management tools such as Ops Manager and Enterprise Operator
for Kubernetes. It’s available on MongoDB Atlas, a fully managed cloud service that
not only simplifies database setup, scaling, and management but also enhances the
core MongoDB server with exclusive features for cloud environments.

	 9Exploring the MongoDB ecosystem

1.3.1	 Learning the core MongoDB server features

Here’s an outline of some essential MongoDB features, available in MongoDB Com-
munity Edition, Enterprise Edition, and MongoDB deployed in Atlas:

¡	Indexes—MongoDB provides support for generic secondary indexes, along with
specialized indexing options such as unique, compound, geospatial, and text
indexes. It also supports secondary indexing on hierarchical data structures,
including nested documents and arrays, thus empowering developers to model
their data optimally according to the specific needs of their applications.

¡	Aggregation framework—Aggregation operations process data records and return
computed results. Aggregation operations group values from multiple docu-
ments together and can perform a variety of operations on the grouped data to
return a single result. The framework provides features similar to SQL’s GROUP
BY, related operators, and basic self-joins; it also allows data reshaping.

¡	Change streams—Applications can use change streams to subscribe to all data
changes on a single collection, a database, or an entire deployment and react
to them immediately. Because change streams use the aggregation framework,
applications can also filter for specific changes or transform the notifications at
will.

¡	Special collections and indexes—MongoDB features time-to-live (TTL) indexes for
automatically expiring data, capped collections for maintaining recent data like
logs, and partial indexes to index only documents that meet specific criteria,
enhancing efficiency and saving storage space.

¡	Time-series collections—Applications can use these collections to manage time-
stamped data efficiently, optimizing both storage and retrieval processes for
information that changes over time, such as metrics, device data, and application
logs.

1.3.2	 Learning MongoDB Atlas concepts

The contribution of Atlas to the robustness of MongoDB is invaluable. It enables data
distribution among leading cloud service providers, such as Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP). Atlas has built-in auto-
mation mechanisms for optimizing resources and workloads. It includes a comprehen-
sive security suite to protect data integrity and privacy; it also offers advanced tools for
backup and restoration, ensuring data resilience and effortless recovery capabilities.

Over the past few years, Atlas has evolved from merely a DBaaS to a comprehensive
suite of features and services designed to support the entire application development
life cycle, significantly expanding the capabilities of the core MongoDB server. These
capabilities, accessible through the unified MongoDB Query API, include

¡	Atlas Search—Built on industry-leading Apache Lucene. Atlas Search is an
embedded full-text search in MongoDB, including abilities like custom scoring
and facets to provide fast, relevant searches for users.

10 Chapter 1  Understanding the world of MongoDB

¡	Atlas Vector Search—Supports storing vector embeddings alongside unstructured
data, enabling their use in semantic searches. These embeddings, generated by
machine learning models such as OpenAI and Hugging Face, can be indexed in
Atlas for applications like retrieval-augmented generation (RAG), recommenda-
tion engines, dynamic personalization, and other advanced use cases.

¡	Atlas Stream Processing—Allows for the processing of complex data streams using
the same data model and Query API as in Atlas databases.

¡	Atlas Online Archive—Enables automatic archiving of infrequently accessed or
historical data from MongoDB Atlas collections to low-cost cloud storage, while
still allowing it to be queried in place using standard MongoDB queries. Helps
reduce storage costs without impacting access to valuable historical data.

¡	Atlas SQL Interface—Enables the use of existing SQL knowledge and familiar
tools to query and analyze Atlas data. The Atlas SQL Interface uses mongosql, a
dialect compatible with SQL-92 and designed for the document model.

¡	Atlas Database Triggers—Enables the execution of server-side logic whenever
changes occur in a connected MongoDB Atlas cluster. Triggers can be set up for
specific collections, whole databases, or the entire cluster.

Figure 1.2 illustrates the high-level architecture of Atlas.

Document model and Query API

Secure, global and multicloud, resilient and elastic

Your data

Your applications

Full-Text
search

Vector
search

Stream
processing

Time
series

SQL
interface Analytics

Figure 1.2  High-level architecture of the MongoDB multicloud Atlas data platform, with key
components such as the Document Model and Unified Query API, as well as foundational features
like security, global multicloud capabilities, resilience, and elasticity. MongoDB supports diverse
functionalities like full-text search, vector search, stream processing, SQL interface, analytics, and time
series, all of which integrate with your applications and data across various environments.
(Image © MongoDB 2024 CC BY-NC-SA 3.0)

	 11Discovering MongoDB Query API

A detailed discussion of the Atlas Developer Data Platform and all its features is avail-
able in part 2 of this book.

1.4	 Enhancing the TCMalloc version
MongoDB 8.0 uses an enhanced version of TCMalloc, which relies on per-CPU caches
rather than per-thread caches to minimize memory fragmentation and improve the
database’s resilience under heavy workloads. TCMalloc, short for Thread-Caching Malloc,
is a high-performance memory allocator designed to optimize memory management
in multithreaded applications. Unlike traditional memory allocators that often face
contention between threads, TCMalloc provides each thread its own cache of memory
blocks. This method not only accelerates memory allocation and deallocation but also
reduces memory fragmentation. The shift to per-CPU caching in the MongoDB 8.0
update further increases efficiency, especially in high-concurrency environments, by
aligning memory allocation more closely with individual CPU core operations, thereby
enhancing overall performance and stability during intense workloads.

1.5	 Discovering MongoDB Query API
The MongoDB Query API is the primary method for interacting with data in
MongoDB. It offers a flexible, efficient way to query documents, allowing you to apply
filters, projections, and sorting to retrieve the exact data you need. You can use the
Query API to perform queries in MongoDB in two main ways:

¡	Create, read, update, and delete (CRUD) operations—Basic operations that enable
the creation, reading, updating, and deletion of data in MongoDB. These oper-
ations are crucial for the management of data stored in databases (explained in
chapter 4).

¡	Aggregation pipelines—An advanced querying technique that processes data
through a multistage pipeline. This method facilitates complex data aggrega-
tion, transformation, and analysis operations, supporting sophisticated queries
and data processing tasks (explained in chapter 6).

The MongoDB Query API allows you to execute the following:

¡	Dynamic queries—Interact with your MongoDB data by using tools like MongoDB
Shell (mongosh) and Compass GUI for MongoDB or MongoDB drivers.

¡	Data reshaping—Modify and compute data using powerful aggregation pipelines.

¡	Document joins—Combine data from several collections using aggregation pipe-
line operators like $lookup and $unionWith.

¡	Geospatial and graph-based queries—Handle location-based queries with $geoWithin
and $geoNear, or explore graph data relationships using $graphLookup.

¡	Full-text search—Use MongoDB and Apache Lucene full-text search capabilities
with the $search stage in aggregation.

¡	Vector search—Perform approximate nearest neighbor queries and apply prefil-
ters like $eq and $gte using the $vectorSearch aggregation pipeline stage.

12 Chapter 1  Understanding the world of MongoDB

¡	Stream processing—Manage and process real-time data streams with the $source
stage for continuous data ingestion and processing.

¡	Time-series analysis—Query and aggregate timestamped data with time-series
collections.

¡	Index creation—Enhance the performance of your MongoDB queries by using
indexes specifically designed for them.

Summary

¡	In modern software development, objects representing real-world entities
need to be stored permanently for future use via a process called persistence.
Document databases like MongoDB simplify this process by allowing direct
storage of objects without significant data transformation, supporting intuitive
querying.

¡	Unlike traditional relational databases with strict schemas, document databases
like MongoDB offer a flexible schema, allowing dynamic structures with varied
fields. This flexibility makes them ideal for rapid development and scalable sce-
narios, such as content management systems and real-time analytics, streamlin-
ing data management and reducing retrieval costs.

¡	MongoDB uses BSON to store objects, extending JSON with data types like dates
and binary data. This extension allows it to handle complex structures effectively.
Most programming languages offer compatible structures like maps or dictionar-
ies, which MongoDB uses for efficient data manipulation and retrieval.

¡	To interact with this data, you can use the MongoDB Query API, which is effective
and versatile for all database operations. The Query API is designed to be intui-
tive, making it easy to express both simple and complex queries.

¡	MongoDB is optimized for scaling out, using its document-oriented model and
sharding to distribute data across multiple servers. Sharding automates data bal-
ancing and load distribution, simplifying scalability management and allowing
MongoDB to handle large datasets and high throughput. Adding new machines
is seamless, as MongoDB intelligently redistributes data across the cluster.

¡	MongoDB is a general-purpose database available as a free Community Edition
and as MongoDB Enterprise Advanced, which offers enhanced security, opera-
tional tools, and management capabilities. Enterprise features include encrypted
storage, OIDC and OAuth 2.0 authentication and authorization, auditing, Ops
Manager, and Enterprise Operator for Kubernetes.

¡	MongoDB Atlas, a fully managed cloud service, simplifies MongoDB setup, scal-
ing, and management while adding exclusive cloud features. Over the past few
years, Atlas has evolved from a DBaaS to a full platform, significantly expanding
the core MongoDB server’s capabilities with a comprehensive suite of features
and services for the entire application development life cycle.

	 13Summary

¡	MongoDB 8.0 introduces a new version of TCMalloc that uses per-CPU caches
instead of per-thread caches. This change helps reduce memory fragmentation
and enhances the database’s ability to handle heavy workloads effectively.

¡	The MongoDB Query API is the primary method for interacting with MongoDB
data. It allows flexible, efficient querying of documents through filters, projec-
tions, and sorting to retrieve the specific data you need. You can use the Query
API to perform queries in MongoDB in two main ways: CRUD operations and
aggregation pipelines.

14

2Getting started with Atlas
and MongoDB data

This chapter covers

¡	Discovering the Atlas platform and its command-	
	 line interface
¡	Loading a sample data set into your MongoDB 	
	 Atlas cluster
¡	Getting started with the MongoDB shell 		
	 (mongosh)
¡	Managing data with databases, collections, and 	
	 documents
¡	Examining time-series and capped collections

In this chapter, we will take our first steps with MongoDB Atlas and delve into data
management within a MongoDB deployment. We will explore the concepts, fea-
tures, and techniques for storing data in MongoDB.

Part 2 of this book gives you a more comprehensive understanding of MongoDB
Atlas. For now, our focus is on taking the first steps to build the first MongoDB
Atlas cluster using the Atlas command-line interface (CLI). Building this cluster is

	 15Setting up your first Atlas cluster using Atlas CLI

essential because it allows us to conduct practical exercises and gain a deeper under-
standing of MongoDB concepts, providing a hands-on experience that illustrates the
platform’s capabilities and benefits in real-world applications.

2.1	 Setting up your first Atlas cluster using Atlas CLI
The quickest way to establish a MongoDB Atlas database cluster is to use the Atlas CLI.
This interface, designed specifically for MongoDB Atlas, enables programmatic inter-
action with the Atlas platform, including features like Atlas Search and Vector Search,
right from the terminal. It uses concise, intuitive commands, permitting the execution
of database management operations in mere seconds.

Additionally, there’s the option to load a sample MongoDB Atlas data set via the Atlas
CLI, which will be useful during exercises. Let’s do that now!

2.1.1	 Installing the Atlas CLI

In this section, you’ll install the Atlas CLI using Homebrew, a versatile package man-
ager available for both macOS and Linux, including the Windows Subsystem for Linux
(WSL). To begin, open your terminal—whether it’s the Terminal in macOS, a Linux
terminal, or the Windows Terminal in WSL. Next, execute the following command in
your terminal to download and initiate the Homebrew installation script:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/HEAD/install.sh)"

This command fetches the latest Homebrew installer from its official GitHub reposi-
tory using curl and executes it with bash, setting up Homebrew on your system. When
Homebrew is installed, you can easily proceed with installing the Atlas CLI by using the
command

brew install mongodb-atlas

This command will install Atlas CLI on your workstation. If you want to explore alter-
native methods of installing the Atlas CLI, you can use Yum for Red Hat–based systems,
Apt for Debian-based systems, or Chocolatey for Windows, or you can install it within a
Docker container. To check how to do it, see the official MongoDB documentation at
https://mng.bz/RwEn. If you prefer manual installation, downloading the binary files
directly is also an option. Detailed instructions on all these methods are available in
the MongoDB official documentation.

Also, you can download the Atlas CLI directly from https://www.mongodb.com/try/
download/atlascli, which provides the latest versions for all supported platforms.

2.1.2	 Creating an Atlas account

To create an Atlas account, execute the Atlas CLI command auth register in your ter-
minal. To register and log in to Atlas, you can use one, and only one, of these options:
an email account, a GitHub account, or a Google account.

https://mng.bz/RwEn
https://www.mongodb.com/try/download/atlascli
https://www.mongodb.com/try/download/atlascli

16 Chapter 2  Getting started with Atlas and MongoDB data

TIP  If your company uses federated authentication, you should use your com-
pany’s email address.

When you use atlas auth register, you are redirected automatically to the Atlas user
interface, where you need to select the login option and follow the onscreen steps.
After creating an account in Atlas, you can log in.

Authentication to an Atlas account is achieved by executing the Atlas CLI login
command and following the instructions that appear in the terminal:

atlas login

Now that you have an account and are authenticated to that account, you can move on
to create an organization.

2.1.3	 Creating an organization

Your next step is creating an Atlas organization, which serves as a top-level container to
manage multiple projects under a single umbrella. An organization can contain mul-
tiple projects and serve as the primary account level. Under this setup, it is possible to
apply identical billing settings and implement uniform alert settings across all projects
within the organization.

To create an organization, use the command atlas organizations create, and
assign a name to the organization you want to create.

TIP  Don’t provide sensitive information such as personally identifiable infor-
mation (PII) or protected health information (PHI) for the Organization,
Projects, Clusters, Databases, and Collections names.

I’m using Manning Publications as my organization, and you can replace it with your
name:

atlas organizations create "Manning Publications"

Organization '65d70b45e4d5f96f787075c3' created.

This command creates an organization with a unique organization ID. Typically, you
can consider your company to be an “organization.” In most cases, one organization is
sufficient. To check your organization ID, execute

atlas organizations list

This command displays your new organization ID. You will need that ID in the next
step.

You can save your commonly used Atlas connection settings as profiles for easy
access. Profiles keep the organization IDs, project IDs, and (optionally) API keys for use
in future Atlas CLI sessions. Profiles help streamline your workflow.

	 17Setting up your first Atlas cluster using Atlas CLI

Run the atlas config set org_id <your organization ID> to set the organization
ID in your default profile. This will save you time; you can specify a profile instead of
using the --projectId and --orgId flags with each Atlas CLI command that you use in
this book:

atlas config set org_id 65d70b45e4d5f96f787075c3

Updated property 'org_id'

Now my Atlas Organization ID is saved as a profile. The Atlas CLI stores profiles in a con-
figuration file called config.toml, in a location that depends on the operating system.

NOTE  If you’re using Windows, the config.toml file is located in the
%AppData%/atlascli directory. If you’re using macOS, the file is in /Users/
{username}/Library/Application Support/atlascli. For Linux users, it’s in
the $XDG_CONFIG_HOME/atlascli directory (or $HOME/.config/atlas if XDG_
CONFIG_HOME is unset).

2.1.4	 Creating an Atlas project

Next, you’ll need to set up a project within your Atlas organization, where your deploy-
ments will be organized. In MongoDB, a deployment refers to an instance of your data-
base environment that includes servers, storage, and configuration settings. Each
deployment is linked to a specific project, allowing individual settings for monitoring,
backup, and automation. Projects within the same organization are grouped under the
same billing settings to streamline cost management.

Use the command atlas project create, naming the project MongoDB 8.0 in
Action:

atlas project create "MongoDB 8.0 in Action"

Project '65d70c5bc9b5633e80a9c998' created.

Now use the command atlas project list to display your new project and assign the
project’s ID to the profiles:

atlas config set project_id 65d70c5bc9b5633e80a9c998
Updated property 'project_id'

This operation updates the property project_id in the profile configuration. If you
want to verify the settings of your default profile, run the command

atlas config describe default

TIP  The Atlas CLI also supports environment variables. MONGODB_ATLAS_ORG_
ID sets the organization ID for commands, and MONGODB_ATLAS_PROJECT_ID
sets the project ID.

18 Chapter 2  Getting started with Atlas and MongoDB data

NOTE  Settings stored in environment variables override those in profiles.
Projects or organizations specified with the --projectId and --orgId flags
take precedence over the profile and environment variables.

2.1.5	 Creating a MongoDB Atlas cluster

Now is the time to create a MongoDB Atlas cluster for performing exercises, starting
with the free tier. (I show you how to upgrade to a paid tier in chapter 9.) Let’s name
this cluster "MongoDB-in-Action". Execute atlas cluster create with the appropri-
ate flags. The cluster is deployed in the Google Cloud Platform (GCP) central U.S.
region, but you can also choose Amazon Web Services (AWS) or Microsoft Azure as the
provider:

atlas cluster create "MongoDB-in-Action" --provider GCP \
--region CENTRAL_US --tier M0

TIP  You don’t need to provide your own GCP credentials; MongoDB Atlas
handles the infrastructure provisioning using its own credentials. You need
only specify your desired provider.

If cluster creation is successful, you see the following message:

Cluster 'MongoDB-in-Action' created successfully.

The creation of the cluster may take around 5 minutes. You can verify the success of
the cluster’s creation with the command

atlas clusters list

ID NAME MDB VER STATE
65d71a7dc9b5633e80ae89ba MongoDB-in-Action 8.0.4 IDLE

The visible MongoDB version is the current version at the time I wrote this book. In free
clusters, you cannot choose the MongoDB version you want to install. Atlas upgrades
free clusters to the newest MongoDB version after several patch versions become avail-
able for that version.

Also, you can access the Atlas UI to check the cluster. Figure 2.1 shows the MongoDB
Atlas interface highlighting the "MongoDB-in-Action" cluster, along with options for
managing the deployment and its data.

NOTE  If you encounter problems while creating an Atlas cluster or if the
process takes a long time, check the website https://status.mongodb.com.
This website provides real-time information about the operational status of
MongoDB services, including Atlas. It shows whether outages, maintenance
events, or performance degradations are occurring across MongoDB services.

https://status.mongodb.com

	 19Loading a sample data set

Figure 2.1  This MongoDB Atlas interface displays the active database deployment named "MongoDB
-in-Action", with direct access to options such as Connect, View Monitoring, and Browse Collections. The left
sidebar shows an expanded navigation menu, highlighting key sections: Database (Clusters, Backup, and Online
Archive), Data (Visualization, Search & Vector Search, and Data Federation), and Services (Stream Processing).
The interface also includes a Visualize Your Data prompt for exploring MongoDB charts, which allows you to build
dashboards using your application data. Real-time cluster metrics, such as read/write operations and active
connections, are displayed in the monitoring panel on the right. (Image © MongoDB 2025)

2.1.6	 Navigating the Atlas user interface

Atlas helps you find what you need quickly by organizing key functionality in clearly
defined sections on the left side of the screen. This structure is designed to make nav-
igation more intuitive and to help you access important features faster. Here’s a quick
overview of how the main areas are grouped:

¡	Database—This section is where you’ll find all the main database tools. It includes
functions such as managing clusters, checking performance, browsing data, run-
ning queries, making backups, and using Online Archive.

¡	Data—Here, you get tools for working with your data. You can create charts (with
Atlas Charts), search using Atlas Search or Vector Search, and run queries across
sources with Data Federation.

¡	Services—This section is for automation and processing data as it happens. It
includes real-time stream processing, triggers to run actions automatically, and
migration tools to move your current setup to Atlas.

¡	Security—Here, you can manage who has access and how your data is protected.
It covers settings for projects, identity and access management (IAM), audit logs,
and extra security features.

2.2	 Loading a sample data set
Import a sample data set into the new cluster named "MongoDB-in-Action". The sam-
ple data set is readily available in MongoDB Atlas for use. To execute the import, run
the following Atlas CLI command:

20 Chapter 2  Getting started with Atlas and MongoDB data

atlas clusters sampleData load "MongoDB-in-Action"

In a few minutes, the command to load the sample data initiates a job that creates test
databases and populates them with documents in their collections. This data will serve
as the basis for the exercises. To check out these new databases, navigate to the Atlas
UI, and click the cluster name "MongoDB-in-Action"; in the left panel, select Data
Explorer. Figure 2.2 shows the sample data set.

Figure 2.2  This MongoDB Atlas UI displays the listingsAndReviews collection within the sample_airbnb
database, following the loading of the sample data set. The right panel shows key details such as storage size,
logical data size, total documents, and index count. On the left, the navigation panel is expanded, showing options
including Overview, Data Explorer, Real Time, Cluster Metrics, and Query Insights, enabling you to explore, monitor,
and manage your cluster in depth. (Image © MongoDB 2025)

2.3	 Adding an IP address to the project access list
It is essential to add your current IP address to the Atlas project access list to enable
communication with the cluster using mongosh. Do that using this command:

atlas accessList create --currentIp

After adding your IP address to the Atlas access list, you see the following response:

Created new IP access list.

This command adds your current IP address to the Atlas access list. You can also use
the Network Access page in the Atlas UI to manage and configure this setting.

If you want to display the IP addresses added to the Atlas project access list, use the
following command:

atlas accessList list

	 21Establishing a connection to MongoDB through MongoDB Shell

This command displays the IP addresses that have been added to the Atlas project
access list.

2.4	 Creating a user
It’s time to create the first user in the MongoDB database, who will be named manning.
Atlas has authentication enabled by default to ensure secure access. When creating this
user, I will assign them the atlasAdmin role. This role grants the user administrative
privileges on all databases on the server, allowing them to perform any administrative
action, such as managing other users and roles and executing any commands across
databases. You can learn more about the roles and their permissions in chapter 20.
Run the following command using the Atlas CLI:

atlas dbusers create --role atlasAdmin --username manning

? Password: ************
Database user 'manning' successfully created.

Now you can check whether the user has been created via the Atlas CLI:

atlas dbusers list

USERNAME DATABASE
manning admin

This command displays the user and the admin database where the user was created.

TIP  To enhance security, employ the principle of least privilege by assigning
specific roles that grant only the necessary permissions for each task. This
approach minimizes security risks and prevents unauthorized actions. In
MongoDB Atlas, customize user roles instead of assigning broad administrative
privileges like atlasAdmin for all users.

2.5	 Establishing a connection to MongoDB through MongoDB Shell
In subsequent steps, you’ll need mongosh, the MongoDB shell. It is a Read-Eval-Print
Loop (REPL) environment built on JavaScript and Node.js, created for engaging with
MongoDB deployments on Atlas, on-premises, or on any other remote host. mongosh
facilitates the testing of queries and direct interaction with your MongoDB database’s
data. You can install mongosh using a single simple brew command:

brew install mongosh

If you prefer an alternative method, you can download mongosh directly from the
MongoDB official website at https://www.mongodb.com/try/download/shell. This
page provides the latest version of mongosh for Windows, Linux, and macOS.

https://www.mongodb.com/try/download/shell

22 Chapter 2  Getting started with Atlas and MongoDB data

After installing, you can verify the installation of mongosh by checking its version.
Enter the following command in your terminal:

mongosh --version

Next, for database use and connection to the new cluster with mongosh, obtain the con-
nection string from the Atlas CLI:

atlas clusters connectionStrings describe \
"MongoDB-in-Action"

After executing the command, you will see your connection string. Mine looked like
this:

STANDARD CONNECTION STRING
mongodb+srv://mongodb-in-action.fpomkk.mongodb.net

NOTE  Your connection string will be different. Copy your connection string
from the console before moving on.

With your connection string, connect to the MongoDB cluster using the mongosh
command. The command uses the manning database user created in section 2.4. After
entering the command, you’re prompted to input the password to secure the connec-
tion; see listing 2.1.

TIP  An atlas setup option automates the creation and authentication of
your Atlas account, sets up one free database, loads sample data, adds your IP
address to your project’s IP access list, creates a MongoDB user, and allows you
to view your connection string. I recommend that you execute these operations
step by step to understand how the process works before going the automatic
route.

Listing 2.1  Connecting to a MongoDB deployment with mongosh

mongosh "mongodb+srv://mongodb-in-action.fpomkk.mongodb.net" \
--apiVersion 1 --username 'manning'
Enter password: ************

After logging in to the MongoDB Atlas cluster using mongosh, use the command show
dbs to display the databases created during the loading of the sample data set:

[primary] test> show dbs
sample_airbnb 52.77 MiB
sample_analytics 9.63 MiB
sample_geospatial 1.24 MiB
sample_guides 40.00 KiB
sample_mflix 114.69 MiB

	 23Managing data with databases, collections, and documents

sample_restaurants 8.03 MiB
sample_supplies 1.07 MiB
sample_training 50.58 MiB
sample_weatherdata 2.63 MiB
admin 336.00 KiB
local 5.71 GiB
[primary] test>

TIP  If you’re unsure about the Atlas CLI command you want to execute, use
atlas --help. It displays all the possible options.

Table 2.1 briefly describes the new databases.

Table 2.1  Description of databases

Database Description

sample_airbnb Contains details on Airbnb listings

sample_analytics Contains training data for a mock financial services application

sample_geospatial Contains shipwreck data

sample_guides Contains planetary data

sample_mflix Contains movie data

sample_restaurants Contains restaurant data

sample_supplies Contains data from a mock office-supplies store

sample_training Contains a MongoDB training services data set

sample_weatherdata Contains detailed weather reports

2.6	 Managing data with databases, collections, and documents
MongoDB structures data into a hierarchy consisting of three levels. At the highest
level, we have databases. Inside databases are collections, which hold documents. Doc-
uments contain different types of data: strings, numbers, and dates, as well as other
documents nested within them. By contrast, relational databases have databases, which
contain tables. Tables hold rows, and these rows are made up of columns that store
various types of data. Figure 2.3 illustrates how MongoDB structures data in a hierarchy
and compares it with relational database structures.

2.6.1	 Working with dynamic schema

MongoDB’s dynamic schema approach offers a flexible way to store data, allowing
the structure of documents within a collection to evolve. Unlike traditional relational
databases that require predefined schemas before data insertion, MongoDB adapts to
data’s natural diversity. This flexibility facilitates rapid development and iteration, as
changes to the data model do not necessitate a restructuring of existing data. It’s par-
ticularly beneficial for applications dealing with heterogeneous data types or rapidly

24 Chapter 2  Getting started with Atlas and MongoDB data

RDBMS

Database

Tables

Rows

Columns

MongoDB

Database

Collections

Documents

Fields

Figure 2.3  The terminology differences between relational databases and MongoDB
(Image © MongoDB 2024 CC BY-NC-SA 3.0)

evolving data sets. Both of the following documents, for example, could be stored in a
single collection:

{ "title": "MongoDB 8.0 in Action" }

{ "name": "MongoDB 8.0 in Action" }

Storing dissimilar documents in the same MongoDB collection, however, can lead to
several technical challenges and inefficiencies:

¡	Queries on collections with heterogeneous document structures can be slower
because MongoDB has to scan a wider variety of document shapes, making
index use less efficient. When documents are homogenous within a collection,
MongoDB can optimize query execution and index use, leading to significantly
faster query response times.

¡	MongoDB allows for schema validation at the collection level. If a collection
contains various types of documents, applying comprehensive validation rules
becomes complex or impossible.

¡	Handling diverse document structures within a single collection complicates
application logic. The application must constantly discriminate between docu-
ment types, leading to convoluted code and increasing the likelihood of bugs.

¡	Aggregation pipelines that operate on collections with mixed document types
can become unnecessarily complex, as they may require additional stages to fil-
ter and process different document shapes.

To avoid these problems, best practices suggest taking the following actions:

	 25Managing data with databases, collections, and documents

¡	Separate documents by type. Store documents with similar structures in the same
collection. This approach aligns with MongoDB’s design philosophy, optimizing
performance and simplifying database and application design.

¡	Consider the document structure carefully during the schema design phase. Designing
documents with future queries in mind can help you choose how to split docu-
ments into collections.

¡	Use MongoDB’s schema validation features at the collection level to ensure data integrity
and consistency. This approach is more straightforward when each collection con-
tains only one type of document.

¡	Periodically review the database schema, and refactor collections as necessary. This may
involve migrating documents to new collections as the application evolves and
requirements change.

2.6.2	 Working with databases

In MongoDB, databases hold collections of documents. When you first save data for a
database in MongoDB, it automatically creates the database if it doesn’t already exist.

To select a database to use or create, in mongosh, issue the use <db> statement. The
use command changes the current database context represented by the global variable
db. By default, db is set to the test database when you start mongosh, as in this example:

use booksData
db.books.insertOne({"title": "MongoDB 8.0 in Action"})

The use booksData command sets the current database context to booksData, allowing
you to interact with collections in this database. The insertOne() operation creates
the database booksData and the collection books if they do not already exist.

You must observe some database naming restrictions:

¡	Database names are case-sensitive in MongoDB. An additional restriction is that
case cannot be the only difference between database names. You can’t use two
databases with names like booksData and BooksData, for example.

¡	For MongoDB deployments running in Windows, database names cannot con-
tain any of the following characters:

/\. "$*<>:|?

¡	For MongoDB deployments running on UNIX and Linux systems, database
names cannot contain any of the following characters:

/\. "$

¡	Database names cannot contain the null character.

¡	Database names cannot be empty and must have fewer than 64 characters.

26 Chapter 2  Getting started with Atlas and MongoDB data

Some databases are created during the cluster creation process and are reserved for
MongoDB’s internal use. These databases include

¡	admin—The primary function of the admin database is to house system collec-
tions along with user authentication and authorization information. This encom-
passes administrator and user credentials, such as usernames, passwords, and
roles. Access is granted exclusively to administrators, who possess the authority to
create, update, and delete user accounts and assign roles.

¡	local—Each instance of mongod, the MongoDB server process, maintains a
unique local database containing data essential for replication and other data
specific to that instance. The local database is not subject to replication, meaning
that its collections are not replicated across instances.

¡	config—The config database is primarily used internally; it contains session
information and in-progress index build metadata. In sharded clusters, it stores
information about each shard.

2.6.3	 Working with collections

Collections are analogous to tables in relational databases. If a collection does not
exist, MongoDB creates the collection when you first store data for that collection (as
with a database). The insertOne() and createIndex() operations create their respec-
tive collection.

MongoDB offers the db.createCollection() method for explicitly creating a col-
lection with different options, such as capped or time-series, defining the maximum
size or document validation rules. If these options are not specified, you don’t need
to create the collection manually; MongoDB automatically generates new collections
upon initial data storage for those collections.

Collection names must start with either an underscore or a letter. They cannot

¡	Start with the system prefix, which is reserved for internal purposes

¡	Contain the null character

¡	Contain the $. or be an empty string (such as "")

If the collection name contains special characters, such as underscores, you need to
use the db.getCollection() method to access the collection in mongosh.

Let’s log in to the MongoDB deployment using mongosh in the Atlas cluster, look
at the collections created there, and examine some available collection methods.
The following listing shows methods that can be useful for working with MongoDB
deployments.

Listing 2.2  Connecting to a MongoDB deployment and inspecting collections

mongosh "mongodb+srv://mongodb-in-action.fpomkk.mongodb.net" \
--apiVersion 1 --username 'manning'
Enter password: ************

	 27Managing data with databases, collections, and documents

Switch to the sample_mflix database using the use method, and list the collections
present in this database using the db.getCollectionNames() method:

[primary] test> use sample_mflix
switched to db sample_mflix
[primary] sample_mflix> db.getCollectionNames()
[
 'sessions',
 'theaters',
 'embedded_movies',
 'comments',
 'users',
 'movies'
]
 [primary] sample_mflix>

As an alternative, to display the collections from the database, use the command show
collections. To display more detailed information about a collection, use db.get-
CollectionInfos(). This method shows the options that were set during the creation
of the collection, information about permissions, and current indexes:

db.getCollectionInfos({name: 'sessions'})
[
 {
 name: 'sessions',
 type: 'collection',
 options: {},
 info: {
 readOnly: false,
 uuid: UUID(‚0fe0efd9-4e07-4808-a0f1-c11478f9da56')
 },
 idIndex: { v: 2, key: { _id: 1 }, name: '_id_' }
 }
]

There is also a namespace, which is a combination of the database name and the col-
lection name, separated by a dot. If you have a database named sample_mflix and a
collection within it named embedded_movies, the namespace for this collection would
be sample_mflix.embedded_movies. Namespaces uniquely identify collections within
the MongoDB environment. MongoDB limits a namespace to 255 bytes.

We can display the collection embedded_movies namespace using the db.get
Collection() method, as seen in the following listing.

Listing 2.3  Displaying a namespace

[primary] sample_mflix> db.getCollection("embedded_movies")
sample_mflix.embedded_movies
[primary] sample_mflix>

28 Chapter 2  Getting started with Atlas and MongoDB data

Capped collections

Capped collections in MongoDB are collections of a fixed size (the number of documents
can also be capped) that facilitate operations with high throughput for inserting and
retrieving documents according to the order of insertion. They operate similarly to
circular buffers: when a capped collection reaches its size limit, it accommodates new
documents by replacing the oldest documents within the collection. Capped collec-
tions ensure the maintenance of insertion order, eliminating the need for an index to
retrieve documents in the order in which they were added. This reduction in index-
ing overhead enables capped collections to achieve greater efficiency in insertion
operations.

Capped collections can be useful for tasks such as these:

¡	Storing log data from high-volume systems—Writing to a capped collection without
indexes is nearly as fast as logging directly to a filesystem. The natural first-in-first-
out (FIFO) feature of capped collections keeps events in sequence and manages
storage efficiently.

¡	Caching small amounts of data—Caches are read-heavy, so aim to keep them in
RAM or accept a minor slowdown for necessary indexing. Because the most
recent data is often the most relevant, the natural ordering of capped collections
(FIFO) aligns well with cache use.

Capped collections have limitations, however:

¡	 They have a fixed size, so older documents are overwritten when the limit is
reached, which can be problematic if historical data is still needed for reference
or compliance.

¡	Individual documents cannot be deleted, and updates that change a document’s
size are not allowed.

¡	They don’t support complex queries or secondary indexes, making them less
flexible for certain use cases.

You can create a capped collection using the db.createCollection() method and
setting the option capped: true.

TIP  As an alternative to capped collections, consider MongoDB’s time-to-live
(TTL) indexes, described in chapter 7. These indexes allow you to expire and
remove data from normal collections based on the value of a date-typed field
and a TTL value for the index. TTL indexes are not compatible with capped
collections.

Time-series collections

Time-series collections are specialized collections designed to efficiently store and manage
time-series data, which is data recorded at regular intervals, with each entry associated
with a specific timestamp. This type of data is common in scenarios such as sensor read-
ings, stock prices, server logs, and application performance metrics, where the time

	 29Managing data with databases, collections, and documents

dimension is crucial for analysis. Storing time-series data in time-series collections, as
opposed to regular collections, enhances query performance and decreases disk space
use for the time-series data and its secondary indexes.

Time-series collections store data in time order by grouping related data points
in buckets based on time intervals and metadata. Data points are stored together in
Binary JSON (BSON) format, with multiple readings combined into a single docu-
ment. This approach reduces disk use, improves query performance, decreases I/O
for reading operations, and simplifies the handling of time-based data. Although
nested documents can be used, this structure is most efficient with simple, flat data
models.

Time-series data consists of data points arranged in a sequence, where understand-
ing comes from observing variations over time. Typically, time-series data includes the
following elements:

¡	Time when the data point was recorded

¡	Metadata that acts as a unique label or identifier for a series and rarely changes

¡	Measurements that are the data points monitored over time intervals (typically,
key-value pairs that vary with time)

When you examine weather data, for example, you can identify the measurement as
temperature, with the metadata being the sensor identifier and location. Another
example is analyzing financial transactions, where the measurement might be the
transaction amount and the metadata could include account identifiers.

To create a time-series collection, use the db.createCollection() method with the
options described in the next listing.

Listing 2.4  Creating a time-series collection

db.createCollection(
"my_time_series_collection",
{
 timeseries: {
 timeField: "timestamp",
 metaField: "metadata"
}})

To find all time-series collections in a database, use the listCollections command,
and apply a filter { type: "timeseries" }.

Listing 2.5  Listing time-series collections in a database

db.runCommand({
 listCollections: 1,
 filter: { type: "timeseries" }
})

30 Chapter 2  Getting started with Atlas and MongoDB data

Views

A MongoDB view is a queryable, read-only entity defined through an aggregation pipe-
line (described in chapter 6) applied to other collections or views. MongoDB doesn’t
store the contents of a view on disk. Instead, the content of a view is generated dynami-
cally upon query by a client. Here are some example use cases:

¡	You can create queryable entities that show only specific fields, hiding sensitive
information from certain users or applications. This helps enforce security by
limiting the exposure of sensitive data.

¡	You can simplify complex data structures by presenting only relevant informa-
tion, allowing users to work with a more concise and understandable representa-
tion of the underlying collection.

¡	You can encapsulate frequently used complex queries, enabling consistent and
simplified access to data without requiring users to write the same aggregation
logic repeatedly.

¡	You can combine information from multiple collections into a unified result
without physically merging the data, allowing easy integration of data from dif-
ferent sources for analytical purposes.

To create a view, use the db.createView() method with the options described in this
listing.

Listing 2.6  Creating a MongoDB view

use sample_training
db.createView(
 "aerocondorRoutesView", // Name of the view
 "routes", // Source collection
 [
 {
 $match: { "airline.id": 410 } // Filter to include only routes
 operated by Aerocondor
 }
]
)

Listing 2.6 shows how to create a view that displays routes operated by Aerocondor using
the db.createView() method. This method defines a new view named aerocondor
RoutesView based on the routes collection from the sample_training database. The
view uses a single stage in the aggregation pipeline—specifically, a $match stage that
filters the documents to include only those in which the airline’s ID is 410, which cor-
responds to Aerocondor. As a result, when you query the aerocondorRoutesView, you
retrieve all fields from the original documents that meet this condition, providing a
convenient way to access routes operated by Aerocondor without altering the underly-
ing data.

	 31Managing data with databases, collections, and documents

To see full details on each route operated by Aerocondor in the collection, you can
use the query db.aerocondorRoutesView.find().

On-demand materialized views

An on-demand materialized view is a stored result of a precalculated MongoDB aggrega-
tion pipeline (using the $merge or $out stages, described in chapter 6), which is saved
to and accessed from the disk. Both view types—standard and on-demand material-
ized view—return the result from an aggregation pipeline. On-demand materialized
views offer improved read performance over regular views because they are retrieved
from disk rather than calculated during the query. The performance advantage grows
with the complexity of the aggregation pipeline and the volume of data aggregated.
But on-demand materialized views do not update automatically and require manual
refreshing to reflect changes in the underlying data. You do this by rerunning the
aggregation pipeline, which writes the updated results back into the collection, allow-
ing the view to be refreshed with the most current data.

2.6.4	 Working with documents

MongoDB stores records as documents in BSON format, which is an extension of
JSON that includes additional data types. These documents are grouped in collections.
The maximum BSON document size is 16 MB. The maximum document size serves
to prevent a single document from consuming an excessive amount of RAM or band-
width during transmission. Documents can accommodate various data types, such as
strings, numbers, arrays, arrays of documents, and nested documents. This flexibility
allows the storage of diverse information within a single document, making MongoDB
suitable for handling complex data models. Additionally, documents can include fields
with different data types, enabling the representation of rich and hierarchical data
structures.

MongoDB documents are composed of field-and-value pairs. The value of a field
can be any of the BSON data types. To understand it better, let’s examine an example
document from our data set. The following listing shows how to display a single docu-
ment using the findOne() method from the grades collection in the sample_training
database.

Listing 2.7  Displaying a single MongoDB document using findOne()

[primary] sample_training> use sample_training
already on db sample_training

[primary] sample_training> db.grades.findOne()

{
 _id: ObjectId('56d5f7eb604eb380b0d8d8ce'),
 student_id: 0,
 scores: [
 { type: 'exam', score: 78.40446309504266 },
 { type: 'quiz', score: 73.36224783231339 },

32 Chapter 2  Getting started with Atlas and MongoDB data

 { type: 'homework', score: 46.980982486720535 },
 { type: 'homework', score: 76.67556138656222 }
],
 class_id: 339
}

[primary] sample_training>

This document represents a student’s academic record and contains the following
fields and corresponding values:

¡	_id—The unique _id field acts as a primary key. This field holds the value
ObjectId('56d5f7eb604eb380b0d8d8ce'), which is a unique identifier gener-
ated by MongoDB. It consists of a 4-byte timestamp indicating the creation time,
a 5-byte random value unique to the machine and process, and a 3-byte incre-
menting counter. MongoDB uses ObjectIds as the default value for the _id field
if the _id field is not specified. If a document doesn’t have an _id field at the
top level, for example, MongoDB’s driver includes one automatically, using an
ObjectId. Similarly, when the mongod server receives a document for insertion
without an _id field, it adds one with an ObjectId value.

¡	student_id—This field is set to 0, the student’s identification number.

¡	scores—This field is an array containing objects that represent different types of
assessments, such as exams, quizzes, and homework. Each object within the array
has two fields: type, indicating the type of assessment, and score, representing
the numerical score achieved by the student.

¡	class_id—This field is set to 339, the identifier of the class.

Documents have the following restrictions on field names:

¡	The _id field is designated for use as a primary key. Its value must be unique
within the collection, cannot be changed (is immutable), and can be of any type
except an array. If the _id field includes subfields, those subfield names cannot
start with the $ symbol.

¡	Field names cannot contain the null character.

Summary
¡	The Atlas CLI is an essential tool for setting up and managing MongoDB Atlas,

streamlining the process of creating organizations, projects, and clusters. It
offers a comprehensive range of commands for seamless database deployment,
user management, security configuration, and maintenance.

¡	To enhance security, assign users in MongoDB specific roles that grant only the
permissions necessary for their tasks, applying the principle of least privilege.
This strategy minimizes security risks and prevents unauthorized actions.

¡	Sample data loading is streamlined via the Atlas CLI, enabling preparation for
practical exercises within the Atlas ecosystem.

	 33Summary

¡	An Atlas organization acts as a top-level container that manages multiple projects
under one umbrella, serving as the primary account level. Each project within
the organization can contain individual deployments—instances of your data-
base environment, including servers, storage, and configuration settings.

¡	The MongoDB shell (mongosh) is a powerful interface for direct database inter-
actions, offering a range of functionalities from basic commands to scripting.

¡	MongoDB organizes data in a three-level hierarchy: databases contain collec-
tions, which in turn hold documents featuring various data types, including
nested documents. By contrast, relational databases structure data into data-
bases, tables, rows, and columns.

¡	MongoDB’s dynamic schema approach allows document structures within
collections to evolve, unlike traditional relational databases, which need pre-
defined schemas. This flexibility supports rapid development by accommodating
changes without restructuring existing data, making it ideal for handling diverse
and rapidly evolving data sets.

¡	MongoDB’s capped collections are fixed-size and operate like circular buffers.
They ensure high-throughput insertion and retrieval by overwriting the oldest
documents when the size limit is reached.

¡	MongoDB offers time-series collections for storing time-series data efficiently.
These collections enhance query performance and reduce disk space use by
structuring writes to store data points from the same period close together.

¡	A MongoDB view is a read-only entity that is queryable and defined by an aggre-
gation pipeline applied to collections or other views. Unlike stored data, the
contents of a view are generated dynamically from underlying data only when
queried by a client and are not stored on disk.

¡	An on-demand materialized view in MongoDB is a precalculated aggregation
pipeline result stored on disk. It improves read performance by allowing data
retrieval from disk rather than calculating it during each query, unlike standard
views.

¡	MongoDB stores records as documents in BSON format, an extension of JSON
that supports additional data types. These documents are grouped in collections,
with each document having a maximum size of 16 MB.

34

3Communicating
with MongoDB

This chapter covers

¡	Getting an overview of the MongoDB Wire 		
	 Protocol
¡	Customizing MongoDB Shell
¡	Introducing MongoDB Compass GUI
¡	Connecting to the MongoDB database using the 	
	 Node.js driver
¡	Communicating with MongoDB using the Python 	
	 driver
¡	Querying MongoDB with Ruby drivers

In this chapter, I delve into the fundamentals of interacting with MongoDB through
the MongoDB Wire Protocol. I show you how to customize the MongoDB Shell
(mongosh) for your development needs and introduce MongoDB Compass, a user-
friendly graphical user interface (GUI). Finally, I demonstrate how to connect your
applications to MongoDB using Node.js, Python, and Ruby drivers (widely used
with MongoDB). By understanding these connectivity methods, you’ll be better

	 35Discovering mongosh

equipped to build reliable, efficient applications that communicate seamlessly with
your database regardless of the tech stack.

3.1	 Interacting via MongoDB Wire Protocol
MongoDB communication relies on the MongoDB Wire Protocol, the backbone for
data exchange between MongoDB clients and servers. This protocol operates via a
simple request–response mechanism over sockets, facilitating seamless interaction
between clients and the database server. It specifies byte ordering in little-endian for-
mat: the least significant byte is stored first, ensuring efficient communication over the
standard Transmission Control Protocol/Internet Protocol (TCP/IP) socket. TCP/IP
is the fundamental set of protocols governing the internet, allowing multiple computer
networks to interact. MongoDB typically uses port 27017 for these communications.

By employing the OP_MSG opcode, MongoDB enhances communication between cli-
ents and the database through a more flexible, structured data exchange mechanism.
The OP_MSG opcode, which is part of the MongoDB Wire Protocol, is an extensible mes-
sage format designed to encode client requests and server replies. This opcode enables
the structuring of data into multiple sections within a single message, facilitating the
concurrent processing of diverse data types and requests. This design reduces the com-
putational and temporal overhead associated with processing separate messages, and
by integrating multiple operations into a single message format, it effectively minimizes
protocol overhead and maximizes throughput—particularly advantageous in environ-
ments experiencing high operational loads. The OP_MSG message structure is config-
ured as follows:

OP_MSG {
 MsgHeader header; // standard message header
 uint32 flagBits; // message flags
 Sections[] sections; // data sections
 optional<uint32> checksum; // optional CRC-32C checksum
}

The OP_MSG structure consists of a MsgHeader header, which serves as the standard
message header, followed by uint32 flagBits, an integer bitmask containing vari-
ous message flags that modify message behavior. It also includes Sections, which are
the main data sections of the message, and an optional uint32 checksum, a CRC-32C
checksum for verifying the integrity of the message during transmission.

3.2	 Discovering mongosh
For manual interactions with MongoDB, mongosh is the default client. It enables con-
nections and communication using the MongoDB Wire Protocol over TCP/IP and
presents the results (typically in a textual JSON format). mongosh operates as a Java
Script and Node.js Read-Eval-Print Loop (REPL) environment, an interactive con-
sole tailored for interactions with MongoDB deployments. This means that the entire
Node.js API is available within mongosh. The key features of mongosh include

36 Chapter 3  Communicating with MongoDB

¡	Syntax highlighting—Makes input/output easy to read with color codes

¡	Error messages—Provide clear messages to help pinpoint problems in your code

¡	Intelligent autocomplete—Suggests commands/operators as you type

¡	Contextual help—Lets you access online documentation for mongosh commands

¡	Scripting—Enables scripting within an environment built on Node.js REPL

¡	Snippets—Allow you to save commonly used scripts for reuse and sharing

3.2.1	 Connecting to MongoDB Atlas

To initiate a connection with the MongoDB Atlas cluster you created in chapter 2,
use the mongosh command with your Service Record (SRV) connection string, cre-
dentials, and any additional options necessary for connection setup. The SRV con-
nection string, identified by the prefix mongodb+srv:// (as opposed to the simpler
mongodb://), is designed to simplify and shorten the connection string. It’s used by all
MongoDB Atlas connection strings for its ability to discover servers within a MongoDB
replica set or sharded cluster automatically, eliminating the need to specify individual
server addresses manually. Here’s how you might structure your command:

mongosh "mongodb+srv://YOUR_CLUSTER.YOUR_HASH.mongodb.net/" \
--apiVersion API_VERSION --username USERNAME –-password PASSWD

By executing this command, you establish a connection to your MongoDB Atlas
deployment. Specifying --apiVersion with the appropriate version (currently, 1
is the only supported version) guarantees that you use the MongoDB Stable API
(chapter 4). This API lets you upgrade your MongoDB server at will and ensures that
behavior changes between MongoDB versions do not break your application. The
Stable API guarantees application stability, facilitating regular updates and seamless
upgrades, allowing quick adoption of new features without backward-compatibility
problems.

3.2.2	 Connecting to self-hosted deployments

You can also use mongosh to establish connections to self-hosted MongoDB deploy-
ments, whether they are hosted locally or on remote servers, enabling access to your
data wherever it is hosted. For deployments that demand authentication, use the
--username, --password, and --authenticationDatabase options:

mongosh "mongodb://mongodb1.example.com:27017" --username book \
--password my_password --authenticationDatabase admin

3.2.3	 Performing operations

After you connect and authenticate to the database, you can begin performing opera-
tions. To display the database you are using, type db:

	 37Discovering mongosh

> db
test
>

The default database, test, is returned:

To display the list of databases, type show dbs.
To change databases, use the use <db>
helper command:
> show dbs
admin 30.41 MiB
config 404.00 KiB
local 42.81 MiB
> use admin
switched to db admin
>

The database changes from test to admin.

TIP  To access a different database without changing your current database
context, include the db.getSiblingDB() method.

Type the help command when you need help. The following listing shows some of the
available commands in the mongosh console.

Listing 3.1  A snippet of help-command output

test> help
 Shell Help:
 use Set current database
 show 'show databases'/'show dbs': Print a list of
all available databases.
 'show collections'/'show tables': Print a list of
 all collections for current database.
 'show profile': Prints system.profile information.
 'show users': Print a list of all users for current database.
 'show roles': Print a list of all roles for current database.
 'show log <type>': log for current connection,
 if type is not set uses 'global'
 'show logs': Print all logs.
... ...
 exit Quit the MongoDB shell with exit/exit()/.exit
 quit Quit the MongoDB shell with quit/quit()
... ...
 For more information on usage:
➥ https://docs.mongodb.com/manual/reference/method
test>

TIP  mongosh supports tab completion, which helps you find commands easily.
Typing db.[tab][tab] shows commands for the db object, and db.book.[tab]
[tab] lists commands for collection objects.

38 Chapter 3  Communicating with MongoDB

Database methods
To see the list of database methods you can use on the db object, run db.help();
for collection-level assistance, use db.collection.help(). If you need more infor-
mation about a particular collection-level method in mongosh, type db.<collection>
.<method name>, omitting the parentheses (). db.collection.countDocuments,
for example, returns this information:

[Function: countDocuments] AsyncFunction {
apiVersions: [1, Infinity],
serverVersions: ['4.0.3', '999.999.999'],
returnsPromise: true,
topologies: ['ReplSet', 'Sharded', 'LoadBalanced', 'Standalone'],
returnType: { type: 'unknown', attributes: {} },
deprecated: false,
platforms: ['Compass', 'Browser', 'CLI'], isDirectShellCommand: false,
acceptsRawInput: false,
shellCommandCompleter: undefined,
help: [Function (anonymous)] Help }

3.2.4	 Viewing mongosh logs

mongosh uses Newline Delimited JSON (NDJSON) to keep records of session logs.
From version 1.0.5 of mongosh onward, the logging format of the mongosh has been
revised to align with the log format used by the MongoDB server. mongosh redacts
credentials from both the command history and the logs. Reviewing mongosh logs is
vital for diagnosing problems and understanding command usage patterns within the
mongosh environment. These logs help identify problematic queries and operational
anomalies.

mongosh stores the log of each session in the .mongodb/mongosh directory of your
user profile. You can find the logs at ~/.mongodb/mongosh/<LogID>_log.

mongosh saves a history of all commands you’ve executed across sessions. When a
new command is issued, it is appended to the start of the log file. You can find the com-
mands at

¡	macOS and Linux—~/.mongodb/mongosh/mongosh_repl_history

¡	Windows—%UserProfile%/.mongodb/mongosh/mongosh_repl_history

mongosh keeps up to 100 log files for 30 days and then automatically deletes log files
older than 30 days.

3.2.5	 Running scripts in mongosh

In mongosh, you can develop scripts in JavaScript for data modification or administra-
tive purposes and package these scripts as snippets for simple distribution and manage-
ment. You can run a .js file within mongosh using the load() method. Furthermore,
the require() function allows the inclusion of built-in Node.js modules or external

	 39Discovering mongosh

npm modules, enhancing your script’s functionality. The require() and load() meth-
ods have different behaviors and availability:

¡	The require() method is used for including modules and is available in
Node.js scripts, supporting modularity by allowing the inclusion of local, built-in,
or external npm modules. require() uses the standard Node.js module resolu-
tion algorithm, starting from the current working directory of the shell.

¡	The load() method is specific to mongosh for executing JavaScript files directly.
The load() takes an absolute path or a relative path.

Construct a script that, when run within mongosh through the load command, retrieves
the server’s uptime and the current number of open connections from a MongoDB
database. This script uses the Day.js library to format the uptime into a more straight-
forward representation. Save the script as mongodb-script.js.

NOTE  You must include the Day.js library because it uses the require state-
ment at the beginning of the script. You can install Day.js on your machine
using the npm install dayjs command.

Listing 3.2 demonstrates the printMongoDBDetailsSimplified function, which
retrieves and displays MongoDB server details like version, host, uptime in days, and
current open connections. The function, when called, prints this information to the
console.

Listing 3.2  Displaying the MongoDB server information function

function printMongoDBDetailsSimplified() {
 const dayjs = require('dayjs'); //
 const relativeTime = require('dayjs/plugin/relativeTime');
➥//
 dayjs.extend(relativeTime); //

 try {
 const adminDB = db.getSiblingDB('admin'); //
 const serverStatus = adminDB.serverStatus(); //
 console.log("MongoDB Version:", serverStatus.version);
➥//
 console.log("Host:", serverStatus.host); //
 console.log("Uptime:", dayjs().subtract(serverStatus.uptime,
➥ "second").fromNow(true)); // //
 console.log("Currently open connections:",
➥ serverStatus.connections.current); //
 } catch (err) {

Imports dayjs for
handling date and time

Imports the
relativeTime plugin
for human-readable
time formatting

Activates the
relativeTime
plugin

Accesses the
admin database

Retrieves
MongoDB
server status

Displays the
MongoDB
version

Displays host
information

Shows uptime in a human-
readable format using dayjs

Displays the current
number of open connections

40 Chapter 3  Communicating with MongoDB

 console.error("Failed to retrieve status. Error:", err.message);
➥//
 }
}

printMongoDBDetailsSimplified();

After you save this function to the mongodb-script.js file, connect to your deploy-
ment using mongosh, and execute the following command to load and run the script:

load("/scripts/mongodb-script.js")

The script is designed to output data from your database directly to the console. On my
machine, the output looks like this:

MongoDB Version: 8.0.4
Host: ac-5dhjxpf-shard-00-01.fpomkke.mongodb.net:27017
Uptime: 11 hours
Currently open connections: 5

The script shows that the MongoDB server version is 8.0.4, it’s running on the Atlas
host ac-5dhjxpf-shard-00-01.fpomkke.mongodb.net, port 27017, it has been up for
11 hours, and five connections are currently open.

You can also use mongosh to run a script directly from the command line, bypassing
the interactive shell. To indicate the script you want to execute, add the --file or -f
option to the filename. If you want to run the mongodb-script.js script directly from
the command line using mongosh, for example, use the following command:

mongosh "mongodb+srv://YOUR_CLUSTER.YOUR_HASH.mongodb.net/" –username
➥ USERNAME –password PASSWD --file mongodb-script.js

This command connects to your MongoDB Atlas cluster using mongosh with the spec-
ified cluster URL, username, and password; then it automatically executes the script
contained in mongodb-script.js. When you include the --file option followed by
the script’s filename, the command runs the script without requiring manual input
or interaction in the mongosh interactive shell, streamlining the process of script exe-
cution against your MongoDB database. This approach is particularly useful for auto-
mated tasks or batch processing.

3.2.6	 Configuring mongosh

You can customize mongosh to fit your specific requirements by using the config API.
It’s important to note that any changes you make through the config API are designed
to be persistent, ensuring that your customizations are maintained across all subse-
quent sessions, thereby enhancing your user experience over time.

To display the current configuration in mongosh, run the config command after
connecting to mongosh. The following listing gives you a detailed look at the output of

Handles errors if server status
cannot be retrieved

	 41Discovering mongosh

the config command in mongosh, showcasing the various configuration settings and
parameters available.

Listing 3.3  Default configuration settings and parameters in mongosh

> config
Map(12) {
 'displayBatchSize' => 20,
 'maxTimeMS' => null,
 'enableTelemetry' => true,
 'editor' => null,
 'snippetIndexSourceURLs' => 'https://compass.mongodb.com
➥/mongosh/snippets-index.bson.br',
 'snippetRegistryURL' => 'https://registry.npmjs.org',
 'snippetAutoload' => true,
 'inspectCompact' => 3,
 'inspectDepth' => 6,
 'historyLength' => 1000,
 'showStackTraces' => false,
 'redactHistory' => 'remove'
}
>

To get a clearer idea of how to customize mongosh, let’s look at a few examples. You can
configure an external editor to be used with mongosh, either through the shell that ini-
tiates mongosh or directly within mongosh. To establish an editor while inside mongosh,
use the config.set() command:

> config.set("editor", "vi")
Setting "editor" has been changed
>

This command changes the "editor" configuration to "vi . Now you can use "vi"
for editing scripts or initiating commands from within mongosh. You can also modify
the value of the historyLength setting to, say, 3000. Increasing historyLength in
mongosh to 3000 allows you to keep a longer record of commands you’ve used, mak-
ing it easier to retrieve and reuse past commands during database management and
operations:

test> config.set("historyLength", 3000)
Setting "historyLength" has been changed

To verify that your changes have been applied successfully, execute config.get():

test> config.get("historyLength")
3000
test>

42 Chapter 3  Communicating with MongoDB

3.2.7	 Using .mongoshrc.js

For more advanced configuration, you can use JavaScript to include custom functions
and shell helpers in your .mongoshrc.js configuration file. Upon startup, mongosh
examines your home directory for a JavaScript file named .mongoshrc.js. If it locates
the file, mongosh reads the contents of .mongoshrc.js before presenting the prompt
for the initial time.

A good use case for .mongoshrc.js is customizing the default mongosh prompt. By
default, the mongosh prompt displays the name of the current database, but you can
modify the prompt.

 Suppose that you want to enhance your mongosh prompt to display not just dynamic
session data but also the MongoDB version and the total number of collections within
the current database. Listing 3.4 illustrates how to use the JavaScript function to cus-
tomize the mongosh prompt. It retrieves the MongoDB version and the number of col-
lections in the current database. Then it constructs a string that includes server uptime,
document count, MongoDB version, and collection count, separating them with verti-
cal bars and appending a greater-than (>) sign at the end.

Listing 3.4  The JavaScript function responsible for customizing the mongosh prompt

prompt = function() {
 const version = db.version();
 const collectionsCount = db.getCollectionNames().length;
 return "Uptime:" + db.serverStatus().uptime +
 " | Documents:" + db.stats().objects +
 " | Version:" + version +
 " | Collections:" + collectionsCount +
 " > ";
};

Enter this function into your .mongoshrc.js file, and then launch mongosh. In my
database, the new prompt looks like this:

Uptime:122765 | Documents:1843009 | Version:8.0.4 | Collections:218 >

In your .mongoshrc.js file, you can also include scripts that automate your work,
making your mongosh sessions more efficient. If you often work with a specific data-
base, such as sample_training, you can automate the process of switching to this
database every time you start mongosh rather than switching manually from the default
test database to sample_training. The following script defines the function switch
ToDatabase(), which automatically switches the mongosh session to a specific database
named sample_training.

Listing 3.5  The JavaScript switchToDatabase() method

// Script to switch to a specific database
const targetDatabase = "sample_training";

	 43Playing with MongoDB Compass

function switchToDatabase() {
 const currentDatabase = db.getName();
 if (currentDatabase !== targetDatabase) {
 print(`Switching to database: ${targetDatabase}`);
 db = db.getSiblingDB(targetDatabase);
 }
}

// Call the function when connecting to mongosh
switchToDatabase();

Enter this script into your .mongoshrc.js file, and add the name of your default data-
base, to which you will be switched upon logging in. In this example, the database
is named sample_training. You can modify the database name within the script as
needed, of course.

TIP  Use the --norc option to prevent .mongoshrc.js from loading.

3.3	 Playing with MongoDB Compass
MongoDB Compass is a free interactive GUI tool for querying, optimizing, and analyz-
ing MongoDB data in a visual environment. Compass provides detailed schema visu-
alizations, real-time performance metrics, sophisticated querying abilities, and many
other features.

Go to https://www.mongodb.com/try/download/compass to download and install
the most recent version of Compass. Review the requirements for your operating system
to ensure that the version of Compass you download is compatible with your system.

Compass stands as a solid alternative to mongosh (mongosh is accessible from within
Compass) and other command-line tools if you’d rather have a visual and interactive
method of database interaction.

After installing MongoDB Compass, launch it, and connect to your MongoDB clus-
ter. You can use the MongoDB Uniform Resource Identifier (URI) from your Atlas clus-
ter that you created in chapter 2, as I did in figure 3.1. This figure shows the view that
appears after you launch MongoDB Compass and click the Add New Connection but-
ton in the navigation sidebar on the left. This interface is designed to configure a new
connection to a MongoDB deployment. It includes a field for entering the MongoDB
deployment’s URI, with an option to edit the connection string using a toggle switch.
Below the URI field is a space to assign a name to the connection, which in this example
is "MongoDB-in-Action". The interface also provides Save, Connect, and Save & Con-
nect buttons to finalize the connection setup.

Upon connecting to your MongoDB deployment, you can explore the available data-
bases, which are databases created by loading the default Atlas data sets (chapter 2). At
the top is a query bar where you can type or generate a query. The Add Data, Export
Data, Update, and Delete buttons allow you to manage and change the data within the
database. You can also use mongosh directly from MongoDB Compass. To do this, click
the Open MongoDB Shell button in the top-right corner.

https://www.mongodb.com/try/download/compass

44 Chapter 3  Communicating with MongoDB

Figure 3.1  You can connect to a MongoDB deployment with the MongoDB Compass application. Enter
a MongoDB connection string in the New Connection window. (Image © MongoDB 2025)

MongoDB Compass comes with a suite of tools tailored for developers, including the
Aggregation Pipeline Builder, shown in figure 3.2. This robust feature allows you to
construct and configure aggregation pipelines, which are crucial for complex data
processing. With an intuitive interface, you can visualize documents from a collection,
add multiple stages of data processing, and see a preview of the resulting aggregated
data set. The Aggregations tab in Compass offers a clear, manageable space for creat-
ing these pipelines, with helpful functions like Add Stage and additional controls for
previewing. These tools give you flexibility in constructing and customizing pipelines
to meet your precise data processing needs.

Figure 3.2  The Aggregations tab is where you can add various stages of data processing. (Image © MongoDB 2025)

MongoDB Compass provides a toolkit for database management that’s designed to
enhance productivity for developers and database administrators. Key features of Com-
pass include

¡	Create, read, update, and delete (CRUD) operations—A user-friendly interface for cre-
ating, reading, updating, and deleting data, allowing for efficient data manipula-
tion directly within Compass

	 45Using the Node.js driver

¡	Query building—Advanced query capabilities with a visual builder that helps you
craft precise queries without writing code, making data retrieval accessible and
intuitive

¡	Schema visualization—A graphical representation of the database schema that
helps you understand the structure and relationships within the data, as well as
detect outliers and schema anomalies

¡	Performance profiling—Tools for monitoring and optimizing database perfor-
mance, including visual explanations of query execution plans that help you
identify bottlenecks

¡	Index management—Simplified index creation and management tools that
improve query performance and suggest optimal indexing strategies

¡	Real-time server statistics—Dashboards that display real-time operational statistics
and server status, providing insights into the health and performance of
MongoDB deployments

¡	Generative AI (GenAI) for queries and aggregation generation—Tools that generate
queries and aggregation pipelines using natural language, employing AI to inter-
pret the prompts you provide

Overall, MongoDB Compass streamlines the process of database development and
maintenance. As a GUI client, it allows for simplified data operations and analysis.
Later in this book, we’ll delve into mongosh and demonstrate the use of MongoDB
Compass for constructing complex queries and managing aggregation pipelines.

3.4	 Connecting using MongoDB drivers
A driver in this context is a software library that enables an application to interact with a
database, providing a way to connect, execute queries, and manage data. You can con-
nect your application to your MongoDB Atlas deployment or a self-hosted MongoDB
cluster by using one of the official MongoDB libraries.

MongoDB supports a wide array of libraries, with active development and
maintenance from MongoDB to incorporate new features, enhance performance,
fix bugs, and implement security patches. The officially supported libraries include
C, C++, C#, Go, Java, Kotlin, Node.js, PHP, Python, Ruby, Rust, Scala, and TypeScript.
Community-supported libraries are also available, including Elixir for Erlang,
Mongoose for JavaScript, Prisma for Node.js/TypeScript, and R for Data Science and
Statistics. In this book, I focus on the Node.js, Python, and Ruby drivers, providing
insights into and practical examples of these popular languages.

3.5	 Using the Node.js driver
To integrate MongoDB into your JavaScript or TypeScript application, you need to
use the MongoDB driver. By using the Node.js driver, you can establish connections to
MongoDB deployments in different environments, such as MongoDB Atlas, MongoDB

46 Chapter 3  Communicating with MongoDB

Enterprise, and MongoDB Community, allowing your application to interact seam-
lessly with MongoDB databases regardless of the hosting environment.

To start, make sure you have Node.js version 16 or later and npm installed in your
development environment. You can verify and install them at https://mng.bz/26jN.
Then follow these steps:

1	 Create a project directory named mongodb_book_project.

2	 Open your shell, and execute the following command:

mkdir mongodb_book_project

3	 Navigate to the new directory:

cd mongodb_book_project

4	 Initialize your Node.js project by running the following command:

npm init -y

When this command completes successfully, you’ll find a package.json file in
your mongodb_book_project directory, ready for your project.

5	 Execute the following command in your shell to install the driver within your
project directory:

npm install mongodb@6.5

This command downloads the mongodb package and its dependencies, saves the
package in the node_modules directory, and records the dependency information
in the package.json file. Then you’ll have Node.js and npm installed, along with
a new project directory containing the installed driver dependencies.

6	 Retrieve the connection string for MongoDB from your Atlas cluster.
You can use the Atlas CLI by running the following command, which displays your
connection string for your MongoDB cluster running in Atlas:

atlas clusters connectionStrings describe "MongoDB-in-Action"

You can also use the Atlas UI. Log in to your cluster, navigate to the Database
section, click Connect, and select your driver and version in the Connecting with
MongoDB Driver section. Then click the icon at the right end of the connection
string to copy the string to your clipboard, as shown in figure 3.3.

Listing 3.6 shows how to perform database queries within a Node.js application and
retrieve data from MongoDB, in this case finding routes originating from John F. Ken-
nedy International Airport (JFK). It uses the Node.js MongoDB driver to establish a

https://mng.bz/26jN

	 47Using the Node.js driver

Figure 3.3  Use the MongoDB Atlas interface to connect a MongoDB database to an application using a MongoDB
driver. Select your driver and version; then click the clipboard icon next to the connection string to copy the string.
(Image © MongoDB 2025)

connection with a MongoDB database and interact with it. After establishing a connec-
tion through the specified URI, the script sets up a MongoClient instance and defines
an asynchronous function that connects to the sample_training database, targeting
the routes collection. The results of this query are logged to the console. The script
ensures the proper closure of the database client, following best practices for resource
management.

In your mongodb_book_project project folder, create an index.js file to house your
application’s code. Make sure to replace the <connection string uri> placeholder
with the actual connection string you copied from the Atlas GUI or obtained via the
Atlas CLI, and copy the following code into the index.js file.

Listing 3.6  Node.js MongoDB query example

const { MongoClient } = require("mongodb"); //

// Replace the uri string with your connection string.
Imports MongoClient
to connect to MongoDB

48 Chapter 3  Communicating with MongoDB

// Example: const uri = "mongodb+srv://<username>:<password>
➥@mongodb-in-action.fpomkke.mongodb.net"
const uri = "<connection string uri>" //

// Create a MongoClient instance.
const client = new MongoClient(uri); //

// Define an async function.
const run = async () => { //
 try {
 // Connect to the database.
 const database = client.db("sample_training"); //
 const routes = database.collection("routes"); //

 // Query to find routes from JFK by airline ID 3201.
 const query = { src_airport: "JFK", "airline.id": 3201 };
➥//
 const route = await routes.findOne(query); //

 console.log(route); //
 } catch (error) {
 console.error(error); //
 } finally {
 // Close the database client.
 await client.close(); //
 }
};

// Call the function.
run().catch(console.error); //

In your terminal, execute this command to launch the application:

node index.js

This command invokes the Node.js runtime environment to execute the JavaScript
code in the index.js file, initiating the processes or operations defined within it. You
receive the following output in your terminal upon completion.

Listing 3.7  Single MongoDB document returned from the Node.js script

{
 _id: new ObjectId('56e9b39b732b6122f877fe58'),
 airline: {
 id: 3201,
 name: 'LAN Argentina',
 alias: '4M',
 iata: 'DSM'
 },
 src_airport: 'JFK',
 dst_airport: 'EZE',
 codeshare: 'Y',

Sets the MongoDB
connection URI

Creates a new MongoClient
instance using the URI

Defines an async function run to
perform database operations

Accesses the
sample_training database

Accesses the routes
collection in the
database

Creates a query to find routes
from JFK with airline ID 3201

Executes the query and
retrieves a matching document

Logs the result
of the query

Catches and logs any
errors that occur

Closes the MongoDB
connection in the finally block

Executes the function and
handles any promise rejections

	 49Employing Python drivers

 stops: 0,
 airplane: 777
}

With the Node.js driver for MongoDB, you can establish connections to MongoDB
instances, configure user authentication, execute CRUD operations to read and write
data, use promises and callbacks for asynchronous operations, optimize queries with
index creation and design, apply language-specific sorting rules through collations,
set up logging for MongoDB operations, and monitor server events for enhanced data-
base management and performance.

MongoDB and TypeScript
Given that TypeScript is transpiled into JavaScript, you can use the MongoDB Node.js
driver to develop TypeScript applications that interact with MongoDB. Using TypeScript
definitions with MongoDB requires Node.js driver version 4.0 or later.

The TypeScript compiler provides real-time type checking. Code editors that support
TypeScript can offer autocomplete suggestions, inline documentation, and detect
type-related errors. All TypeScript features of the driver are optional. Any valid Java
Script code written with the driver is also valid TypeScript code.

3.6	 Employing Python drivers
Now let’s delve into the Python drivers for MongoDB. Python developers have two
primary options for interfacing with MongoDB, catering to different programming
paradigms:

¡	PyMongo—The preferred choice for synchronous Python applications. PyMongo
provides a direct, sequential mode of interaction with the MongoDB server, fit-
ting well with applications in which tasks are executed one after another.

¡	Motor—Specifically crafted for asynchronous Python applications, integrating
smoothly with Python’s asyncio framework. This driver is optimal for scenarios
that demand nonblocking I/O, such as in applications that have high levels of
concurrency or require efficient performance under load, such as web servers
and systems dealing with intensive I/O operations.

3.6.1	 PyMongo

To make the PyMongo driver module available to your Python application, you must
install it using pip. This command shows how to install the latest version of the module
via the command line:

python3 -m pip install pymongo

50 Chapter 3  Communicating with MongoDB

Listing 3.8 shows a query that finds routes originating from JFK airport in Python. Note
that I’m using the Stable API feature, available with PyMongo driver version 3.12 and
later, to connect to MongoDB Server version 5 and later. This feature allows you to
update the driver or server without worrying about backward-compatibility problems,
using commands covered by the Stable API. Create a mongodb-pymongo.py file, and
enter the following code into the file. Make sure to replace the <connection string
uri> placeholder with the actual connection string you copied from the Atlas GUI or
obtained via the Atlas CLI.

Listing 3.8  PyMongo Python driver example

from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from pprint import pprint

Replace <connection_string> with your MongoDB Atlas connection string.
Example: uri = "mongodb+srv://<username>:<password>
➥@mongodb-in-action.fpomkke.mongodb.net"

uri = "<connection_string>"

Create a MongoClient instance specifying the Stable API version
client = MongoClient(uri, server_api=ServerApi('1'))

Specify the database and collection
database = client['sample_training']
routes_collection = database['routes']

Define the query
query = {"src_airport": "JFK", "airline.id": 3201}

try:
 # Execute the query to find a document matching the query
 route = routes_collection.find_one(query)

 # Check if a route is found and print the result
 if route:
 print("Found a route:")
 pprint(route)
 else:
 print("No route found from JFK.")

except Exception as e:
 # Handle any errors that occur during the query
 print(f"An error occurred: {e}")
finally:
 # Close the connection to MongoDB
 client.close()

In your terminal, execute this command to launch the application:

python3 mongodb-pymongo.py

Imports the
required modules

Sets the MongoDB
connection string

Creates a
MongoClient
instance with
the specified API
version

Accesses the database
and collection

Defines the query

Executes the query

Prints the result or indicates
that no match was found
Prints the result or indicates
that no match was found

Handles exceptions

Closes the connection
to MongoDB

	 51Employing Python drivers

Executing the command python3 mongodb-pymongo.py initiates the script with Python
3, activating the sequence of operations that connect to MongoDB, execute the query,
manage any encountered exceptions, and close the connection. You receive the follow-
ing output in your terminal upon completion.

Listing 3.9  Single MongoDB document returned from the Python script

Found a route:
{ _id: new ObjectId('56e9b39b732b6122f877fe58'),
 airline: {
 id: 3201,
 name: 'LAN Argentina',
 alias: '4M',
 iata: 'DSM'
 },
 src_airport: 'JFK',
 dst_airport: 'EZE',
 codeshare: 'Y',
 stops: 0,
 airplane: 777 }

Unlike the Node.js MongoDB driver, which relies on promises and callbacks, PyMongo
uses Python’s context managers for resource management and supports native corou-
tines for asynchronous tasks. It integrates seamlessly with Python’s data types, such
as rich Binary JSON (BSON) and datetime objects, and employs Pythonic syntax in
its aggregation framework to enhance code readability and efficiency. PyMongo also
makes handling large files with GridFS straightforward, fitting well with Python’s idi-
omatic practices and offering a cohesive, efficient toolkit for Python developers inter-
facing with MongoDB.

3.6.2	 Motor

The choice between synchronous and asynchronous programming depends on the
specific requirements of your application. For tasks that are CPU-bound or require
sequential execution without significant waiting periods, synchronous programming is
sufficient and easier to implement. On the other hand, asynchronous programming is
indispensable for modern web applications and services that require high concurrency
and efficiency in handling I/O operations.

To make the Motor driver module available to a Python application, you must install
it using pip. This command shows how to install the latest version of the module via the
command line:

python3 -m pip install motor

Listing 3.10 illustrates an asynchronous interaction with MongoDB using the Motor
library in Python, contrasting with the synchronous approach with PyMongo in list-
ing 3.8. This example also uses the Stable API feature. To begin, create a mongodb

52 Chapter 3  Communicating with MongoDB

-motor.py file, and enter the code into it. Replace the <connection string uri> place-
holder with the actual connection string you obtained from the Atlas GUI or through
the Atlas CLI.

Listing 3.10  Motor Python driver example

import asyncio
from motor.motor_asyncio import AsyncIOMotorClient
from pymongo.server_api import ServerApi
from pprint import pprint

Replace <connection_string> with your MongoDB Atlas connection string.
uri = "<connection_string>"

async def find_route():
 # Create an AsyncIOMotorClient instance specifying the Stable API version
 client = AsyncIOMotorClient(uri, server_api=ServerApi('1'))
➥

 try:
 # Specify the database and collection
 database = client['sample_training']
 routes_collection = database['routes']

 # Define the query
 query = {"src_airport": "JFK", "airline.id": 3201}
➥

 # Execute the query to find a single document matching the query
 route = await routes_collection.find_one(query)

 # Check if a route is found and print the result
 if route:
 print("Found a route:")
 pprint(route)
 else:
 print("No route found from JFK.")

 except Exception as e:
 # Handle any errors that occur during the query
 print(f"An error occurred: {e}")
 finally:
 # Close the connection to MongoDB
 client.close()

Run the asynchronous find_route function
asyncio.run(find_route())

In your console, execute this command to launch the application:

python3 mongodb-motor.py

Imports the
required modules

Sets the MongoDB connection string

Defines the
asynchronous

find_route function
Creates an asynchronous MongoDB client
using the specified API version

Accesses the database and collection

Defines the query

Executes the query
asynchronously

Prints the result if
a document is found

Indicates whether a
matching route is found

Handles any errors that
occur during the query

Closes the MongoDB client

Runs the asynchronous find_route
function using asyncio.run

	 53Integrating Ruby drivers

This script asynchronously queries a MongoDB database using the Motor library to
find a flight route originating from JFK airport. It prints the found route or a message
if no route is found, handles any errors, and closes the database connection efficiently.

3.6.3	 PyMongo vs. Motor

When querying the database for routes originating from JFK airport using PyMongo,
the program waits for the query to complete before moving on to the next line of
code. This blocking nature ensures a straightforward, linear execution flow, making
the code easier to read and debug. Synchronous programming is ideal for scripts and
applications in which operations are not I/O-bound, concurrency is not a concern,
or tasks need to be performed in a strict sequence. It’s suitable for small-scale appli-
cations, data analysis scripts, or server-side tasks in which the load is manageable and
real-time performance is not critical.

While awaiting a database response to a query initiated with Motor, the Python event
loop can switch to executing other tasks. This nonblocking behavior makes handling
I/O-bound operations more efficient because it doesn’t waste CPU cycles waiting. Asyn-
chronous programming shines in I/O-bound applications such as web servers, real-
time data processors, and any other applications that require high concurrency. It’s
particularly effective for handling multiple simultaneous database operations, network
requests, or long-running I/O tasks. Asynchronous code can significantly improve the
responsiveness and throughput of web applications, especially those that serve a large
number of clients or perform extensive I/O operations.

Asynchronous code can handle more tasks in the same amount of time than synchro-
nous code, especially in I/O-bound applications, which makes it a better choice for
scalability and handling high loads. But asynchronous programming introduces com-
plexity due to its nonlinear execution flow. Managing this complexity requires a good
understanding of async/await patterns and the event loop. By contrast, synchronous
code is simpler to write and understand but may not use system resources as efficiently.

3.7	 Integrating Ruby drivers
The Ruby driver for MongoDB is a library that facilitates interactions between Ruby
applications and MongoDB databases. It provides direct mapping between Ruby code
and MongoDB operations, enabling developers to execute database queries and oper-
ations directly from Ruby scripts and applications.

The Ruby driver is distributed as a gem, hosted on RubyGems. It is written entirely
in Ruby and supports connections to MongoDB servers using Transport Layer Secu-
rity (TLS). It offers authentication via the Salted Challenge Response Authentication
Mechanism (SCRAM), supporting both SCRAM-SHA-1 and SCRAM-SHA-256, as well
as X.509 authentication, all of which operate over TLS connections. This functional-
ity requires a working Ruby openssl extension. To install the gem, add mongo to your
Gemfile:

54 Chapter 3  Communicating with MongoDB

gem "mongo", "~> 2"
gem install mongo

TIP  To use MongoDB Atlas, I recommend using version 2.6.1 or later of the
driver. This version offers significant performance improvements for TLS con-
nections, which are used in all Atlas connections.

Listing 3.11 shows a Ruby script that uses the mongo gem to connect to a MongoDB
database and employs a query pattern to search for specific records within the routes
collection. If the operation is successful, the retrieved document is printed to the con-
sole. The script is structured to handle exceptions gracefully, printing any error mes-
sages encountered. It also ensures that the database connection is closed properly.

Create a file named mongodb-ruby.rb, and insert the provided code snippet into
it. Remember to replace the <connection string uri> placeholder with your actual
MongoDB connection string, which you obtained from the MongoDB Atlas GUI or
through the Atlas CLI.

Listing 3.11  Ruby MongoDB driver example

require 'mongo'

Replace the uri string with your MongoDB connection string.
uri = "< connection string uri >"

Create a MongoClient instance.
client = Mongo::Client.new(uri)

Define a block of code to execute.
begin
 # Connect to the database.
 database = client.use("sample_training")

 # Reference a collection
 routes = database[:routes]

 # Query to find routes from JFK airport.
 query = { 'src_airport' => 'JFK' }
 route = routes.find(query).first

 puts route
rescue => error
 puts error.message
ensure
 # Ensure that we close the database connection
 client.close
end

In your console, execute this command to launch the application:

ruby mongodb-ruby.rb

Imports the mongo gem to
interact with MongoDB

Defines the
MongoDB
connection string

Creates a new MongoClient instance
with the connection string

Connects to the
sample_training database

Accesses the routes collection
within the database

Defines a query to find
routes from JFK airport

Executes the query and fetches
the first matching document

Outputs the result
Handles any exceptions and
prints the error message

Closes the MongoDB client
connection to ensure proper cleanup

	 55Learning Mongoid

The script searches for the first route originating from JFK airport and prints this route
to the console. It uses the mongo Ruby driver to find and display this information effi-
ciently. Thanks to seamless BSON handling within Ruby’s object-oriented framework,
the driver excels in serialization and connection pooling.

3.8	 Learning Mongoid
For numerous applications, the basic Ruby driver serves as the optimal choice. When
you need validations, associations, and advanced data modeling capabilities, however,
switching to an object-document mapper (ODM) is essential.

In Rails, developers are accustomed to Active Record for database interactions. Mon-
goid offers a seamless drop-in replacement for Active Record, allowing you to integrate
MongoDB using a familiar and natural syntax. This makes transitioning from tradi-
tional SQL databases to MongoDB straightforward while allowing you to benefit from
Rails’ conventions and ease of use.

NOTE  Given MongoDB’s nature as a document-oriented database, these map-
pers are termed ODMs instead of object-relational mappers (ORMs).

Mongoid, the officially sanctioned ODM for MongoDB within the Ruby ecosystem, is
managed by MongoDB and has some external community contributors working on it.
Mongoid is bundled as a gem and hosted on RubyGems. It can be installed manually
or with a bundler.

To install the gem manually, use this command:

gem install mongoid

To install the gem with a bundler, include the following in your Gemfile:

gem 'mongoid', '~> 8.1.0'

The advantages of using Mongoid ODM are

¡	High-level interface—Mongoid facilitates an elevated programming interface that
uses objects, streamlining interaction with databases instead of handling the doc-
ument format directly.

¡	Uniform access—Mongoid offers a uniform interface that ensures standardized
data access patterns throughout an application.

¡	Schema validation—Although MongoDB does not inherently require schemas,
Mongoid supports schema definitions and offers an organized method for
prestorage data validation.

¡	Transition ease—If you are acquainted with ORMs from SQL database systems,
you may find Mongoid more natural when you switch to MongoDB.

¡	Transactional support—Mongoid provides transactional assistance, ensuring that
all operations within a transaction are completed in unison.

56 Chapter 3  Communicating with MongoDB

¡	Enhanced efficiency—By integrating caching strategies, Mongoid improves
performance.

¡	Code minimization—Mongoid automates various repetitive database tasks, signifi-
cantly decreasing the amount of code developers need to write and manage.

TIP  For detailed documentation and helpful resources on configuring Mon-
goid, see https://www.mongodb.com/docs/mongoid/current.

Summary

¡	The MongoDB Wire Protocol is essential for client-server data exchange, offer-
ing efficient communication through a request–response mechanism over sock-
ets, typically on port 27017.

¡	mongosh is a versatile client for direct MongoDB interactions, supporting fea-
tures such as syntax highlighting, intelligent autocomplete, contextual help, and
scripting capabilities.

¡	MongoDB Compass is a GUI tool offering schema visualizations, query building,
index management, and performance profiling for an enhanced database man-
agement experience.

¡	The Node.js MongoDB driver simplifies the integration of Node.js applications
with MongoDB databases, offering techniques and configurations to optimize
interaction.

¡	You use the MongoDB Node.js driver to develop TypeScript applications that
interact with MongoDB.

¡	PyMongo, tailored for synchronous operations in Python, facilitates direct con-
nections and interactions with MongoDB. You can use it to execute database
queries.

¡	Motor, the asynchronous Python driver, permits nonblocking database opera-
tions, boosting the efficiency of Python applications with concurrent database
interactions.

¡	The Ruby driver makes it easy to work with MongoDB in Ruby by handling data-
base connections and executing queries efficiently.

¡	Mongoid, the officially supported ODM for MongoDB in Ruby, improves Ruby’s
interaction with MongoDB.

https://www.mongodb.com/docs/mongoid/current

57

4Executing CRUD
operations

This chapter covers

¡	Inserting documents in MongoDB
¡	Reading operations from MongoDB
¡	Updating operations in MongoDB
¡	Removing operations from MongoDB
¡	Reviewing MongoDB’s Stable API

CRUD operations involve creating, reading, updating, and deleting documents.
These fundamental actions form the backbone of data management systems, allow-
ing applications and users to manipulate data effectively. Each type of CRUD opera-
tion has a specific function:

¡	Create—Adds new documents to the MongoDB database

¡	Read—Retrieves a document from the database

¡	Update—Changes details in existing documents within the database

¡	Delete—Eliminates documents from the database

58 Chapter 4  Executing CRUD operations

CRUD operations define how applications interact with a database by managing the
document life cycle, enforcing data consistency, and ensuring efficient access to stored
information. This chapter covers executing these operations within MongoDB using
mongosh, focusing on their behavior, performance considerations, and best practices
for handling data modifications.

4.1	 Connecting to mongosh for CRUD operations
Let’s begin exploring CRUD operations. Connect to the MongoDB database in Atlas,
which was established in chapter 2. Here’s how you might structure your connection
command:

mongosh "mongodb+srv://YOUR_CLUSTER.YOUR_HASH.mongodb.net/" \
--apiVersion API_VERSION --username USERNAME --password PASSWD

TIP  The --apiVersion parameter in the connection string ensures that your
app uses a specific version of the MongoDB Stable API, even if MongoDB is
upgraded to a newer version. This way, your app stays compatible, and you can
safely use new features without worrying about breaking changes. The Stable
API is explained at the end of this chapter.

All the examples in this chapter use the sample dataset imported into the MongoDB
Atlas cluster in chapter 2, in which we established the following databases:
sample_airbnb, sample_analytics, sample_geospatial, sample_guides, sample_
mflix, sample_restaurants, sample_supplies, sample_training, and sample_

weatherdata.
With the use command, switch to the sample_training database to access the

routes collection:

[primary] test> use sample_training
switched to db sample_training
[primary] sample_training>

4.2	 Inserting documents
Inserts are fundamental operations for adding data in MongoDB. MongoDB offers the
insertOne() and insertMany() methods for inserting documents into a collection.
To insert a single document, use the insertOne() method, as shown in the following
listing.

Listing 4.1  Inserting a single document

 [primary] sample_training> db.routes.insertOne({
 airline: { id: 410, name: 'Lufthansa', alias: 'LH',
 iata: 'DLH' },
 src_airport: 'MUC',
 dst_airport: 'JFK',

	 59Inserting documents

 codeshare: '',
 stops: 0,
 airplane: 'A380'
})

{
 acknowledged: true,
insertedId: ObjectId('661998a755d788cb7662a3ed')
}
 [primary] sample_training>

Listing 4.1 uses the insertOne() method to insert a single document into the routes
collection. The document specifies details such as airline ID and name, source and
destination airports, and airplane type. The response object from MongoDB confirms
the successful insertion with acknowledged: true and provides the insertedId of the
newly added document, indicating that the operation was executed and providing the
document’s unique identifier, ObjectId('661998a755d788cb7662a3ed').

TIP  When inserting a document into a MongoDB collection, you can provide
your own _id field value. This allows you to specify a custom identifier for the
document instead of using the autogenerated ObjectId.

If you need to insert multiple documents into a collection, use the insertMany()
method, as shown in the next listing. This method allows you to pass an array of docu-
ments to the database. It’s much more efficient because it doesn’t require a round trip
to the database for each document inserted; instead, it inserts all documents in bulk.

Listing 4.2  Inserting many documents

[primary] sample_training> db.routes.insertMany([
 {
 airline: { id: 413, name: 'American Airlines', alias: 'AA',
➥iata: 'AAL' },
 src_airport: 'DFW',
 dst_airport: 'LAX',
 codeshare: '',
 stops: 0,
 airplane: '737'
 },
 {
 airline: { id: 411, name: 'British Airways', alias: 'BA',
➥iata: 'BAW' },
 src_airport: 'LHR',
 dst_airport: 'SFO',
 codeshare: 'Y',
 stops: 0,
 airplane: '747'
 },
 {
 airline: { id: 412, name: 'Air France', alias: 'AF', iata: 'AFR' },
 src_airport: 'CDG',

60 Chapter 4  Executing CRUD operations

 dst_airport: 'JFK',
 codeshare: '',
 stops: 0,
 airplane: '777'
 }
])

{
 acknowledged: true,
 insertedIds: {
 '0': ObjectId('661a252acf6203ef2a1db277'),
 '1': ObjectId('661a252acf6203ef2a1db278'),
 '2': ObjectId('661a252acf6203ef2a1db279')
 }}
[primary] sample_training>

Listing 4.2 uses the insertMany() method to bulk-insert multiple documents into the
routes collection. The method is efficient because it performs the insertions in a sin-
gle database operation, confirmed by the acknowledged: true status and the listing of
each document’s unique ObjectId.

TIP  The number of documents you can include in a single insertMany()
operation is constrained by the 16 MB Binary JSON (BSON) document size
limit. Essentially, you can insert any number of documents as long as their
combined size remains below this 16 MB threshold.

By default, MongoDB inserts documents in the order in which they are provided. If the
ordered option is set to true and an insert fails, the server stops processing subsequent
records. If the option is set to false, the server continues with the next document
even if one fails, potentially reordering the documents for better performance. Appli-
cations should not rely on the insertion order when using insertMany with ordered set
to false.

TIP  To check which document failed in an insertMany() operation in
MongoDB, look at the error details provided in the operation’s response.
The error message will include the index of the failed document within your
array of documents. This index corresponds to the position of the document
that caused the failure, allowing you to identify and address the problem. For
unordered operations (ordered: false), multiple errors may be reported,
each with a corresponding index.

MongoDB limits the number of operations in each batch to the maxWriteBatchSize,
which defaults to 100,000. This limit helps prevent problems with large error messages.
If a batch exceeds this limit, the client driver splits it into smaller batches, each of
which complies with the maximum size. A batch of 300,000 operations, for example,
would be divided into three batches of 100,000 each.

When you are inserting large amounts of random data into an indexed field, such as
with hashed indexes (chapter 7), performance may decline because each bulk insert

	 61Updating documents

generates random index entries, enlarging the index and possibly causing each insert
to access a different entry. This situation can lead to high rates of cache eviction and
replacement in the WiredTiger storage engine (chapter 8), reducing performance
because the index updates occur on disk rather than in cache. You have two options for
enhancing performance with bulk inserts of random data:

¡	Consider dropping the index before the insert and re-creating it afterward.

¡	Insert the data into an unindexed collection and create the index postinsertion,
allowing for an organized, memory-sorted index.

NOTE  Dropping an index before large bulk inserts can significantly boost
write performance by reducing insertion overhead. This boost, however, comes
at the cost of slower reads and potential query disruptions. This approach is
best suited to scenarios with planned downtime or systems that experience
long periods of low activity, allowing the index to be dropped and rebuilt safely
without affecting the read workload. To minimize risks, estimate rebuild time,
schedule operations during low-traffic windows, and monitor system resources
carefully. Always test and coordinate thoroughly to ensure a smooth process.

If the insertOne() operation successfully inserts a document, it adds an entry to the
oplog collection. (I explain oplog in chapter 9.) Conversely, if the operation fails, no
entry is made. Similarly, if the insertMany() operation successfully inserts one or more
documents, an entry is added to the oplog for each document inserted, whereas failed
inserts do not appear in the oplog.

4.3	 Updating documents
After you store a document in the database, you can make modifications with various
update methods. These methods include updateOne(), updateMany(), and replace-
One(), in which the initial parameter serves as the filter. This filter identifies the docu-
ments targeted for updates based on specified criteria. Filters range from simple, such
as {"_id": MyNumber }, which targets a specific document via its MongoDB ObjectID,
to complex queries that target multiple documents based on diverse criteria. When
you use updateOne() or replaceOne(), only a single document is updated or replaced,
even if the filter matches multiple documents. Specifying an empty filter {} updates
the first document returned in the collection, but it is worth verifying which document
will be selected in such cases, as this behavior depends on the query execution.

In methods such as updateOne(), updateMany(), and replaceOne(), the second
parameter is a document that outlines the desired changes to the document(s). Option-
ally, a third parameter can specify additional options.

If upsert: true is specified and no documents match the filter, updateOne() or
updateMany() creates a new document using the filter criteria and the specified update
modifications.

TIP  To avoid multiple upserts, make sure that the filter field(s) are uniquely
indexed.

62 Chapter 4  Executing CRUD operations

WARNING  Document updating can modify or replace existing documents.
Whereas replaceOne() swaps the current document with a new one, update-
One() modifies the existing document based on the supplied changes.

4.3.1	 Using update operators

Often, only specific parts of a document require updates. Update operators like $set
and $inc enable precise and atomic modifications to a document.

Suppose that you are managing flight details in a routes collection. If an airline
changes the aircraft type for a specific route, you can use the $set operator to update
the airplane field. If British Airways decides to switch from a Boeing 747 to an Airbus
A380 on the LHR-to-SFO route, for example, the $set operator would update the air-
plane field from "747" to "A380". If American Airlines needs to add a stopover at Phoe-
nix for the DFW-to-LAX route, the $inc operator increments the stops field from 0 to
1. To update the aircraft type on a specific route, you can use the $set operator with the
updateOne() method. The following listing shows these examples.

Listing 4.3  Using the $set operator

db.routes.updateOne(
 { "airline.id": 411, "src_airport": "LHR",
➥"dst_airport": "SFO", "airplane": "747" },
 { $set: { "airplane": "A380" } }
)

The command uses an updateOne() method with a specific filter to locate the docu-
ment that needs updating in the MongoDB routes collection. The filter { "airline
.id": 411, "src_airport": "LHR", "dst_airport": "SFO", "airplane": "747" }
targets a specific flight by its airline ID, departure airport, destination airport, and cur-
rent airplane model. Then the $set operation { $set: { "airplane": "A380" } }
updates the airplane field to "A380" for this route.

NOTE  The updateOne() method in MongoDB arbitrarily updates one of the
matching documents if multiple documents fit the query criteria and no spe-
cific sort order is applied. This behavior can be unintuitive because it does
not specify which document will be updated when multiple matches occur. To
target a specific document accurately, I advise using unique identifiers in your
query, ensuring a predictable update.

TIP  The $set operator allows you to modify the values of any field in a docu-
ment except _id. If the field specified by the $set operator does not exist, the
operator creates it.

Another useful operator is $inc. The following listing shows how to adjust the number
of stops on a specific route by using the updateOne() method with the $inc operator.

	 63Updating documents

Listing 4.4  Using the $inc operator

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW",
➥"dst_airport": "LAX", "stops": 0 },
 { $inc: { "stops": 1 } }
)

The command uses the filter { "airline.id": 413, "src_airport": "DFW", "dst_
airport": "LAX", "stops": 0 } to identify the specific flight based on airline ID,
departure airport, destination airport, and current number of stops (0). Then the
$inc operation { $inc: { "stops": 1 } } increments the stops field by 1 for this
route, effectively changing the number of stops from 0 to 1.

TIP  The $inc operator modifies the value of an existing key or creates a new
one if the key does not exist. This operator is particularly useful for incre-
menting or decrementing numerical fields within a document, making it ideal
for applications such as updating inventory levels and for any scenario that
involves changeable numeric values.

When choosing between MongoDB’s $inc and $set operators, select $inc for numeric
updates to benefit from its fast, low-overhead operations. Use $set for broader updates
or new fields, keeping an eye on performance, especially if these changes increase doc-
ument size or require movement within the database. Table 4.1 lists the update opera-
tors available in MongoDB.

Table 4.1  MongoDB update operators

Name Description

$currentDate Sets a field to the current date as a Date or Timestamp

$inc Increments or decrements a field by a specified amount

$min Updates only if the specified value is less than the current value

$max Updates only if the specified value is greater than the current value

$mul Multiplies the value of the field by the specified amount

$rename Renames a field

$set Sets the value of a field in a document

$setOnInsert Sets a field during insertion, not affecting updates

$unset Removes the specified field from a document

4.3.2	 Updating many documents

The updateMany() method modifies all documents in a collection that meet the spec-
ified filter criteria, applying the provided update rules. In your sample_training
.routes namespace, which stores information about various airline routes, the
updateMany() method can be particularly useful for bulk updates across multiple

64 Chapter 4  Executing CRUD operations

documents. If you need to update attributes such as airplane models, airport codes, or
even airline details across a large number of routes, updateMany() streamlines this pro-
cess by applying the changes to all relevant documents at the same time. This ensures
data consistency and efficiency in managing the route information within your collec-
tion. The updateMany() method operates under semantics similar to those of update-
One(), with the notable distinction being the effect on multiple documents rather than
one.

TIP  To ensure the smooth execution of the updateMany() operation in pro-
duction, thoroughly validate the filter beforehand. Using incorrect or insuf-
ficient filters can lead to unintended updates and potential chaos in the
database. Before using it, execute a find() method to verify whether the filter
accurately selects the desired documents.

NOTE  If a failure occurs in updating one of the documents, updateMany() still
attempts to update the other documents that meet the criteria. The operation
does not roll back changes if one document fails; the updates done before the
failure are retained, but any matching documents after that are not updated.
As a result, partial updates can occur: some documents are updated success-
fully, while others are not.

4.4	 Updating arrays
MongoDB provides a variety of array operators that are extensive and powerful for
manipulating documents that contain array fields. These operators enable function-
alities such as adding elements to an existing array, removing elements from an array,
modifying existing elements, and creating a new array. For example, if you have a
data set with airline routes, and you want an array called prices to list the prices
of the different classes, you can use MongoDB’s $push operator to add the prices
dynamically.

4.4.1	 Adding elements to an array

The next listing uses the $push operator with updateOne() to add a price for a specific
class to a flight.

Listing 4.5  Using the $push operator

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 { $push: { "prices": { class: "business", price: 2500 } } }
)

This operation adds the price for the business class to the prices array for the speci-
fied flight. If the prices array doesn’t exist, MongoDB creates it.

	 65Updating arrays

If you want to add more prices for other classes or update existing prices, you can use
the $push operator combined with the $each modifier to append multiple values to an
array field at the same time:

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 { $push: { prices: { $each: [{ class: "economy", price: 800 },
➥{ class: "first", price: 2000 }] } } }
)

This command appends each of the specified price entries to the prices array for
the specified document, efficiently adding multiple prices for different classes in one
operation.

You can also use the $push operator with the $each, $sort, and $slice modifiers if
you want to add new classes such as "premium economy" or "luxury" to the prices array
in a MongoDB document. Here’s how you can update the array dynamically to include
these new entries:

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 {
 $push: {
 prices: {
 $each: [
 { class: "premium economy", price: 1100 },
 { class: "luxury", price: 3000 }
],
 $sort: { price: 1 }, // Sorts prices in ascending order
 $slice: -3 // Keeps the last 3 entries
 }
 }
 }
)

TIP  Use the $slice modifier only if you want to prevent the array from grow-
ing larger than a specific length, effectively maintaining a top n list of items.

The following listing shows the content of the document after the update. You can ver-
ify the changes using the find command.

Listing 4.6  The content of the document after an array update

db.routes.find({ "airline.id": 413, "src_airport": "DFW",
➥"dst_airport": "LAX" })
[
 {
 _id: ObjectId('661a252acf6203ef2a1db277'),
 airline: { id: 413, name: 'American Airlines', alias: 'AA',
➥iata: 'AAL' },

66 Chapter 4  Executing CRUD operations

 src_airport: 'DFW',
 dst_airport: 'LAX',
 codeshare: '',
 stops: 1,
 airplane: '737',
 prices: [
 { class: 'first', price: 2000 },
 { class: 'business', price: 2500 },
 { class: 'luxury', price: 3000 }
]
 }
]

This result confirms that the document has been successfully modified to include the
new classes and prices. You can use $addToSet, shown in the next listing, to ensure
unique entries in an array field in MongoDB and prevent duplicates in the array.

Listing 4.7  Using the $addToSet operator

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 {
 $addToSet: {
 "prices": {
 class: 'economy plus', price: 1200
 }
 }
 }
)

The $addToSet operator attempts to add a new object with class 'economy plus' and
price: 1200 to the prices array of the specified document. This object is added only
if an identical object—the field names and their values—doesn’t already exist in the
array. If an object with the same field names but different values is added, it will be
treated as a unique entry and included in the array. This ensures that only fully identi-
cal objects are prevented from being added, maintaining unique entries. This behavior
contrasts with the $push operator, which adds the specified value to an array whether
or not the value already exists, potentially leading to duplicates.

4.4.2	 Removing elements from an array

You can also remove a specific element from an array in MongoDB, such as { class:
'first', price: 2000 }. Typically, you use the $pull operator for this task, as shown
in the following listing. The $pull operator allows you to specify the condition of the
element to remove, matching the object you want to delete from the array.

Listing 4.8  Using the $pull operator

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },

	 67Updating arrays

 {
 $pull: {
 prices: {
 class: 'first',
 price: 2000
 }
 }
 }
)

This operation removes the object { class: 'first', price: 2000 } from the prices
array if it exists. The $pull operator is effective for selectively deleting elements from
an array that match a specified condition.

Listing 4.9 shows the $pop operator in MongoDB, which removes either the first or
the last element of an array within a document. This operator is helpful when you need
to remove elements from the end or the beginning of an array without specifying exact
values.

Listing 4.9  Using the $pop operator

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 {
 $pop: {
 prices: 1 // Removes the last element from the 'prices' array
 }
 }
)

In this example, specifying 1 with $pop removes the last element from the prices array.
If you want to remove the first element instead, you would use -1.

4.4.3	 Updating array elements

When you modify arrays with numerous elements, the process becomes slightly more
complex if you need to alter specific items. You can target a specific item’s position or
use the positional operator ($) to update matching elements. In arrays, indexing starts
at zero, allowing elements to be targeted as though their numerical index was akin to
a document key:

¡	Direct indexing—This method is straightforward if you know the exact index of
the element in the array you want to update. Suppose that you want to update the
price of the second class (index 1) in the prices array:

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 { $set: { "prices.1.price": 3500 } }
)

68 Chapter 4  Executing CRUD operations

This operation sets the price of the second element, – class: luxury (assuming
that the array elements are indexed from 0), in the prices array to 3500.

¡	Positional operator ($)—This method is useful when you don’t know the exact
index of the element but can specify a condition that uniquely identifies it within
the array. This approach is often recommended for dealing with elements that
need to be identified dynamically:

db.routes.updateOne(
 {
 "airline.id": 413,
 "src_airport": "DFW",
 "dst_airport": "LAX",
 "prices.class": "luxury" // Condition to identify the element
 },
 {
 $set: { "prices.$.price": 4500 }
➥// Using the positional operator to update the price
 }
)

This command replaces the price of the "luxury" class within the prices array
with 4500, where the condition "prices.class": "luxury" is met.

NOTE  If the specified field price does not exist within an array element that
matches the condition (such as "prices.class": "luxury"), MongoDB auto-
matically adds the price field to that element and sets its value to 4500. This
action occurs because the $set operator in MongoDB not only updates exist-
ing fields but also creates new fields in document elements where they are
missing, ensuring that the specified update is applied correctly.

4.4.4	 Updating using array filters

Another option involves the $[<identifier>] operator, commonly known as the
filtered positional operator. This operator offers a powerful capability in MongoDB for
pinpointing array elements that satisfy specified conditions defined by arrayFilters.
When employed alongside the arrayFilters option, the $[<identifier>] operator is
structured as follows:

{ <update operator>: { "<array>.$[<identifier>]" : value } },
➥{ arrayFilters: [{ <identifier>: <condition> }] }

Starting with MongoDB 5.0, update operators process fields in documents with string-
based names in lexicographic order, whereas fields with numeric names are processed
in numeric order.

Suppose that you want to update the price of the business class for the flight
from DFW to LAX operated by American Airlines (airline ID 413) in your MongoDB

	 69Updating arrays

document. You can use the $[<identifier>] operator with arrayFilters to achieve
this goal, as shown in the following listing.

Listing 4.10  Using the $[<identifier>] operator with arrayFilters

db.routes.updateOne(
 { "airline.id": 413, "src_airport": "DFW", "dst_airport": "LAX" },
 {
 $set: {
 "prices.$[elem].price": 2600
 }
 },
 {
 arrayFilters: [
 { "elem.class": "business" }
]
 }
)

Listing 4.10 updates a document in the routes collection, targeting a specific route
with the airline ID 413 that departs from "DFW" and arrives at "LAX". Then, within this
document, it modifies the price of the business class to 2600 using the $[elem] fil-
tered positional operator along with the specified array filter.

The identifier elem used with the $[<identifier>] filtered positional operator acts
as a placeholder that refers to specific elements within an array: elements that match
the conditions specified in arrayFilters. This setup enables selective updating of
array elements that meet defined criteria, focusing the update actions on those specific
elements without affecting others in the array. Table 4.2 lists the array operators avail-
able in MongoDB.

Table 4.2  MongoDB array update operators

Name Description

$(update) Placeholder that updates the first element that matches the query

$[] Placeholder that updates all array elements that match the query

$[<identifier>] Placeholder that updates all elements that match the arrayFilters
condition

$addToSet Adds elements to an array only if they do not exist in set

$pop Removes the first or last item of the array

$pull Removes all array elements that match a specified query

$push Adds an item to an array

$pullAll Removes all matching values from an array

70 Chapter 4  Executing CRUD operations

4.5	 Replacing documents
The replaceOne() method in MongoDB replaces a single document within a collec-
tion that matches a specified filter with a new document. This method provides a way to
replace the existing document with a new one rather than modify specific fields within
the document. One common use case for replaceOne() is when you need to update a
document with a new set of data, such as when you receive fully updated or corrected
information or make a major change in the document structure. Instead of updating
each field individually, you can replace the entire document with the new data.

NOTE  The new data must be a full representation of the document. If you
need to preserve existing fields from the original document, replaceOne() is
not the right option. In such cases, you should use an update operation such as
updateOne() or updateMany() to modify only the necessary fields.

Listing 4.11 shows how to modify the structure of a document in MongoDB’s routes
collection with the replaceOne() method, replacing a document that matches the spe-
cific filter { "airline.id": 412, "src_airport": "CDG", "dst_airport": "JFK" }
with a new document structure.

Listing 4.11  Replacing a document in MongoDB

db.routes.replaceOne(
 { "airline.id": 412, "src_airport": "CDG", "dst_airport": "JFK" },
 {
 flight_info: { airline: "Air France", flight_number: "AF 007" },
 route: { from: "CDG", to: "JFK" },
 aircraft: "Boeing 777",
 status: "Scheduled"
 },
 { upsert: true }
)

If upsert is set to true and no documents match the filter, replaceOne() creates a new
document based on the replacement document.

To verify the replaceOne() method you just executed, use a filter that specifically
targets key fields that were part of the updated document structure. The reason to use a
different filter, such as {aircraft: "Boeing 777", status: "Scheduled"}, rather than
the one used in the replaceOne method is to ensure that the new document structure is
reflected correctly in the database:

db.routes.find({"aircraft": "Boeing 777", "status": "Scheduled"})
[
 {
 _id: ObjectId('661a252acf6203ef2a1db279'),
 flight_info: { airline: 'Air France', flight_number: 'AF 007' },
 route: { from: 'CDG', to: 'JFK' },
 aircraft: 'Boeing 777',

	 71Reading documents

 status: 'Scheduled'
 }
]

When using the replaceOne() method in MongoDB, you replace the entire docu-
ment except for the _id field, which is immutable. The replacement document may
have different fields from the original document. If the _id field is included in the
replacement document, it must match the current value of _id in the document being
replaced. If _id is omitted, MongoDB retains the original _id of the document auto-
matically, ensuring continuity of the document’s identity even as its content changes
completely.

NOTE  If a different _id is supplied, the replacement operation will fail.
MongoDB enforces the immutability of the _id field, and any attempt to
change it will result in an error.

TIP  Avoid replacing the entire document when you’re updating only a few
fields. Replacing a whole document to update one or two fields can cause scal-
ability problems. As documents grow, sending entire documents across the
network leads to unnecessary traffic and bloats the oplog. Using updateOne()
with operators like $set is more efficient for updating specific fields than using
replaceOne() is.

4.6	 Reading documents
The find() method in MongoDB executes queries. It retrieves a selection of doc-
uments from a collection, which can range from none to all documents within the
collection. It accepts an optional filter parameter that specifies which documents to
retrieve. If you don’t provide a filter, all documents in the collection are returned.

To fetch all documents from the sample_training.routes collection without any
specific query filter, you can run the following command in mongosh:

use sample_training
db.routes.find()

This command is equivalent to the following SQL statement, retrieving all documents
from the routes collection:

SELECT * FROM routes

To find documents that meet a specific equality condition, include the condition as a
<field>:<value> pair in the query filter document.

To find all documents in which src_airport equals 'LHR', run the command with
the following filter:

72 Chapter 4  Executing CRUD operations

db.routes.find({ src_airport: 'LHR' })

The find command returns all routes departing from Heathrow and is equivalent to
the following SQL statement:

SELECT * FROM routes WHERE src_airport = 'LHR'

It returns all documents from the routes collection where the source airport is 'LHR'.
When the find() method is called, it returns a cursor that points to the resulting

documents rather than to the documents themselves. This cursor can be iterated
automatically, but it also allows manual control if necessary. By returning a cursor, the
design optimizes memory use because it fetches data on demand rather than loading
everything into memory at the same time. This lazy loading improves performance,
especially when you’re working with large data sets, and provides greater flexibility in
how applications handle the query results.

TIP  When you execute db.collection.find() in mongosh, it automatically
iterates the cursor to display up to the first 20 documents. To continue viewing
more documents, you can type it to iterate further.

In version 8.0, MongoDB introduces the defaultMaxTimeMS. This parameter enables
you to specify a default time limit in milliseconds for individual read operations to
complete. To set defaultMaxTimeMS for your deployment, run the following command
on the admin database, replacing 5000 with the desired time limit in milliseconds:

db.adminCommand(
 {
 setClusterParameter: {
 defaultMaxTimeMS: { readOperations: 5000 }
➥// Example value: 5000 milliseconds (5 seconds)
 }
 }
)

To view the current value for defaultMaxTimeMS, run the following command on the
admin database:

db.adminCommand({ getClusterParameter: "defaultMaxTimeMS" })

By default, defaultMaxTimeMS.readOperations is 0, meaning that no default query
timeout is set. If no default query timeout is set, the query runs until it returns a result
or fails. If a query exceeds the set time limit, it terminates, and an error is returned,
indicating that the operation exceeded the maximum time limit.

4.6.1	 Using logical operators

Listing 4.12 demonstrates using a compound query to retrieve routes from the routes
collection in which Charles de Gaulle is the source airport, along with other specified

	 73Reading documents

criteria. A compound query combines multiple conditions using logical operators such
as AND and OR to filter the results more precisely. This query finds routes for which the
source airport is "CDG" and the destination airport is "JFK".

Listing 4.12  Using logical operators

db.routes.find({ "src_airport": "CDG", "dst_airport": "JFK" })

TIP  In MongoDB, a comma-separated list of expressions implicitly acts as an
AND operation.

You can use the $or operator in a compound query to combine conditions with a logi-
cal OR. This allows the query to select documents that meet at least one of the specified
conditions. Here’s an example:

db.routes.find({
 $or: [
 { "src_airport": "CDG" },
 { "dst_airport": "JFK" }
]
})

This query checks for documents in which the source airport is CDG or the destination
airport is JFK, retrieving any that match either condition.

You can use logical operators for more complex queries and combine them with
query selectors to refine your search criteria. In the following query, the $or operator
specifies conditions on different fields, enhancing the specificity of the database search:

db.routes.find({
 $or: [
 { "src_airport": "CDG", "airline.name": { $ne: 'American Airlines' } },
➥ // Routes from CDG not operated by American Airlines
 { "dst_airport": "JFK", "airplane": { $ne: '777' } }
➥// Routes to JFK not using a 777 airplane
]
})

This query filters for routes departing from CDG that are not operated by American
Airlines or that are arriving at JFK not on a Boeing 777, targeting more specific travel
options. Table 4.3 presents MongoDB’s logical operators.

Table 4.3  Logical operators for querying documents

Name Description

$and Combines query clauses with a logical AND to return documents that
match both conditions

$not Inverts the query expression’s effect, returning documents that do not
match the expression

74 Chapter 4  Executing CRUD operations

Name Description

$nor Combines query clauses with a logical NOR to return documents that fail
to match both clauses

$or Combines query clauses with a logical OR to return documents that
match the conditions of either clause

4.6.2	 Using comparison operators

The following listing shows how to use find () with the query operators within a query
filter document to conduct intricate comparisons and evaluations. If you want to find
documents in which src_airport is ‘MUC’, ‘JFK’, ‘LHR’, or ‘DFW’, use the $in operator.

Listing 4.13  Using the $in and $nin operators

db.routes.find({ src_airport: { $in: ['MUC', 'JFK', 'LHR', 'DFW'] } })

Similarly, you can exclude documents for those airports by using the $nin operator.
Here’s how you can write the query:

db.routes.find({ src_airport: { $nin: ['MUC', 'JFK', 'LHR', 'DFW'] } })

To further expand on the use of query operators for fine-tuned filtering in MongoDB,
the $not operator negates a condition. Here’s how you can implement the $not oper-
ator in a query:

db.routes.find({ "airplane": { $not: { $regex: '^7' } } })

In this query, the $not operator is used with $regex (explained in section 4.7) to
exclude all routes in which the airplane model starts with '7'. This typically includes
models such as 737, 747, and 777, commonly used by various airlines. This kind of
query is beneficial when you want to filter out a series of similar entries based on a pat-
tern in one of the fields, providing a clearer demonstration of the power and flexibility
of using $not for pattern negation in MongoDB queries. Table 4.4 presents the avail-
able query selectors in MongoDB.

Table 4.4  Query selectors for document comparison

Name Description

$eq Finds values that match a specified value

$gt Finds values that are greater than a specified value

$gte Finds values that are greater than or equal to a specified value

$in Finds matches for any of the values specified in an array

Table 4.3  Logical operators for querying documents (continued)

	 75Reading documents

Name Description

$lt Finds values that are less than a specified value

$lte Finds values that are less than or equal to a specified value

$ne Finds all values that are not equal to a specified value

$nin Finds no matches among the values specified in an array

In a compound query, you can establish conditions for several fields in the documents
of a collection. Typically, these conditions are linked through a logical AND, meaning
that the query selects only documents that satisfy all specified criteria.

4.6.3	 Working with projections

To control which fields are returned in the matching documents from a MongoDB
query, you can use projections to specify exactly which fields should be included in
or excluded from the result set. Projections allows you to tailor the query results by
selectively retrieving only the necessary fields, thereby optimizing data retrieval and
reducing network overhead.

Let’s look at a couple of examples. To retrieve only the airline name, source airport,
and destination airport from the routes collection, you can specify a projection that
includes these fields, as shown in the next listing.

Listing 4.14  Using projection

db.routes.find(
 {},
 { "airline.name": 1, "src_airport": 1, "dst_airport": 1, "_id": 0 }
)

Here, the first parameter of the find method means that no filtering criteria are
applied, so all documents are considered.

The second parameter of the find method, { "airline.name": 1, "src_airport":
1, "dst_airport": 1, "_id": 0 }, specifies the projection. Setting the value to 1 for a
specific field tells MongoDB to return this field for each document that matches the
query.

On the other hand, setting it to 0 (as in _id: 0) indicates that the specified field (in
this case, _id, which is included by default in all MongoDB documents as a unique iden-
tifier) should be excluded from the query results. Setting the value to 0 tells MongoDB
not to return this field. This setting is useful when the unique identifier is not needed in
the output, simplifying the data returned.

TIP  Although it is common to use 1 or 0 to include or exclude fields, using
true or false is also possible and serves the same purpose.

Table 4.4  Query selectors for document comparison (continued)

76 Chapter 4  Executing CRUD operations

If you want to exclude certain fields from the results, such as codeshare and stops, use
a projection that sets these fields to 0:

db.routes.find(
 {},
 { "codeshare": 0, "stops": 0 }
)

This projection excludes the codeshare and stops fields from the results by setting
them to 0. These specific fields aren’t included in the output documents returned
by the query. Other fields, including the default _id field, are included in the results
unless they are explicitly excluded.

4.6.4	 Searching for null values and absent fields

Different query operators in MongoDB treat null values differently, offering various
approaches to handle the presence or absence of data in a collection. Understanding
these differences is crucial for querying documents effectively, especially when you’re
dealing with incomplete or optional fields. Let’s look at a few examples of executing
queries in mongosh.

Querying for null or missing fields

To find documents in which a specific field, like codeshare, is explicitly null or does
not exist in the routes collection, run

db.routes.find({
 "codeshare": null
})

This query returns documents in which the codeshare field is present and its value is
null or missing.

Querying for non-null and existing fields

To find documents in which a codeshare field exists and is not null, run

db.routes.find({
 "codeshare": { $ne: null, $exists: true }
})

This query returns all documents in which the codeshare field exists and its value is
not null.

Querying for fields that do not exist

To find documents that do not contain a specific field, such as codeshare, run

db.routes.find({
 "codeshare": { $exists: false }
})

	 77Performing regular-expression searches

This query returns documents in which the codeshare field does not exist.

Query using type check for null

To find documents in which a field, like codeshare, contains a null value, meaning
that its value is stored as BSON Type Null (type 10), differentiating it from nonexis-
tence, run

db.routes.find({ codeshare: { $type: "null" } })

This query returns documents in which the codeshare field has the BSON Type Null.
Table 4.5 lists the available MongoDB element operators.

Table 4.5  Element operators

Name Description

$exists Filters documents based on the presence of the specified field

$type Chooses documents based on the type of a specified field

4.7	 Performing regular-expression searches
The $regex operator in MongoDB enables you to perform regular-expression searches,
pattern-matching strings within queries. To use $regex, you can structure your query
in one of the following ways:

{field: {$regex: /pattern/, $options: 'options'}}
{"field": {"$regex": "pattern", "$options": "options"}}
{field: {$regex: /pattern/options}}

Available options for additional operators are

¡	i—Case insensitivity

¡	m—Multiline matching, treating start (^) and end ($) anchors to match line
beginnings and endings

¡	x—Extended regex to ignore whitespace within the regex pattern

¡	s—Allows the dot (.) to match newline characters

¡	u—Unicode support, though redundant, as MongoDB’s $regex defaults to Uni-
code Transformation Format (UTF)

Suppose that you want to find all routes within the routes collection that are operated
by airlines with Air in their names, irrespective of case sensitivity. You can accomplish
this by executing the following MongoDB query:

db.routes.find({
 "airline.name": {$regex: "air", $options: "i"}
})

78 Chapter 4  Executing CRUD operations

This query matches any airline name that includes "Air", such as "Air France", "Air
Burkina", "Helvetic Airways", or "American Airlines".

Or maybe you need to identify all routes departing from airports whose codes start
with B or C. This query is particularly useful for conducting regional analysis or manag-
ing routes in certain geographic areas:

db.routes.find({
"src_airport": { $regex: "^[BC]", $options: "i" }
})

This query uses a regular expression to find routes in which the source airport codes
begin with B or C, such as BKO for Ouagadougou Airport and CEK for Chelyabinsk
Airport.

Suppose that you’re tasked with analyzing flight routes to international airports,
often distinguished by a three-letter code ending in X (such as LAX and PHX). These
airports tend to be large and usually are situated in major cities. To streamline your
analysis, you decide to use the $regex operator to identify all routes heading to these
prominent airports. Here’s how you can structure your query:

db.routes.find({
"dst_airport": { $regex: "X$", $options: "i" }
➥// Matches destination airport codes ending with 'X'
})

This query checks for destination airport codes that end with X, using $regex with
the pattern "X$", where $ signifies the end of the string. This ensures that only air-
port codes ending in X are matched regardless of case due to the "i" option for case
insensitivity.

These examples demonstrate the flexibility of the $regex operator in querying text
fields within MongoDB documents, enabling sophisticated pattern matching and filter-
ing based on specific conditions.

TIP  MongoDB provides an enhanced full-text search solution called Atlas
Search (described in part 2), which includes its own $regex operator. From
MongoDB version 8.0, full-text search is also available in MongoDB Commu-
nity Edition.

4.8	 Querying arrays
In this section, we use documents with arrays from the customers collection, which
are located in the sample_analytics database. This database was created during the
import of sample data in chapter 2. A sample document from the customers collection
contains the following data:

{
 _id: ObjectId('5ca4bbcea2dd94ee58162a68'),

	 79Querying arrays

 accounts: [371138, 324287, 276528, 332179, 422649, 387979],
 tier_and_details: {
 '0df078f33aa74a2e9696e0520c1a828a': {
 tier: 'Bronze',
 id: '0df078f33aa74a2e9696e0520c1a828a',
 active: true,
 benefits: ['sports tickets']
 },
 '699456451cc24f028d2aa99d7534c219': {
 tier: 'Bronze',
 benefits: ['24 hour dedicated line', 'concierge services'],
 active: true,
 id: '699456451cc24f028d2aa99d7534c219'
 }
 }
}

In MongoDB, you can easily find documents based on the presence of a specific value
within an array by using a simple query. If you want to check whether the accounts
array contains the number 371138, for example, you can use a straightforward query:

db.customers.find({
accounts: 371138
})

This query searches for all documents in the customers collection in which the
accounts array includes the account number 371138.

If you want to find a document containing the specific array, such as [371138,
324287, 276528, 332179, 422649, 387979], the filter must match this array exactly:

db.customers.find({
 accounts: [371138, 324287, 276528, 332179, 422649, 387979]
})

This query returns documents in which the accounts array matches the provided
sequence exactly, including the order of the elements. But if the query filter is changed
to include only a subset of these numbers

db.customers.find({
accounts: [371138, 324287, 276528]
})

the revised query doesn’t find any documents unless it finds one whose accounts array
matches the array [371138, 324287, 276528] in that order and with no additional
elements. MongoDB treats arrays in a query for exact matches as requiring the exact
sequence and complete list of elements specified in the query.

If, instead, you want to find documents in which the accounts array contains all the
specified numbers regardless of their order, you can use the $all operator, as shown in

80 Chapter 4  Executing CRUD operations

listing 4.15. This operator allows you to find documents that include all specified ele-
ments but may include other elements and in any order.

Listing 4.15  Using the $all operator

db.customers.find({
accounts: { $all: [371138, 324287, 276528] }
})

This query returns documents in which the accounts array contains all the numbers
371138, 324287, and 276528, regardless of the order or the presence of additional
numbers in the array. This is useful for more flexible querying when the exact order
and completeness of the sequence are not critical.

To perform a query on the accounts array in the customers collection to find any
account number greater than 300000, use the following example:

db.customers.find({
 accounts: { $gt: 300000 }
})

This query uses the $gt operator to search for documents in which at least one ele-
ment in the accounts array is greater than 300000. This is a useful way to filter docu-
ments based on conditions applied to individual items within an array.

Use the $elemMatch operator to define multiple conditions for the elements of an
array, ensuring that at least one element within the array meets all these conditions, as
the following listing shows.

Listing 4.16  Using the $elemMatch operator

db.customers.find({
accounts: { $elemMatch: { $gt: 300000, $lt: 400000 } }
})

The query searches the customers collection for documents in which at least one
number in the accounts array is greater than 300000 and less than 400000. It uses the
$elemMatch operator to ensure that the specified conditions are met by at least one
element in the array.

If you want to find a particular item in the array, you can do so by indicating its index
using this syntax:

db.customers.find({
'accounts.1': 324287
})

This corresponds to the second item in the array, as array indexes start counting from 0.
You can also combine several conditions in a query to find documents that meet all

your criteria. In this example , using .0 targets the first element of an array:

	 81Querying embedded/nested documents

db.customers.find({
 "tier_and_details.0df078f33aa74a2e9696e0520c1a828a.active": true,
 "accounts.0": { $gte: 300000 }
})

This query checks for documents in which the account with the key
0df078f33aa74a2e9696e0520c1a828a in the tier_and_details map is active and the
first item in the accounts array has a value of 300000 or more. In MongoDB, array indi-
ces start at 0, so accounts.0 refers to the first item in the accounts array.

TIP  When you use dot notation to query, enclose both the field and any
nested fields within quotation marks.

You can use the $size operator to query for arrays by number of elements. The follow-
ing listing demonstrates how to do this.

Listing 4.17  Using the $size operator

db.customers.find({
accounts: { $size: 6 }
})

The query uses the $size operator to filter and retrieve documents from the customers
collection in which the accounts array field contains exactly six elements. This is
crucial for applications that need to enforce or validate specific array lengths within
document structures.

TIP  The $size operator supports only exact matching; it does not allow
range queries or comparison operations directly on the array size.

Table 4.6 shows the array operators available in MongoDB .

Table 4.6  Array operators

Name Description

$all Matches arrays containing all elements specified in the query

$elemMatch Selects documents in which elements in the array field match all
specified $elemMatch conditions

$size Selects documents in which the array field has a specified size

4.9	 Querying embedded/nested documents
MongoDB offers two methods for querying embedded documents. The first method
involves using dot notation to query fields within nested documents. The second
method requires matching the entire embedded or nested document. Let’s discuss
both approaches.

82 Chapter 4  Executing CRUD operations

Recall the appearance of the document from the routes collection that we created
in this chapter and then modified. It looks like this:

[
 {
 _id: ObjectId('661a252acf6203ef2a1db277'),
 airline: { id: 413, name: 'American Airlines', alias: 'AA',
➥iata: 'AAL' },
 src_airport: 'DFW',
 dst_airport: 'LAX',
 codeshare: '',
 stops: 1,
 airplane: '737',
 prices: [
 { class: 'business', price: 2600 },
 { class: 'luxury', price: 4500 }
]
 }
]

4.9.1	 Querying on a nested field with dot notation

To use the dot-notation approach to find documents containing the airline name
"American Airlines" and airline ID 413, your query should look like the following
listing.

Listing 4.18  Using dot notation

db.routes.find({"airline.name": "American Airlines", "airline.id": 413})

This query specifically targets documents in which the airline’s name is "American
Airlines" and the airline’s ID is 413. It uses dot notation to access the nested name
and _id fields within the airline object. Dot notation is used because the airline is an
embedded document within the routes collection. By using dot notation, the query
precisely filters for conditions within this nested structure. The approach effectively
narrows the search to entries that match the specified airline criteria exactly, ensuring
more accurate data retrieval.

Suppose that you want to find routes offering tickets priced below 3000. In this sce-
nario, you can use dot notation to target the price field nested within each prices doc-
ument of the route records. Your MongoDB query might look like this:

db.routes.find({ "prices.price": {$lt: 3000}})

In this query, prices.class and prices.price with $lt: 3000 directly target the price
field within the prices array, searching for values less than 3000. This pattern is use-
ful for filtering arrays of nested documents based on specific conditions within those
documents.

	 83Querying embedded/nested documents

TIP  When using dot notation in queries, enclose both the field and nested
field in quotation marks.

4.9.2	 Matching an embedded/nested document

The second method to query embedded or nested documents in MongoDB involves
matching the entire embedded document exactly. This method uses a query filter in
which you specify the field and the complete nested document as the value.

The following query filter is derived from the airline embedded document. To select
all documents in which the airline field exactly matches { id: 413, name: 'American
Airlines', alias: 'AA', iata: 'AAL' }, your query should be structured like this
listing.

Listing 4.19  Using a nested document

db.routes.find({
"airline": { "id": 413, "name": "American Airlines",
➥"alias": "AA", "iata": "AAL" }
})

This query returns documents with an airline embedded document that exactly
matches the provided structure and field order.

WARNING  MongoDB cautions against using exact matches for embedded doc-
uments because such queries demand a complete match, down to the order of
fields. If even one field is omitted, removed from the document, or reordered,
the query won’t work. It’s generally better to use the dot-notation approach for
more flexibility and reliability.

4.9.3	 Querying an array of embedded documents

If you’re looking to query nested fields in an array without knowing their exact index
position, you can concatenate the name of the array with a dot (.) followed by the
name of the field inside the nested documents:

db.routes.find({
 "prices.price": { $gte: 1000 }
})

The query searches the routes collection for documents in which any price field
within the prices array is greater than or equal to 1000. It uses dot notation to access
the price field across all elements in the array without specifying their indices, allow-
ing the query to evaluate every object in the prices array.

The following example selects all documents in which the first element in the prices
array meets a specific condition on the price field. This query accesses the price field
of the first item in the prices array:

84 Chapter 4  Executing CRUD operations

db.routes.find({
 "prices.0.price": { $gte: 650 }
})

In the query, the .0 in prices.0.price indicates that you are specifically targeting the
first element of the prices array and searching for documents in which the price of
this initial class is greater than or equal to 650.

To use the $elemMatch operator to specify multiple criteria on an array of embedded
documents so that at least one embedded document satisfies all the specified criteria,
you can construct a query like this:

db.routes.find({
 prices: {
 $elemMatch: {
 class: 'business',
 price: { $lt: 3000 }
 }
 }
})

The query uses the $elemMatch operator to find documents in which at least one ele-
ment of the prices array is a business class with a price below 3000. This operator
ensures that the specified conditions are met in the same array item.

4.10	 Sorting, skipping, and limiting
In MongoDB, you can use the sort, skip, and limit operations to manage and navi-
gate query results efficiently. These operations are crucial for handling large data sets,
ensuring that data is presented in meaningful order and optimizing data retrieval for
pagination.

4.10.1	 The sort operation

The sort operation organizes the documents in the result set according to specified
fields. It can be set to ascending (1) or descending (-1) order. If you want to view flight
routes sorted by the number of stops, you could use

db.routes.find().sort({"stops": -1})

This query sorts the routes based on the number of stops in descending order.

4.10.2	 The skip operation

The skip operation omits a specified number of documents from the beginning of the
result set. It’s particularly useful for implementing pagination. If you want to skip the
first five routes and start displaying from the sixth, use this query to jump over the first
five documents:

db.routes.find().skip(5)

	 85Deleting documents

4.10.3	 The limit operation

The limit operation restricts the number of documents returned by the query, ideal
for controlling the size of data returned. To limit the output to 10 routes, use

db.routes.find().limit(10)

This query returns only the first 10 documents of the result set.
These operations are often combined to facilitate detailed data retrieval strategies,

especially in applications that require data pagination. The query

db.routes.find().sort({"stops": -1}).skip(10).limit(5)

sorts the routes by the number of stops, skips the first 10 sorted routes, and limits the
output to the next 5 routes, effectively providing a means to paginate sorted data.

4.11	 Deleting documents
The deletion process is straightforward but must be handled with care to avoid remov-
ing unintended data. To delete a single document that matches specific criteria, you
can use the deleteOne() method. This method removes the first document that
matches the query. The following listing shows how to delete the route document for
American Airlines flying from DFW to LAX.

Listing 4.20  Using the deleteOne() method

db.routes.deleteOne({
 "airline.id": 413,
 "src_airport": "DFW",
 "dst_airport": "LAX"
})

This command finds the first document in the routes collection that matches the air-
line ID (413) and the specified route from “DFW" to "LAX" and then removes it from
the collection.

If multiple documents match the same criteria (such as multiple flights on different
days), you could use the deleteMany() method to remove all matching documents at
the same time.

Listing 4.21  Using the deleteMany() method

db.routes.deleteMany({
 "src_airport": "MUC",
 "dst_airport": "LAX"
})

This command removes all documents that fit the specified criteria, which is particu-
larly useful for batch deletions when you’re updating or clearing out specific routes or
flight data.

86 Chapter 4  Executing CRUD operations

It’s worth mentioning the existence of the db.collection.findOneAndDelete()
method in MongoDB. This method deletes a single document based on specified filter
criteria and returns the deleted document. The method is useful when you need to
delete a document and also retrieve the details of the deleted document. When exe-
cuted, findOneAndDelete() deletes the first document that matches the filter criteria,
influenced by the sort parameter. If no matching document is found, the operation
returns null. This method ensures atomicity on single documents, meaning that the
deletion is fully completed or not performed.

TIP  Always have an up-to-date backup of the database to restore it in case of
loss. The methods for backup and restore are in chapter 21.

When performing delete operations
Be specific with your query criteria to avoid unintentionally deleting more docu-
ments than intended. It’s a good practice to use a find() query with the same cri-
teria to review which documents will be affected before executing deleteOne() or
deleteMany().

Consider implementing logical deletes (using a status field to mark documents as
inactive) instead of physical deletes for critical data that may need to be retained or
audited later.

4.12	 Using bulkWrite()
MongoDB enables you to perform write operations in bulk. The bulkWrite() method
allows you to perform bulk insert, update, and delete operations. Bulk-write opera-
tions in MongoDB are either ordered or unordered:

¡	In ordered operations, MongoDB processes the operations sequentially. If an
error arises during the execution of any write operation, MongoDB halts further
processing of subsequent write operations in the list.

¡	When dealing with an unordered list of operations, MongoDB has the potential
to execute these operations in parallel, although this behavior isn’t assured. If an
error emerges during the processing of a write operation, MongoDB persists in
processing the remaining write operations in the list.

Executing an ordered list of operations on a sharded collection typically incurs slower
performance compared with executing an unordered list because with an ordered list,
each operation must wait for the preceding operation to complete.

By default, the bulkWrite() function conducts operations in an ordered manner.
To designate unordered write operations, you can set ordered: false in the options
document.

	 87Using bulkWrite()

bulkWrite() supports the following write operations:

¡	insertOne

¡	updateOne

¡	updateMany

¡	replaceOne

¡	deleteOne

¡	deleteMany

Each write operation is passed to bulkWrite() as a document in an array.
With the release of MongoDB 8.0, the new bulkWrite command allows you to per-

form multiple insert, update, and delete operations on various collections in a single
request. The existing db.collection.bulkWrite() method is limited to modifying
only one collection per request.

Following is an example of the bulkWrite command. To specify each collection in
the command, use a namespace (database and collection name).

Listing 4.22  Syntax of the bulkWrite command in MongoDB 8.0

db.adminCommand({
 bulkWrite: 1,
 ops: [
 // Insert operation for sample_training.routes
 {
 insert: 0,
 document: {
 airline: { id: 413, name: 'American Airlines',
➥alias: 'AA', iata: 'AAL' },
 src_airport: 'DFW',
 dst_airport: 'LAX',
 codeshare: '',
 stops: 0,
 airplane: '737'
 }
 },
 // Insert operation for sample_analytics.customers
 {
 insert: 1,
 document: {
 accounts: [371138, 324287],
 tier_and_details: {
 '0df078f33aa74a2e9696e0520c1a828a': {
 tier: 'Bronze',
 id: '0df078f33aa74a2e9696e0520c1a828a',
 active: true,
 benefits: ['sports tickets']
 },
 '699456451cc24f028d2aa99d7534c219': {
 tier: 'Bronze',
 benefits: ['24 hour dedicated line'],
 active: true,

88 Chapter 4  Executing CRUD operations

 id: '699456451cc24f028d2aa99d7534c219'
 }
 }
 }
 }
],
 nsInfo: [
 { ns: "sample_training.routes" }, // Namespace for routes collection
 { ns: "sample_analytics.customers" }
➥// Namespace for customers collection
]
})

In listing 4.22, the bulkWrite command inserts documents into two collections,
sample_training.routes and sample_analytics.customers, as specified in the
nsInfo array. This demonstrates how bulkWrite can handle operations across multiple
collections in a single request.

4.13	 Understanding cursors
Read operations that retrieve multiple documents do not directly provide all docu-
ments matching the query at the same time. Because a query may match a large num-
ber of documents, these operations yield a cursor. This cursor points to the documents
that meet the query criteria and retrieves documents in batches, which helps minimize
memory use and network bandwidth. Cursors are versatile, can be finely tuned, and
support various methods of interaction to suit different scenarios. The find() method
directly returns a cursor.

You can use a variety of cursor paradigms to retrieve data. Most of these paradigms
enable you to access the results of a query one document at a time, effectively hiding the
complexities of network and caching operations. Different use cases require different
access methods, however, and some paradigms call for collecting all matching docu-
ments directly in process memory.

To start with cursors, you typically execute a query like db.routes.find(), which
returns a cursor. The cursor does not immediately return all documents; it allows you to
fetch the documents in batches. You can store this cursor in a variable:

const cursorVariable = db.routes.find()

Then you can use the cursor to iterate over the documents as needed.

4.13.1	 Using manual iteration

In mongosh, you can iterate over query results manually by defining a function that uses
a cursor to fetch documents one by one. This method gives you fine-grained control
over the iteration process, allowing you to perform additional operations between doc-
ument retrievals. Here’s an example:

 async function manualIteration() {
 const cursorVariable = db.routes.find()

	 89Employing MongoDB Stable API

 // Loop while there are documents available in the cursor
 while (await cursorVariable.hasNext()) {
 // Log each document to the console as it's fetched
 console.log(await cursorVariable.next())
 }
}

// Call the function to perform the iteration
manualIteration()

The manualIteration function uses the hasNext() method, which returns true if
additional documents are available in the cursor. The next() method retrieves the
next document in the sequence.

4.13.2	 Returning an array of all documents

Using the toArray() method, you can fetch all documents matched by a query into
memory at the same time. This method is straightforward, but you should use it with
caution on large data sets due to potential memory constraints:

 async function fetchAllDocuments() {
 // Create a cursor for all documents in the 'routes' collection
 const cursor = db.routes.find({})

 // Use toArray to convert the cursor to an array of documents
 const allValues = await cursor.toArray()

 // Output all documents to the console
 console.log(allValues)
}

// Call the function to execute the fetching process
fetchAllDocuments()

WARNING  Mixing different cursor paradigms, such as using hasNext() and
toArray() together, can lead to unexpected results.

4.14	 Employing MongoDB Stable API
MongoDB offers a Stable API feature, which ensures that applications maintain consis-
tent behavior despite updates to the MongoDB server. By using the Stable API, you can
specify which version of the MongoDB API your applications are targeting. This specifi-
cation allows MongoDB to handle requests in a way that is compatible with the version of
the API the application expects, thereby avoiding potential incompatibilities that might
arise from updates in the database software. Key features of the Stable API include

¡	API version specification—Defines the apiVersion parameter in database con-
nection settings. This parameter instructs the MongoDB server to adhere to the
specified API version’s protocols and behaviors.

90 Chapter 4  Executing CRUD operations

¡	Backward compatibility—Maintains backward compatibility by preserving the
behavior of older API versions, even as new versions are released. This feature is
essential for legacy applications that rely on specific database behaviors.

¡	Isolation from deprecations—Targets a specific API version so that applications are
insulated from deprecations and removals in newer MongoDB versions, which
might otherwise necessitate code refactoring.

When connecting to a MongoDB server, the driver typically operates with the default
behavior unless specified otherwise. By explicitly setting the apiVersion in the connec-
tion settings, developers instruct MongoDB to apply the Stable API, as in this example:

mongosh "mongodb+srv://YOUR_CLUSTER.YOUR_HASH.mongodb.net/" \
--apiVersion API_VERSION --username USERNAME --password PASSWD

This setting ensures that all operations performed by the driver adhere to the behav-
iors and functionalities of the specified API version, regardless of any new changes or
deprecations in the latest MongoDB server versions.

Currently, API version 1 is the only supported version. Table 4.7 lists the commands
you can use with this version.

Table 4.7  Commands available with Stable API

Command Stable API version
Added to Stable API

version(s)

abortTransaction 1 MongoDB 5.0

Aggregate (with limits) 1 MongoDB 5.0

authenticate 1 MongoDB 5.0

collMod 1 MongoDB 5.0

commitTransaction 1 MongoDB 5.0

count 1 MongoDB 6.0, 5.0.9

create (with limits) 1 MongoDB 5.0

createIndexes (with limits) 1 MongoDB 5.0

delete 1 MongoDB 5.0

drop 1 MongoDB 5.0

dropDatabase 1 MongoDB 5.0

dropIndexes 1 MongoDB 5.0

endSessions 1 MongoDB 5.0

explain 1 MongoDB 5.0

find (with limits) 1 MongoDB 5.0

findAndModify 1 MongoDB 5.0

getMore 1 MongoDB 5.0

hello 1 MongoDB 5.0

insert 1 MongoDB 5.0

	 91Summary

Command Stable API version
Added to Stable API

version(s)

killCursors 1 MongoDB 5.0

listCollections 1 MongoDB 5.0

listDatabases 1 MongoDB 5.0

listIndexes 1 MongoDB 5.0

ping 1 MongoDB 5.0

refreshSessions 1 MongoDB 5.0

update 1 MongoDB 5.0

Summary

¡	insertOne and insertMany enable you to add new documents to MongoDB
databases.

¡	Read operations include advanced query capabilities, allowing for effective data
retrieval through the use of the find() method, which supports detailed query
filters and options to precisely define the documents to be retrieved.

¡	Update operations include the updateOne and updateMany commands, offering
precise adjustments to existing documents. You can use operators such as $set,
$inc, $push, and $unset, which allow specific modifications to document fields,
ranging from updating existing values to adding elements to arrays.

¡	Remove operations use the deleteOne and deleteMany methods, focusing on
the secure removal of documents while preserving database integrity.

¡	Arrays use operators like $push, $pop, $addToSet, and $pull to efficiently struc-
ture and modify array data within documents. This functionality is crucial for
dynamic data handling and organization in MongoDB.

¡	Starting in MongoDB 8.0, the bulkWrite command enables multiple insert,
update, and delete operations across several collections in a single request,
unlike the db.collection.bulkWrite() method, which modifies only one col-
lection per request.

¡	Cursors in MongoDB streamline the process of navigating large data sets,
enabling efficient data retrieval by accessing documents one at a time.

¡	The Stable API feature in MongoDB ensures compatibility across server versions
and consistent API behavior.

Table 4.7  Commands available with Stable API (continued)

92

5Designing a
MongoDB schema

This chapter covers

¡	Exploring MongoDB’s flexible schema 		
	 capabilities
¡	Understanding principles of effective schema 	
	 design
¡	Applying schema design patterns
¡	Implementing schema validation techniques
¡	Recognizing schema design antipatterns

In database management, MongoDB stands out due to its flexible schema nature,
offering a flexible, dynamic approach to data organization. Unlike traditional rela-
tional databases, which require a predefined schema to structure data, MongoDB
allows documents within a collection to have different fields and data types. This
flexible schema not only handles evolving requirements smoothly but also easily
accommodates structured, unstructured, and semistructured data, as each docu-
ment inherently carries its own schema.

	 93Organizing the MongoDB data model

The absence of an explicit schema does not eliminate the need for thoughtful data
modeling. Designing an effective MongoDB schema is crucial for optimizing the perfor-
mance, scalability, and maintainability of applications. Proper schema design involves
understanding the relationships between data entities, considering query patterns that
efficiently support applications, and anticipating how data will evolve. By carefully mod-
eling a schema in MongoDB, you can ensure efficient data retrieval and use the full
potential of the database’s capabilities, ultimately leading to robust, scalable, and effi-
cient applications.

5.1	 Organizing the MongoDB data model
MongoDB is built to let you adjust your schema on the fly without downtime, making it
highly adaptable as your data needs evolve. I still advise you to design your data model
before deploying at production scale, however, to ensure that your data remains well
organized and performs efficiently. This involves four key steps:

1	 Determine the workload of your application.

2	 Map the relationships among objects in your collections.

3	 Implement design patterns.

4	 Create indexes to optimize query performance. (Chapter 7 describes indexes.)

Suppose that you are designing a schema for an airline route management system,
which is needed for managing and querying flight route data. This application sup-
ports various operations, such as adding new routes, searching existing flight routes,
updating details of specific routes, and retrieving comprehensive information about
specific routes. Understanding these operations will help you tailor the database
schema to meet the system’s needs effectively.

5.1.1	 Determining the workload of the application

The initial step in the proposed schema design process is comprehending the workload
your application will handle, focusing on the most common operations it performs. This
understanding enables you to tailor your schema to support these operations efficiently
by using multiple performance optimization strategies—such as optimizing index use,
applying proven schema design patterns, avoiding common antipatterns, and refining
queries—to reduce unnecessary database calls. When considering your application’s
workload, account for both current functionalities and potential expansions.

Construct a table listing the essential queries your application must execute, consid-
ering the following aspects:

¡	Action—The user action that triggers the query

¡	Query type—Whether the query is a read or write operation

¡	Information—The document fields involved in the query

¡	Frequency—How often the query is executed

¡	Priority—The criticality of the query to the application’s functionality

94 Chapter 5  Designing a MongoDB schema

Table 5.1 presents an example workload for an airline route management system.
It details the user actions that trigger these queries, the type of operation (read or
write), the specific fields involved, their frequency of execution, and their priority.

Table 5.1  The workload necessary for an application

Action Type Information Frequency Priority

Add new
route.

Write flight_id, airline (id, name, alias,
iata), src_airport, dst_airport,
airplane, stops, codeshare

150 per
day

High

Search flight
routes.

Read src_airport, dst_airport 22,000 per
day

High

Update route
details.

Write flight_id, src_airport, dst_
airport, airline (name, alias, iata)

100 per
day

Medium

Check route
information.

Read src_airport, dst_airport, airplane,
stops

40,000 per
day

High

Differentiating between relational and document databases

When designing a schema for a document database like MongoDB, it’s important to
understand the differences compared to traditional relational databases. With Mon-
goDB, you have the freedom to add and change the data structure on the fly, which
can make it easier to develop and scale your application because you’re not locked
into an initial design:

¡	Relational databases:
–	 You must define the schema of the table before inserting data.

–	 Data from multiple tables often needs to be joined to meet the require-
ments of your application.

–	 Updating the schema if necessary can be a painful process, involving poten-
tial downtime and complex migrations.

¡	Document databases:
–	 The schema can evolve as your application’s needs change.

–	 The flexible data model lets you store data in a way that matches the way
your application accesses it, reducing the need for joins. This approach
improves performance and reduces the strain on your system.

It’s also important to emphasize that in NoSQL databases like MongoDB, the data
model should be designed based on how the data will be displayed and accessed rather
than on how it is logically connected. This shift changes the design paradigm and pat-
tern, focusing more on performance and ease of access than adherence to strict rela-
tional structures.

	 95Organizing the MongoDB data model

5.1.2	 Mapping the schema relationship

In the airline route management system, you need to determine the best ways to orga-
nize and access data related to airlines, airports, and flights. Begin understanding the
frequent queries and operations your application manages.

When mapping relations between data entities, three primary types of relationships
are generally used to structure data:

¡	One-to-one relationships—This relationship can exist within a single document or
between two documents, with each document or subdocument corresponding
uniquely.

¡	One-to-many relationships—In this setup, a single document or a specific field
within a document (such as an embedded array) can relate to multiple other
documents or subdocuments. This is common in hierarchical data structures
when one parent document contains multiple child documents or entries.

¡	Many-to-many relationships—You can model this relationship by using arrays of ref-
erences in each related document, allowing multiple documents to be associated
with multiple other documents. This relationship often requires more complex
querying and indexing strategies.

In MongoDB, the preferred strategy for managing related data is embedding it in a
subdocument. Embedding allows your application to retrieve necessary informa-
tion through a single read operation, thus avoiding unnecessary $lookup operations
(described in chapter 6). In some cases, however, using a reference to link to related
data in a different collection may be more appropriate. Follow the steps in the follow-
ing sections to map schema relationships accurately within your database.

Identifying related data in your schema

Begin by analyzing how data elements interact. Examine the relationships between air-
lines and their routes, as well as the connections between airports and routes. This
foundational understanding will guide the structuring of your database schema:

¡	Airline-to-routes relationship—One-to-many. Each airline operates multiple routes,
establishing a clear one-to-many relationship.

¡	Airports-to-routes relationship—Many-to-many. Airports serve as both departure
and arrival points for various routes, creating a many-to-many relationship.

Choosing whether to embed related data or use references

To determine the best data structuring method for your airline route management sys-
tem, consider the specific scenarios for which embedding or referencing is more ben-
eficial. Embedding stores related data within a single document, which can improve
read performance by retrieving all necessary information in one go when that data is
frequently accessed together. By contrast, referencing links related data stored in sepa-
rate documents through identifiers, reducing duplication and supporting data consis-
tency, though it may require additional queries to fetch all related details:

96 Chapter 5  Designing a MongoDB schema

¡	Embedding— Airline information can be embedded in route documents when
one airline operates many routes. Embedding airline information in each route
document is advantageous for read performance, as it eliminates the need for
joins when you’re querying routes by airline details. For airlines within routes,
because airline data (such as name and alias) is typically small and frequently
accessed with route information, embedding this data directly in route docu-
ments can reduce read operations.

¡	References—Each airport serves as the departure and arrival point for multiple
routes, creating a many-to-many relationship. Handling this relationship using
references is effective due to the complex interconnections between airports and
multiple routes. Using references is advantageous, especially given that airport
data, such as facilities and services, can be extensive and infrequently modified.
Also, referencing provides an advantage: detailed airport information may not
be frequently accessed and can be cached if necessary, enhancing performance
and efficiency.

Creating sample documents in collections

Create sample documents as follows:

¡	For the routes collection, embed airline information directly within each doc-
ument. This method improves performance by reducing the queries needed to
retrieve connected data. Although this approach leads to data duplication, it is
manageable because airline information rarely changes, and the additional stor-
age required is not a significant concern. Here’s an example of a document in
the routes collection:

{
 "_id": ObjectId("56e9b39b732b6122f877facc"),
 "flight_id": "FL123",
 "airline": {
 "id": 410,
 "name": "Delta Airlines",
 "alias": "2B",
 "iata": "ARD"
 },
 "src_airport": "JFK",
 "dst_airport": "LAX",
 "codeshare": "",
 "stops": 0,
 "airplane": "ATP"
}

¡	For airports, use a separate collection to avoid data duplication and simplify
updates to airport information. This separation ensures that changes to airport
details do not affect the routes. Here’s an example document for the airports
collection:

	 97Organizing the MongoDB data model

{
 "_id": "JFK",
 "name": "JFK International Airport",
 "location": {
 "city": "New York",
 "country": "USA"
 },
 "facilities": ["Wi-Fi", "Lounge", "VIP Services"]
}

This structure organizes the routes collection to provide details for most route-related
queries while maintaining detailed airport information in a separate airports collec-
tion. This approach ensures that the data management strategy is efficient and adheres
to best practices for schema design.

5.1.3	 Applying a design pattern

Schema design patterns are structured approaches to refining your data model based
on your application’s specific access patterns. These designs enhance performance
and simplify the schema by optimizing the storage and retrieval of data.

Before applying schema design patterns, you must identify the primary challenges
your schema faces, such as write performance, read performance, or data duplication.
Understanding these challenges helps you select the most beneficial pattern. The
design patterns for an airline route management system are

¡	Subset—Instead of embedding or referencing the full airport document, each
route in the routes collection can store a small subset of key airport informa-
tion—such as the name and location—that is most frequently accessed. This pat-
tern is useful when only a portion of the data is frequently accessed. Applying
this pattern can minimize the sizes of the documents retrieved, enhancing read
performance.
It’s important to realize that this pattern introduces a toll on updates. You may
have to update the routes collection if there are updates to the airport collec-
tion, which can increase maintenance efforts:

{
 "_id": ObjectId("56e9b39b732b6122f877fa35"),
 "flight_id": "FL123",
 "airline": {
 "id": 410,
 "name": "Delta Airlines",
 "alias": "2B",
 "iata": "ARD"
 },
 "src_airport": {
 "code": "JFK",
 "name": "JFK International Airport"
 },
 "dst_airport": {

98 Chapter 5  Designing a MongoDB schema

 "code": "LAX",
 "name": "Los Angeles International Airport"
 },
 "airplane": "CR2",
 "stops": 0
}

¡	Computed—Use computed fields in the airports collection to reduce CPU use by
precomputing values at write time. This prevents costly calculations at read time,
optimizing query performance and sparing CPU resources. You can include a
field like total_flights, which is computed to reflect the total number of flights
associated with each airport. This approach helps centralize important metrics at
the airport level, facilitating more efficient data management and retrieval. It is
particularly valuable in scenarios in which data requires frequent aggregation or
calculations, enhancing the application’s performance and responsiveness:

{
 "_id": "JFK",
 "name": "JFK International Airport",
 "location": {
 "city": "New York",
 "country": "USA"
 },
 "facilities": ["Wi-Fi", "Lounge", "VIP Services"],
 "total_flights": 3500 // Computed field representing the
➥total number of flights from/to this airport
}

By applying these schema design patterns effectively, you can ensure that your flight data
management system achieves enhanced performance and reduced complexity, provid-
ing scalable, efficient, and high-performing operations as your data and user base grow.

5.2	 Embedding vs. referencing
In MongoDB, you have the option to embed related data within a single document or
structure. These schemas are typically referred to as denormalized models, which use
the capabilities of MongoDB’s rich document format. Figure 5.1 shows an example of
embedding.

Embedded data models enable applications to store related data in the same docu-
ment structure. Consequently, applications might perform fewer queries and updates
to carry out routine operations. Consider using embedded data models in the following
cases:

¡	Entities have a “contains” relationship, such as a contacts document that includes
an address.

¡	Entities have a one-to-many relationship in which the many (child) documents
are consistently accessed or displayed within the context of the one (parent)
document.

	 99Embedding vs. referencing

{
 _id: <ObjectId1>,
 username: "123xyz",
 contact: {
 phone: "123-456-7890",
 email: "xyz@example.com"
 },
 access: {
 level: 5,
 group: "dev"
 }
{

Embedded
subdocument

Embedded
subdocument

Figure 5.1  A MongoDB document with embedded subdocuments
for contact information and access details (Image © MongoDB 2024 CC BY-NC-SA 3.0)

Generally, embedding enhances the performance of read operations by allowing the
retrieval of related data in a single database operation. Embedded data models also
enable the updating of related data through a single atomic write operation.

NOTE  Embedding large documents or multiple documents may result in
bloated documents with loads of information that is unlikely to be accessed
together, which may end up exceeding the max Binary JSON (BSON) size. In
MongoDB, documents must be smaller than the maximum BSON document
size, which is 16 MB.

In certain situations, it is advisable to store related information in separate documents,
usually in different collections or databases. Generally, opt for normalized data models
in the following scenarios:

¡	The reference entity is frequently accessed on its own.

¡	Embedding could lead to data duplication without offering significant read-
performance benefits that justify the duplication.

¡	You need to represent complex many-to-many relationships accurately.

Figure 5.2 illustrates the use of MongoDB’s ObjectId() to reference documents in two
collections.

To join collections, MongoDB offers the following aggregation stages, providing
sophisticated methods for integrating data across collections:

¡	$lookup—This stage performs a left outer join to another collection in the same
database, allowing you to combine documents based on a join condition similar
to relational databases.

¡	$graphLookup—Introduced for complex aggregations, this stage facilitates
recursive lookups, enabling the exploration of relationships within data sets that
have a hierarchical or graphlike structure.

100 Chapter 5  Designing a MongoDB schema

{
 _id: <ObjectId1>,
 username: "123xyz",
{

User document

{
 _id: <ObjectId2>,
 user_id: <ObjectId1>,
 phone: "123-456-7890",
 email: "xyz@example.com"
{

Contact document

{
 _id: <ObjectId3>,
 user_id: <ObjectId1>,
 level: 5,
 group: "dev"
{

Access document

Figure 5.2  MongoDB can reference documents between collections. (Image © MongoDB 2024 CC BY-
NC-SA 3.0)

MongoDB applications can relate documents using either of two methods, which cater
to different data management needs:

¡	Manual references—This method involves storing the _id field of one document
in another document as a reference. The application must execute a second
query to fetch the related data. This approach is simple and effective for many
scenarios.

¡	DBRefs—These references link one document to another using the _id field
of the first document, the collection name, and optionally, the database name,
among other fields. DBRefs are particularly useful for referencing documents
spread across multiple collections or databases. Resolving DBRefs requires using
additional queries to retrieve the linked documents, ensuring data consistency
across complex structures.
Consider an example with two collections: routes and airports. Each route doc-
ument may include a reference to an airport document using a DBRef to dynami-
cally represent either the source or the destination airport:

{
 "_id": ObjectId("56e9b39b732b6122f877fa35"),
 "flight_id": "FL123",
 "src_airport": {
 "$ref": "airports",
 "$id": "JFK",
 "$db": "airportData",

	 101Understanding schema design patterns

 "YourExtraField" : "Can be anything"
 },
 "airline": "Delta Airlines",
 "airplane": "Boeing 737",
 "stops": 0
}

DBRefs can contain additional fields beyond the required ones. The order of fields in
the DBRef matters, and you must use the preceding sequence when using a DBRef.

5.3	 Understanding schema design patterns
Every schema design pattern comes with its own set of use cases and tradeoffs in terms
of data consistency, performance, and complexity. Certain schema design patterns are
geared toward enhancing write performance, for example, whereas others are opti-
mized for better read performance. Figure 5.3 shows various schema design patterns
for different applications.

Catalog

Approximation

Attribute

Bucket

Computed

Document
versioning
Extended
reference

Outlier

Preallocated

Polymorphic

Schema
versioning

Subset

Tree and
graph

Mobile Personalization Single viewContent
management

Internet of
Things

Real-time
analytics

Figure 5.3  The suitability of different schema design patterns for various use-case categories. The right pattern
balances data consistency, performance, and complexity. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

The set of rules dictating the exclusive design pattern for any particular application
type is flexible. Focus on patterns commonly associated with your specific use case, but

102 Chapter 5  Designing a MongoDB schema

don’t disregard alternative ones that might be relevant. Tailor your application’s data
schema to fit your unique data access patterns. Next, we’ll examine the schema design
patterns shown in figure 5.3.

5.3.1	 Approximation pattern

The Approximation pattern is particularly valuable when data changes frequently and
precise calculations are not required. Estimating values instead of computing them
exactly each time can improve efficiency and reduce write-intensive operations. A com-
mon example is tracking page views on a website. Instead of updating the view count in
the database with every page load, which can be highly write-intensive, the application
can estimate this number using techniques such as sampling. Because precise tracking
of every single view is not always necessary, updates can be aggregated and written to
the database at fixed intervals, such as every X minutes or hours, significantly reducing
the write workload by replacing thousands of updates with a much smaller number of
batched writes. This method reduces the strain on database resources by lessening the
frequency of write operations, making it ideal for high-traffic environments in which
exact counts are less critical than overall trends. The following document illustrates
how estimated values can be stored to reduce the frequency of database writes when
tracking page views:

{
 "page_id": "12345",
 "estimated_views": 1500,
 "sampling_rate": 0.05,
 "last_updated": "2024-04-20T12:00:00Z"
 // This document estimates page views to reduce database writes.
}

Advantages of the Approximation pattern are

¡	Reduces databases write operations

¡	Maintains statistically valid figures

Disadvantages of the Approximation pattern are

¡	Does not represent precise numbers

¡	Requires applications to implement the pattern

5.3.2	 Archive pattern

The Archive pattern is useful for managing large volumes of data; it separates active
data from historical data that does not need to be accessed frequently, improving the
performance and manageability of the database by reducing the size of the collection.
The pattern involves moving older data to a separate collection or an external storage
solution. One of the most common approaches is archiving documents to blob stor-
age like Amazon S3, which is cheap. This reduces the load on the primary collection,

	 103Understanding schema design patterns

decreases index sizes, and improves query performance by ensuring that frequently
accessed data remains efficiently searchable. Consider an application that logs user
activities:

{
 "log_id": "abc123",
 "user_id": "98765",
 "activity": "login",
 "timestamp": ISODate("2024-05-12T10:00:00Z"),
 "status": "active"
}

The logs collection records all activities, but over time, old logs can be archived to
keep the active collection performant. Typically, only logs from the past 30 to 90 days
are actively used for troubleshooting, auditing, or compliance purposes. Logs older
than this period become less relevant and can be moved to an archive to reduce the
size of the active collection.

Advantages of the Archive pattern are

¡	Active collections remain small and performant by offloading older data.

¡	Archived data can be stored in less expensive storage solutions, reducing overall
costs.

¡	Index sizes are reduced.

TIP  MongoDB Atlas Online Archive can be useful for implementing the
Archive pattern, helping you manage infrequently accessed data by moving it
to a more cost-effective storage solution automatically while maintaining access
for queries when necessary. Read more about Online Archive in chapter 17.

5.3.3	 Attribute pattern

The Attribute pattern is useful when you are handling documents that have many sim-
ilar fields and a subset of fields is rare, appearing in only a few documents (such as spe-
cific products on an e-commerce site). To sort or query these specific fields efficiently,
use indexing (chapter 7). This involves creating an array of objects, each of which con-
tains two attributes—a key and a value—enabling the construction of efficient indices
for these unique fields.

Let’s see how the document structure looks before we apply the Attribute pattern.
Rare attributes are stored as separate fields, leading to a schema with many null values
for attributes that are not relevant to most products:

{
 "product_id": "98765",
 "name": "Laptop",
 "price": 1200,
 "in_stock": true,
 "special_offer": "10% off",

104 Chapter 5  Designing a MongoDB schema

 "warranty_years": 3,
 "processor_generation": null,
 "custom_rgb_lighting": null,
 "touchscreen_support": null,
 "military_grade_certification": null
}

When you apply the Attribute pattern, rare attributes are stored as an array of key–
value objects, making the document structure more flexible and reducing the need for
multiple indexes. This approach helps you manage attributes that appear infrequently
across documents without inflating the schema:

{
 "product_id": "98765",
 "common_attributes": {
 "name": "Laptop",
 "price": 1200,
 "in_stock": true
 },
 "rare_attributes": [
 {"key": "special_offer", "value": "10% off"},
 {"key": "warranty_years", "value": 3},
 {"key": "processor_generation", "value": "13th Gen"},
 {"key": "custom_rgb_lighting", "value": true},
 {"key": "touchscreen_support", "value": false},
 {"key": "military_grade_certification", "value": "MIL-STD-810G"}
]
}

Advantages of the Attribute pattern are

¡	A reduced number of required indexes

¡	Simplified query writing and generally faster query execution

5.3.4	 Bucket pattern

The Bucket pattern is effective for managing streams of documents that generate large
volumes of time-series or event-driven data, such as sensor readings. Before you apply
the Bucket pattern, store each sensor reading as an individual document, leading to
many small documents. The structure might look like this:

{
 "sensor_id": "abc123",
 "timestamp": ISODate("2024-04-20T08:00:00Z"),
 "value": 22.5
}
{
 "sensor_id": "abc123",
 "timestamp": ISODate("2024-04-20T08:05:00Z"),
 "value": 22.7
}

	 105Understanding schema design patterns

{
 "sensor_id": "abc123",
 "timestamp": ISODate("2024-04-20T08:10:00Z"),
 "value": 22.9
}

To manage this structure, you can segment data based on a specific value, such as a day,
creating buckets of data. In the case of sensor readings, you might create one docu-
ment for every 100 readings or one document per day, storing all relevant data within
these documents:

{
 "sensor_id": "abc123",
 "date": "2024-04-20",
 "readings": [
 {"time": "08:00", "value": 22.5},
 {"time": "08:05", "value": 22.7},
 {"time": "08:10", "value": 22.9}
]
 // Grouping sensor readings by day to manage large data volumes.
}

Advantages of the Bucket pattern are

¡	Decreases the total count of documents within a collection

¡	Enhances the performance of indexes

¡	Facilitates easier access to data by using preaggregation

TIP  Time-series collections automatically implement the Bucket pattern,
making them suitable for most applications that require time-series data to be
organized in buckets.

5.3.5	 Computed pattern

If reads occur more frequently than writes, it’s efficient to precompute certain data. In
an online store, for example, each product might have user ratings. Instead of calcu-
lating the average rating each time a product page is accessed, you could compute the
average when new ratings are submitted and stored with the product details. This way,
the stored average is displayed quickly, enhancing performance, especially when prod-
uct views significantly outnumber rating updates. Ratings can be updated individually
as they come in or in batches if slight delays are acceptable:

{
 "product_id": "321",
 "product_name": "Wireless Headphones",
 "ratings": [
 5, 4, 5, 3, 4
],
 "average_rating": 4.2,

106 Chapter 5  Designing a MongoDB schema

 // Average rating is pre-computed whenever new ratings are added.
}

Advantages of the Computed pattern are

¡	Decreases CPU use by reducing the need for repeated calculations

¡	Simplifies query writing and generally speeds query execution

5.3.6	 Document Versioning pattern

To manage the retention of past document versions in MongoDB, the Document Ver-
sioning pattern is a functional approach. Use this pattern when you need to maintain
historical versions of documents for purposes such as auditing, rollback, or analysis.
It involves storing each update as a separate document version, enabling full history
tracking without altering the original data:

{
 "document_id": "456",
 "version": 3,
 "content": "Latest content here.",
 "previous_versions": [
 {
 "version": 2,
 "content": "Older content here.",
 "date_modified": "2023-12-01"
 },
 {
 "version": 1,
 "content": "Original content here.",
 "date_modified": "2023-11-01"
 }
],
 // Each document update is stored as a new version,
➥maintaining a history of changes.
}

Advantages of the Document Versioning pattern are

¡	Simple to integrate

¡	Applicable to new and existing systems

¡	Performance-effective queries for the latest document version

Disadvantages of the Document Versioning pattern are

¡	Requires twice as many write operations

5.3.7	 Extended Reference pattern

The Extended Reference pattern avoids repetitive joins by embedding key data from
the referenced collection, such as user data (names, email addresses, roles, and so on),

	 107Understanding schema design patterns

directly in posts to reduce database load. This method is effective if such data seldom
changes.

It’s important to consider how often duplicated data updates and whether embed-
ding provides sufficient details for front-end display without joins. You can make
updates to duplicated data during the update query or later, in batches:

{
 "post_id": "789",
 "content": "Check out these new features!",
 "user": {
 "user_id": "555",
 "name": "Alex",
 "email": alex@example.com,
 "role": "admin"
 },
 // User details are embedded in the post to avoid joins and
➥improve read performance.
 "timestamp": "2024-04-20T15:00:00Z"
}

Advantages of the Extended Reference pattern are

¡	Improved performance when a lot of JOIN operations occur

¡	Faster reads and fewer overall JOINs

Disadvantages of the Extended Reference pattern are

¡	Data duplication

5.3.8	 Outlier pattern

The Outlier pattern manages documents that significantly differ from the norm,
ensuring that they do not hinder the performance of standard queries. If a document
in a collection contains a far larger array than is typical, for example, you might choose
to store it in a separate collection or apply specific indexing strategies to it.

This approach prevents such documents from affecting query performance on the
rest of the documents, maintaining system responsiveness and efficiency. Consider a
sensor data schema where documents typically contain a small array of readings:

{
 "sensor_id": "xyz987",
 "readings": [
 {"time": "09:00", "value": 19.5},
 {"time": "09:05", "value": 19.7}
],
 "date": "2024-04-20"
}

Occasionally, a sensor might generate a significantly larger number of readings, cre-
ating a performance bottleneck. In such cases, you could identify a threshold for an

108 Chapter 5  Designing a MongoDB schema

outlier document (such as a document containing more than 1,000 readings) and
store any readings beyond this threshold separately. To indicate additional data stor-
age, you can include a Boolean field:

{
 "sensor_id": "xyz987",
 "readings": [
 {"time": "09:00", "value": 19.5},
 {"time": "09:05", "value": 19.7}
 // up to threshold
],
 "has_extra_readings": true,
 "date": "2024-04-20"
}

The additional readings are stored in a separate collection, clearly linked to the origi-
nal document:

{
 "sensor_id": "xyz987",
 "date": "2024-04-20",
 "extra_readings": [
 {"time": "09:10", "value": 20.1}
 // additional readings...
]
}

This approach prevents large volumes of sensor readings from affecting query perfor-
mance on the rest of the documents, maintaining system responsiveness and efficiency.

Advantages of the Outlier pattern are

¡	Prevents a few documents or queries from determining an application’s solution

¡	Focuses on typical use cases while accommodating exceptional scenarios

Disadvantages of the Outlier pattern are

¡	Typically optimized for specific queries, which may result in poor performance
for ad hoc queries

¡	Relies heavily on application code for implementation

5.3.9	 Polymorphic pattern

The Polymorphic pattern in MongoDB allows you to store documents with similar but
not identical structures in the same collection, improving query efficiency and reduc-
ing the need for separate collections for each data type. In a sports-tracking applica-
tion, for example, you can store documents for different types of athletes—such as
tennis players and soccer players—in a single collection. Each document type might
have different attributes specific to the sport, but common attributes such as name
and age are maintained. This approach eliminates complex joins and makes querying

	 109Understanding schema design patterns

across different sports straightforward, as all athlete documents are in one place. Then
queries can differentiate based on a type field or other sport-specific attributes con-
tained within each document, as in this example:

{
 "athlete_id": "78910",
 "type": "tennis_player",
 "name": "Alice Smith",
 "age": 25,
 "tennis_specific": {
 "ranking": 15,
 "hand": "right"
 }
 // Tennis specific attributes are stored along with common attributes.
}
{
 "athlete_id": "78911",
 "type": "soccer_player",
 "name": "Bob Johnson",
 "age": 22,
 "soccer_specific": {
 "position": "forward",
 "goals_scored": 30
 }
 // Soccer specific attributes are stored along with common attributes.
}

Advantages of the Polymorphic pattern are

¡	Queries can be executed within a single collection.

¡	The pattern is easy to implement.

5.3.10	 Preallocation pattern

The Preallocation pattern is useful when you already know how your documents will be
structured, but you’ll be filling in the details later. An example application is a yearly
planner for a classroom. At the beginning of the academic year, you can create a docu-
ment for each student, with sections for each month and placeholders for assignment
grades and attendance records. As the year progresses and assignments are graded,
you fill in the predetermined sections with the specific details. Initially, your document
structure could look like this:

{
 "student_id": "12345",
 "name": "John Doe",
 "academic_year": "2024",
 "monthly_records": {
 "January": {"attendance": [], "grades": []},
 "February": {"attendance": [], "grades": []},
 // Other months follow the same structure.
 }

110 Chapter 5  Designing a MongoDB schema

 // Structure is pre-allocated, details to be filled
➥ in as the year progresses.
}

As data becomes available, you incrementally update the preallocated fields:

{
 "student_id": "12345",
 "name": "John Doe",
 "academic_year": "2024",
 "monthly_records": {
 "January": {
 "attendance": ["2024-01-03", "2024-01-10", "2024-01-17",
"2024-01-24"],
 "grades": [90, 85, 88, 92]
 },
 "February": {
 "attendance": ["2024-02-07", "2024-02-14", "2024-02-21"],
 "grades": [88, 91, 87]
 }
 // Additional months filled in similarly.
 }
}

This approach streamlines data management by clearly defining the structure in
advance and simplifying subsequent updates.

Advantages of the Preallocation pattern include

¡	Design simplification when the document structure is known in advance

Disadvantages of the Preallocation pattern include

¡	Simplicity versus performance

5.3.11	 Schema Versioning pattern

The Schema Versioning pattern uses a schema_version field in documents to manage
different schema versions within the same collection. This field tracks the schema ver-
sion to which each document conforms, starting with version 1 for documents that lack
this field.

Subsequent schema changes increment this version number. Application logic reads
the schema_version to handle documents appropriately based on their version, allow-
ing previous and current versions of documents to coexist in the same collection. This
setup streamlines managing schema updates and maintaining data consistency over
time. The pattern allows previous and current versions of documents to exist side by
side in a collection:

{
 "document_id": "456789",
 "schema_version": 2,
 "name": "Product XYZ",

	 111Understanding schema design patterns

 "price": 199.99,
 "new_feature": "Improved battery life",
 // The schema_version field indicates the version of
➥the schema this document follows.
}

As the schema evolves further, newer documents may include additional fields, and
their schema_version would reflect these updates:

{
 "document_id": "789012",
 "schema_version": 3,
 "product_details": {
 "name": "Product XYZ Pro",
 "price": 249.99,
 "features": ["Improved battery life", "Wireless charging",
➥ "OLED display"],
 "availability": {
 "status": "In stock",
 "quantity": 150
 }
 },
 "warranty_period_years": 2,
 "release_date": "2024-05-01"
 // schema_version indicates the document adheres to the
➥ latest schema with expanded details.
}

Advantages of the Schema Versioning pattern are

¡	No downtime is needed during schema migration.

¡	Future technical debt is reduced.

Disadvantages of the Schema Versioning pattern include

¡	Two indexes might be needed for the same field during migration.

5.3.12	 Subset pattern

The Subset pattern optimizes the size of the working set by storing only the most fre-
quently accessed data directly in the main document and less frequently accessed data
in separate documents. This method reduces the load on the database during com-
mon queries.

In a social network application, for example, you might store only a user’s most
recent posts directly in their main user profile document. Older posts could be stored
in a separate document or collection. This ensures that the user profile loads quickly, as
it contains only the most relevant and recent data. The link between the user’s profile
and their older posts is maintained, allowing for easy access when necessary. Here’s an
example:

112 Chapter 5  Designing a MongoDB schema

{
 "user_id": "112233",
 "name": "Emily White",
 "recent_posts": [
 {"post_id": "p100", "content": "Exciting news today!",
➥"date": "2024-04-18"},
 {"post_id": "p101", "content": "Loved the weather!",
➥"date": "2024-04-17"}
],
 "older_posts_link": "posts_archive/112233",
 // Only recent posts are stored in the main document,
➥older posts are referenced.
}

Advantages of the Subset pattern are

¡	The overall size of the working set is reduced.

¡	Disk access time for the most frequently used data is shorter.

Disadvantages of the Subset pattern are

¡	You are required to manage the subset.

¡	Pulling in additional data requires additional trips to the database.

5.3.13	 Tree pattern

The Tree pattern in MongoDB represents hierarchical relationships within a single
document. This approach is particularly useful for data structures (such as organiza-
tional charts) in which relationships are defined hierarchically.

Before you use the Tree pattern, hierarchical relationships often require references
or joins between multiple documents, making queries more complex and less efficient.
An employee document before you apply the Tree pattern might store references to
other employee documents separately:

{
 "employee_id": "2001",
 "name": "Alice Johnson",
 "position": "Regional Manager",
 "reports_to_id": "1001",
 "direct_reports_ids": ["2002", "2003"]
 // References require joining multiple documents
to resolve relationships.
}

When you use the Tree pattern, hierarchical relationships are encapsulated within a
single document, eliminating the need for joins. A document for an employee might
include a field named reports_to, which is an array containing the names or IDs of
the people to whom they report:

 {
 "employee_id": "2001",

	 113Schema validations

 "name": "Alice Johnson",
 "position": "Regional Manager",
 "reports_to": [
 {
 "employee_id": "1001",
 "name": "Sarah Gold"
 }
],
 "direct_reports": [
 {
 "employee_id": "2002",
 "name": "Bob Smith"
 },
 {
 "employee_id": "2003",
 "name": "Linda White"
 }
]
 // Hierarchical relationships are encapsulated within the document.
}

This pattern simplifies the data model and enhances query performance by keeping
all related information in a single document.

Advantages of the Tree pattern include

¡	Avoiding multiple JOIN operations increases performance.

Disadvantages of the Tree pattern include

¡	Updates to the graph need to be managed in the application.

TIP  If you’d like to learn more about MongoDB data modeling, visit
MongoDB University, and take the Schema Design Patterns course at https://
mng.bz/5vQ1, explore the official documentation at https://mng.bz/64XD,
or read the blog post at https://mng.bz/oZ2r.

5.4	 Schema validations
To prevent unintended schema changes, you can create schema validation rules. In
MongoDB, the schema is flexible, allowing documents within a collection to vary in
terms of fields and data types. After you set up a schema for your application, you can
implement schema validation to prevent unexpected schema modifications and incor-
rect data types.

Schema validation is extremely useful for established applications with well-defined
data structures. Here are some specific examples:

¡	For a users collection, make sure that the password field is stored exclusively as
a string. This validation prevents the possibility that passwords will be saved in an
unexpected format, such as an image.

https://mng.bz/5vQ1
https://mng.bz/5vQ1
https://mng.bz/64XD
https://mng.bz/oZ2r

114 Chapter 5  Designing a MongoDB schema

¡	For a flight routes collection, validate that the flight_id follows a specific
format (such as "FL" followed by numbers), ensure that airline.id is a positive
integer, and confirm that airport codes in src_airport.code and dst_airport
.code are valid and correspond to actual airports.

¡	For an airport collection, ensure that the total_flights field is maintained
as an integer. This validation is important for accurately representing the total
number of flights operating from or arriving at the airport.

5.4.1	 Specifying JSON schema validation

The JSON schema is a standard format for defining the structure, data types, and con-
straints of JSON documents. It ensures data consistency and validity by enforcing rules
on the fields stored in a collection.

Let’s look at how to perform schema validation for documents in a routes collec-
tion. You can specify a collections schema validation using the validator object during
the creation of a collection using the db.createCollection() method, as well as to an
existing collection using the collMod command.

To modify an existing routes collection to include schema validation, use the
collMod command. Listing 5.1 shows how you can structure this command to imple-
ment the validation rules. To execute this command, permissions such as dbAdmin on
the sample_training database or dbAdminAnyDatabase need to be appended to the
user’s role. MongoDB roles are discussed in chapter 20.

Listing 5.1  Example schema validator

db.runCommand({
 collMod: "routes",
 validator: {
 $jsonSchema: {
 bsonType: "object",
 required: [
"flight_id",
 "airline",
 "src_airport",
 "dst_airport"
],
 properties: {
 flight_id: {
 bsonType: "string",
 pattern: "^FL\\d+$",
 description: "must be a string starting
➥with 'FL' followed by numbers"
 },
 airline: {
 bsonType: "object",
 properties: {
 id: {
 bsonType: "int",
 minimum: 1,

	 115Schema validations

 description: "must be a positive integer"
 }
 }
 },
 src_airport: {
 bsonType: "object",
 properties: {
 code: {
 bsonType: "string",
 description: "must be a valid airport code"
 }
 }
 },
 dst_airport: {
 bsonType: "object",
 properties: {
 code: {
 bsonType: "string",
 description: "must be a valid airport code"
 }
 }
 }
 }
 }
 },
 validationLevel: "moderate",
 validationAction: "error"
})

The $jsonSchema operator matches documents that satisfy the specified JSON schema.
The validation rule dictates that documents must include specific fields such as flight_
id, airline, src_airport, and dst_airport, with detailed conditions for each.

The validationLevel set to moderate means that this validation applies to new doc-
uments and to updates on existing documents that already comply with the validation
rules. Existing documents that do not match the rules, however, are not required to
pass validation unless they are modified. This approach allows for the gradual enforce-
ment of schema rules without disrupting existing data that may not comply.

The validationAction set to error means that MongoDB will reject any insert or
update operation that does not meet the defined validation rules. If a document fails
validation, the operation is not executed, and an error is returned.

5.4.2	 Testing a schema validation rule

Let’s attempt to add an invalid document to the routes collection, to which we recently
added schema validation rules. The following insertOne() method tries to insert an
incorrect document into the collection:

db.routes.insertOne({
 flight_id: "XYZ123", // flight_id should start with "FL"
 airline: {
 id: -410, // airline.id must be a positive integer

116 Chapter 5  Designing a MongoDB schema

 name: "Delta Airlines",
 alias: "2B",
 iata: "ARD"
 },
 src_airport: {
 code: "JFK",
 name: "JFK International Airport"
 },
 dst_airport: {
 code: "999", // dst_airport.code must be a valid code
 name: "Unknown Airport"
 },
 airplane: "CR2",
 stops: 0
})

MongoDB rejected the document due to validation failures, returning the following
error:

{
 "MongoServerError": "Document failed validation",
 "Additional information": {
 "failingDocumentId": "ObjectId('6624dbc6cf6203ef2a1db280')",
 "details": {
 "operatorName": "$jsonSchema",
 "schemaRulesNotSatisfied": [
 {
 "operatorName": "properties",
 "propertiesNotSatisfied": [
 {
 "propertyName": "flight_id",
 "description": "must be a string starting
➥with 'FL' followed by numbers",
 "details": [
 {
 "operatorName": "pattern",
 "specifiedAs": {
 "pattern": "^FL\\d+$"
 },
 "reason": "regular expression did not match",
 "consideredValue": "XYZ123"
 }
]
 },
 {
 "propertyName": "airline",
 "details": [
 {
 "operatorName": "properties",
 "propertiesNotSatisfied": [
 {
 "propertyName": "id",
 "description": "must be a positive integer",
 "details": [

	 117Schema validations

 {
 "operatorName": "minimum",
 "specifiedAs": {
 "minimum": 1
 },
 "reason": "comparison failed",
 "consideredValue": -410
 }
]
 }
]
 }
]
 }
]
 }
]
 }
 }
}

The errors occurred because the flight_id did not start with "FL" and contained
the incorrect format, and the airline.id was not a positive integer, as required. Con-
sequently, MongoDB returned an error message detailing these validation failures,
including descriptions of the specific schema rules that were not satisfied.

5.4.3	 Modifying schema validator behavior

You can specify how MongoDB handles documents that violate validation rules. When
a document operation fails to comply with validation rules, MongoDB can do the
following:

¡	Deny any insert or update operation that breaches the validation rules, which is
the standard setting

¡	Permit the operation while noting the violation within the MongoDB log

Rejecting nonconforming documents helps maintain schema consistency. Nonethe-
less, you might choose to allow invalid documents in some situations, such as during
data migrations involving older documents created before schema definitions were in
place.

validationAction determines how MongoDB handles invalid documents. This set-
ting can be configured to either of the following:

¡	error—This is the default setting. MongoDB will reject any operation that
attempts to insert or update documents in a way that violates the validation rules.

¡	warn—MongoDB allows the operations to proceed, but it logs a warning message
for any violation. This can be useful for tracking compliance without disrupting
ongoing operations, such as during a gradual schema enforcement phase or in a
development environment.

118 Chapter 5  Designing a MongoDB schema

When validationAction is set to warn, you can check the MongoDB logs for related
warnings using the following command in the MongoDB Shell (mongosh):

db.adminCommand(
 { getLog:'global'}).log.forEach(x => { print(x) }
)

NOTE  This example is not available on the free/shared Atlas tier.

5.4.4	 Bypassing schema validation

In certain cases, you may have to override a collection’s schema validation rules. When
you’re restoring data from a backup into a collection that is governed by validation
rules, for example, there’s a chance that older documents from the backup won’t com-
ply with the newer validation criteria.

Bypassing schema validation can be managed on a per-operation basis. If you choose
to bypass schema validation when inserting an invalid document, any subsequent
updates to that document must also bypass schema validation or ensure that the docu-
ment meets the existing validation criteria. You can bypass validation using the follow-
ing commands and methods:

¡	findAndModify command

¡	insert command

¡	update command

¡	$out and $merge aggregation stages

Suppose that you want to insert a document that does not comply with schema require-
ments. Perhaps the flight_id does not start with "FL" or the airline.id is less
than 1. Instead of modifying the document to meet the schema criteria, you can bypass
the validation as shown in this example:

db.routes.insertOne(
 {
 flight_id: "12345", // Does not meet schema requirements
➥ (should start with 'FL')
 airline: {
 id: 0, // Does not meet schema requirements
➥(must be a positive integer)
 },
 src_airport: {
 code: "JFK"
 },
 dst_airport: {
 code: "LAX"
 }
 },
 { bypassDocumentValidation: true } // Bypasses the schema validation
);

	 119Summary

The option bypassDocumentValidation: true allows you to insert a document, even
though fields such as flight_id and airline.id violate the schema’s rules. By using
this option, you temporarily disable validation for this particular operation.

Bypassing these rules is necessary sometimes, although it carries the risk of intro-
ducing invalid documents into the collection. Various commands, including insert and
update, allow you to bypass these rules. If you want more information about schema
validation in MongoDB, see the official documentation at https://mng.bz/nZNg.

5.5	 MongoDB schema antipatterns
You should avoid antipatterns when working with MongoDB. Recognizing antipatterns
can help you prevent performance problems and maintain the efficiency of your data-
base. Here are some key antipatterns:

¡	Massive Arrays—Storing large, unbounded arrays in documents can cause ineffi-
cient queries and performance degradation. Break such data into separate col-
lections, or use pagination strategies to manage large data sets more effectively.

¡	Bloated Documents—Overloading documents with excessive data that is not fre-
quently accessed together can slow read operations. Keep documents lean by
including only data that is commonly accessed together to ensure efficient read
performance.

¡	Massive Number of Collections—Creating too many collections, especially if many
are rarely used, can degrade performance. Consolidate your schema design into
fewer, more efficient collections whenever possible.

¡	Unnecessary Indexes—Maintaining indexes that are rarely used or redundant
consumes memory and can slow write operations. Regularly review and remove
indexes that do not contribute significantly to query performance.

¡	Separating Data Accessed Together—Storing related data in separate documents or
collections can lead to frequent joins and complex queries. Embed related data
in a single document to simplify and speed read operations.

In part 2 of this book, I show you how to identify these problems quickly using the Atlas
Performance Advisor. This tool helps you spot and resolve schema design antipatterns,
ensuring that your database operates efficiently.

Summary

¡	MongoDB’s flexible schema design allows a flexible and dynamic data structure.
Unlike traditional databases that need a fixed schema, MongoDB lets documents
in the same collection have varied fields and types. This adaptability is beneficial
for projects with evolving or unclear data needs.

¡	Although MongoDB is a flexible schema, effective data modeling is still crucial.
Proper MongoDB schema design enhances performance, scalability, and main-
tainability. It requires understanding data relationships, predicting query pat-
terns, and planning for data evolution.

https://mng.bz/nZNg

120 Chapter 5  Designing a MongoDB schema

¡	When designing a schema for MongoDB, it’s crucial to recognize its flexibility
compared with that of traditional relational databases. MongoDB allows dynamic
changes to the data structure, enabling easier development and scalability, and
its data model should be designed based on data access patterns rather than logi-
cal connections, emphasizing flexibility and scalability.

¡	Schema planning involves determining workloads, mapping relationships, and
implementing design patterns that cater to specific application needs.

¡	MongoDB offers various schema design patterns, including Approximation,
Archive, Attribute, Bucket, Computed, Document Versioning, Extended Ref-
erence, Outlier, Pre-allocation, Polymorphic, Schema Versioning, Subset, and
Tree.

¡	Schema validation allows you to set rules for your fields, including permitted data
types and value ranges. When your application schema is defined, schema valida-
tion ensures that there are no unexpected changes or incorrect data types.

¡	After you add schema validation rules to a collection, by default, if an insert or
update operation results in an invalid document, MongoDB rejects the opera-
tion and does not save the document to the collection. Alternatively, you can con-
figure MongoDB to accept invalid documents and log warnings when schema
violations occur.

¡	Bypassing schema validation is required in some cases, though it carries the
potential risk of adding noncompliant documents to the collection. Several
commands—such as insert, findAndModify, and update—provide the bypass-
DocumentValidation: true option, which skips these validation checks when
necessary.

¡	Avoid certain antipatterns when working with MongoDB, including Massive
Arrays, Bloated Documents, Massive Number of Collections, Unnecessary
Indexes, and Separating Data Accessed Together.

121

6Building aggregation
pipelines

This chapter covers

¡	Exploring the MongoDB aggregation framework
¡	Setting up and using aggregation pipelines
¡	Describing aggregation pipeline stages
¡	Joining MongoDB collections using $lookup
¡	Using the MongoDB Atlas aggregation pipeline 	
	 builder

The MongoDB aggregation framework is a powerful tool for processing and ana-
lyzing data within MongoDB. It allows you to create complex data transformation
and aggregation pipelines to perform operations such as filtering, grouping, and
transforming data efficiently. This framework is essential for extracting meaningful
insights from large data sets, making it a crucial component for developers and data
analysts working with MongoDB. Also, the aggregation framework supports full-text
search and vector search capabilities in MongoDB Atlas.

With the aggregation framework, you can construct multistage pipelines that
process data in a sequence of steps. Each stage performs an operation on the data

122 Chapter 6  Building aggregation pipelines

and passes the result to the next stage. This approach allows sophisticated data manip-
ulation and analysis, providing flexibility and performance beyond simple queries.
Whether you need to calculate averages, sum totals, organize data by categories, or gen-
erate reports, the aggregation framework offers the capabilities you need to handle
these tasks effectively. Another benefit is that when a complex transformation is broken
into more manageable parts, the entire process becomes easier to understand, main-
tain, and debug. The framework supports a wide range of operators and expressions,
enabling you to perform complex calculations and transformations.

6.1	 Understanding the aggregation framework
If you know how a production line works in a factory, the aggregation pipeline will be
quite familiar. In a factory, each station in the production line performs a specific task,
and the product moves from one station to the next. Similarly, in the aggregation pipe-
line, each stage performs a specific operation, and the output of one stage becomes
the input for the next stage:

[{ <stage> }, { <stage> }, { <stage> }, { <stage> }, ...]

Aggregation operations handle multiple documents and return computed results. You
can use them to do the following:

¡	Generate business reports (rollups, sums, and averages)

¡	Perform full-text search and fuzzy search (chapter 11)

¡	Conduct vector search in data sets (chapter 12)

¡	Present up-to-date business dashboards

¡	Mask sensitive data securely

¡	Join data from different collections on the server

¡	Perform data discovery and wrangling

¡	Conduct large-scale data analysis (big data)

¡	Execute complex real-time queries

¡	Analyze graphs of relationships between records

¡	Perform data transformation in extract, load, transform (ELT) processes

¡	Report data quality and cleansing

¡	Update materialized views with recent data changes

¡	Conduct real-time analytics for user insights

Table 6.1 compares SQL terms, functions, and concepts with the corresponding
MongoDB aggregation operators. If you’re familiar with SQL, this comparison will
help you understand how to use MongoDB’s aggregation framework to perform
similar operations.

	 123Understanding the aggregation framework

Table 6.1  MongoDB operators for common SQL operations

SQL terms, functions, and concepts MongoDB aggregation operators

WHERE $match

GROUP BY $group

HAVING $match

SELECT $project, $set, $unset

LIMIT $limit

OFFSET $skip

ORDER BY $sort

SUM() $sum

COUNT() $count, $sum, $sortByCount()

JOIN $lookup

SELECT INTO NEW TABLE $out

MERGE INTO TABLE $merge

UNION ALL $unionWith

6.1.1	 Writing an aggregation pipeline

In MongoDB, you can use the db.collection.aggregate() method to execute aggre-
gation pipelines. The documents in the collection remain unchanged unless the pipe-
line specifically includes a $merge or $out stage. These stages are exceptions that can
write the results back to the original collection or to a new collection.

The following listing shows how to use the aggregate method in MongoDB within
the routes collection, using stages such as $match, $group, $sort, and $limit.

Listing 6.1  Executing an aggregation pipeline

db.routes.aggregate([
 {
 $match: { airplane: "CR2" } // Filter documents where the
➥airplane is "CR2"
 },
 {
 $group: {
 _id: "$src_airport", // Group by source airport
 totalRoutes: { $sum: 1 } // Count the number of routes
➥from each source
 }
 },
 {
 $sort: { totalRoutes: -1 } // Sort the results by the
➥number of routes in descending order
 },
 {
 $limit: 5 // Limit the number of displayed
➥documents to 5

124 Chapter 6  Building aggregation pipelines

 }
])

[
 { _id: 'DME', totalRoutes: 19 },
 { _id: 'SVX', totalRoutes: 17 },
 { _id: 'OVB', totalRoutes: 12 },
 { _id: 'LED', totalRoutes: 11 },
 { _id: 'OMS', totalRoutes: 8 }
]

Within this aggregation pipeline

¡	The $match stage filters documents in the collection in which the airplane type
is “CR2".

¡	The $group stage groups the filtered documents based on the source airport
($src_airport), calculating the total number of routes (totalRoutes) from
each distinct source airport using the $sum accumulator operator.

¡	The $sort stage arranges the grouped data based on the total number of routes
in descending order (totalRoutes), helping you identify airports with the high-
est number of routes.

¡	The $limit stage restricts the number of documents passed to the subsequent
stages or returned to the client, ensuring that only the five airports with the most
routes are included in the output.

6.1.2	 Viewing the aggregation pipeline stages

The aggregation pipeline is composed of several distinct stages, each responsible for a
specific data processing task. Combined, these stages enable complex transformations
and analyses. Certain stages in the pipeline are more frequently used due to their versatil-
ity and utility in a wide range of data processing tasks. Here are the most popular stages:

¡	$match—Filters documents to include only those that meet specified conditions

¡	$group—Groups documents by a specified key and applies aggregate functions
such as sum, avg, min, max, and count

¡	$set, $unset, $project—Reshape each document by adding, removing, or mod-
ifying fields

¡	$sort—Orders documents by specified field(s) in ascending or descending
order

¡	$limit—Restricts the number of documents passed to the next stage

¡	$skip—Skips a specified number of documents

¡	$unwind—Deconstructs an array field to output a document for each element of
the array

¡	$lookup—Performs a left outer join with another collection to include related
data

	 125Understanding the aggregation framework

Table 6.2 lists all the aggregation pipeline stages available in MongoDB 8.0. You can
combine and customize these stages to create powerful data transformations and
aggregations tailored to specific application needs. It’s important, however, to adhere
to best practices to ensure optimal performance and maintainability. Here are some
recommended practices:

¡	Place $match early. Position the $match stage at the beginning of the pipeline to
filter out unnecessary documents early, reducing the workload for subsequent
stages and improving performance.

¡	Prefer using $set (or $addFields) and $unset. Rather than using $project for
fields inclusion and exclusion, use $set and $unset. Use $project only when
you need a significantly different document structure and are retaining only a
few fields from the original.

¡	Use indexes for $sort. Ensure that the fields used in the $sort stage are indexed to
speed the sorting process and prevent performance bottlenecks.

¡	Use $limit for efficient data processing. Use the $limit stage to control the number
of documents processed, reducing memory use and improving query execution
time, particularly in large data sets.

¡	Filter arrays before $unwind. Apply filtering conditions to arrays before using the
$unwind stage to minimize the increase in document count and avoid excessive
processing.

¡	Optimize $lookup operations. Ensure that the foreign field used in the $lookup
stage is indexed in the joined collection.

¡	Use $addFields sparingly. Apply the $addFields stage judiciously to create or
modify fields, avoiding overly complex expressions that can slow the pipeline.

¡	Streamline your pipeline. Regularly review and optimize your pipeline by remov-
ing unnecessary stages and combining stages wherever possible to streamline
processing.

¡	Monitor pipeline performance. Use MongoDB’s explain() method (chapter 7) and
other performance monitoring tools to analyze and optimize pipeline perfor-
mance, as well as identify and address bottlenecks.

Table 6.2  MongoDB aggregation pipeline stages available in MongoDB 8.0

Stage Description

$addFields Adds new fields to documents

$bucket Categorizes documents into buckets

$bucketAuto Groups incoming documents into specified buckets based on an expres-
sion, automatically adjusting boundaries for even distribution

$changeStream Returns a change stream for the collection

$changeStreamSplit-
LargeEvent

Splits change-stream events into smaller fragments returned in a change-
stream cursor

126 Chapter 6  Building aggregation pipelines

Stage Description

$collStats Provides statistics on a collection or view

$count Counts documents at the pipeline stage

$densify Creates new documents in a sequence in which some field values are
missing

$documents Returns documents from input

$facet Runs multiple pipelines on the same data set, returning the results as
separate arrays in one document

$fill Fills in empty or missing fields in documents

$geoNear Filters and sorts documents by distance from a given geographic point

$graphLookup Performs a recursive search on a collection, adding a new array field to
each document containing the traversal results

$group Groups input documents by a specified identifier and performs specified
calculations on each group

$indexStats Provides statistics on the use of indexes

$limit Passes the first n documents unchanged to the pipeline, where n is the
specified limit

$listSampledQueries Provides sampled queries for collections

$listSearchIndexes Provides information about existing search indexes

$listSessions Lists active sessions stored in the system.sessions collection

$lookup Executes a left outer join with another collection in the same database,
filtering in documents from the joined collection for further processing

$match Filters the document stream, allowing only matching documents to pass
unchanged to the next pipeline stage

$merge Writes the output of the aggregation pipeline to a collection. It can perform
various actions, such as inserting new documents, merging, replacing, or
keeping existing documents based on specified criteria. $merge must be
the final stage in the pipeline.

$out Writes the output of the aggregation pipeline to a collection. The $out
stage must be the final stage in the pipeline.

$planCacheStats Plans cache information for a collection

$project Restructures each document in the stream, potentially by adding new
fields or removing existing ones

$redact Restructures each document by limiting its content based on information
stored within the documents themselves

$replaceRoot Replaces a document with the specified document

$replaceWith Serves as an alias for the $replaceRoot stage

$sample Randomly selects documents from its input

$search Performs a full-text search

$searchMeta Returns various types of metadata-result documents for the search query
on a collection

Table 6.2  MongoDB aggregation pipeline stages available in MongoDB 8.0 (continued)

	 127Understanding the aggregation framework

Stage Description

$set Adds new fields to documents

$setWindowFields Adds new fields based on a specified grouping

$skip Skips the first n documents

$sort Sorts the document stream based on specified criteria

$sortByCount Groups incoming documents based on a specified expression, computes
the count of documents in each group, and sorts the documents by
descending count

$source Defines which connection from the Connection Registry to stream data
from in a stream processing pipeline

$unionWith Performs a union of two pipelines

$unset Removes fields from documents

$unwind Deconstructs an array field in the input documents, creating a document
for each element

$vectorSearch Performs an ANN search on a vector in the specified field of the collection

TIP  MongoDB periodically introduces new stages, so review this table with
each new release.

6.1.3	 Using $set and $unset instead of $project

The primary method for specifying which fields to include in or exclude from Mon-
goDB’s aggregation framework has traditionally been the $project stage. In earlier
versions of MongoDB, this stage was the sole method for defining which fields to
retain or remove. The $project stage presents several significant challenges, however,
including the following:

¡	Nonintuitive use—With $project, you can include or exclude fields in a sin-
gle stage but not both, except for the _id field, which can be excluded while
including other fields. This exception makes $project somewhat confusing and
counterintuitive.

¡	Verboseness and inflexibility—The $project stage tends to be verbose. To add only
one field, you must explicitly list all other fields to include. This requirement
leads to redundant and lengthy code, complicating maintenance and making it
difficult to adapt to changes in the data model.

To address these limitations, MongoDB version 4.2 introduced the $set and $unset
stages, which offer several advantages over $project:

¡	Clearer intent—The $set and $unset stages clarify the code’s purpose, making it
immediately apparent whether you are adding, modifying, or removing fields.

Table 6.2  MongoDB aggregation pipeline stages available in MongoDB 8.0 (continued)

128 Chapter 6  Building aggregation pipelines

¡	Reduced verboseness—These stages result in more concise and readable pipelines,
as you no longer need to list all fields when modifying only one.

¡	Flexibility—The stages provide greater flexibility, reducing the need for extensive
refactoring when the data model changes.

6.1.4	 Scenarios for $set and $unset operators

Use the $set and $unset stages when you need to keep most fields in the input docu-
ments unchanged and need to add, update, or remove only a small number of fields.
This scenario is common in most aggregation pipeline operations.

Listing 6.2 shows examples of using the $set and $unset operators. In the first exam-
ple, suppose that you want to exclude the codeshare and stops fields from the output
documents when querying the routes collection, focusing only on the essential infor-
mation about the route and airline.

Listing 6.2  Using the $set and $unset operators

db.routes.aggregate([
 {
 $unset: ["codeshare", "stops"] // Excludes 'codeshare'
➥and 'stops' fields from the output documents
 }
])

In this pipeline, the $unset operator removes specified fields from documents during
aggregation, allowing other fields to pass through unchanged. This operator is more
intuitive for retaining most fields while excluding specific ones, unlike $project,
which includes fields explicitly.

If you want to enhance the documents by adding an isDirect field to indicate
whether a flight is direct (has no stops) and remove the codeshare field, which is not
needed for analysis, run the following pipeline:

db.routes.aggregate([
 {
 $set: {
 isDirect: {
 $eq: ["$stops", 0] // Sets 'isDirect' to true
➥if there are no stops, false otherwise
 },
 codeshare: "$$REMOVE" // Removes 'codeshare'
➥within the same stage
 }
 }
])

The $set operator adds a new isDirect field to each document. It also uses a condi-
tional expression to check whether the stops field is 0. If it is, isDirect is set to true;

	 129Understanding the aggregation framework

otherwise, it’s set to false. The special variable $$REMOVE deletes the codeshare field
within $set, making it unnecessary in the output.

6.1.5	 Scenario for the $project operator

The $project stage is most effective when you need the output documents to have
a significantly different structure from that of the input documents, and you usually
should use it last to specify what fields to return to the client. The following code
demonstrates the $project stage selectively including only the source and destination
airports in the output while omitting the document ID.

Listing 6.3  Using the $project operator

db.routes.aggregate([
 {
 $project: {
 src_airport: 1, // Include the source airport
 dst_airport: 1, // Include the destination airport
 _id: 0 // Exclude the MongoDB document ID from the output
 }
 }
])

The $project stage is well suited to this task because it reshapes the output documents
to contain only the necessary fields: src_airport and dst_airport. This structure sig-
nificantly differs from the structure of the input documents, which contain multiple
additional fields. This approach allows for a focused view of the data, omitting irrelevant
details such as the _id field, which is not needed for specific analysis of airport routes.

6.1.6	 Saving the results of aggregation pipelines

MongoDB offers two stages for saving aggregation pipeline results to a collection: $out
and $merge. These stages provide different ways to store and update documents in the
target collection with varying levels of flexibility and control.

The $out stage

The $out stage takes the documents returned by the aggregation pipeline and writes
them to a specified collection, with the option to specify the output database. The
$out stage must be the final stage in the pipeline. This operator allows the aggregation
framework to handle result sets of any size.

Listing 6.4 shows an example of using the $out stage during document processing in
the routes collection. The following pipeline filters documents in which the airplane
is "CR2", projects the src_airport and airplane fields, and writes the results to a speci-
fied output database and collection.

Listing 6.4  The aggregation pipeline’s $out stage

db.routes.aggregate([
 {

130 Chapter 6  Building aggregation pipelines

 $match: { airplane: "CR2" } // Filter documents where the
➥airplane is "CR2"
 },
 {
 $project: {
 src_airport: 1, // Include the source airport field
 airplane: 1 // Include the airplane field
 }
 },
 {
 $out: { db: "output_db", coll: "projected_routes" }
➥// Write the results to the specified collection
 }
])

NOTE  If the collection specified by the $out operation already exists, the $out
stage atomically replaces the existing collection with the new results collection
when the aggregation is complete.

The $merge stage

The $merge stage writes the results of the aggregation pipeline to a specified collection
and must be the last stage in the pipeline. This stage can output to a collection in the
same database or a different one, and it can output to the same collection that is being
aggregated.

Pipelines with the $merge stage can run on replica set secondaries (chapter 9). Read
operations for the $merge stage are sent to secondary nodes, whereas write operations
occur only on the primary node.

The $merge stage creates a new collection if the output collection does not already exist.
Also, it can incorporate results into an existing collection by inserting new documents,
merging documents, replacing documents, keeping existing documents, failing the oper-
ation, or processing documents with a custom update pipeline. Further, the $merge stage
can output to a sharded collection, and the input collection can be sharded as well. Fol-
lowing is an example of using the $merge stage to update documents in MongoDB.

Listing 6.5  The aggregation pipeline’s $merge state

db.routes.aggregate([
 {
 $match: { airplane: "CR2" }
 },
 {
 $group: {
 _id: "$_id",
 src_airport: { $first: "$src_airport" },
 dst_airport: { $first: "$dst_airport" },
 airline_name: { $first: "$airline.name" }
 }
 },
 {

	 131Joining collections

 $merge: {
 into: "routes",
 on: "_id",
 whenMatched: "merge",
 whenNotMatched: "insert"
 }
 }
])

This aggregation pipeline demonstrates how to selectively update documents in the
routes collection in which the airplane field is "CR2". The pipeline consists of three
stages:

1	 The $match stage filters the documents to include only those in which the
airplane field is "CR2".

2	 The $group stage processes the filtered documents by grouping them based
on _id. It retains the first occurrence of src_airport and dst_airport and
extracts the airline name from the nested airline.name field, assigning it to
airline_name.

3	 The $merge stage writes the results back to the same routes collection. Existing
documents that match on _id are updated with the new fields, and new docu-
ments are inserted if no match is found.

This method ensures efficient updates without data loss, providing precise control of
the document structure.

6.2	 Joining collections
Sometimes, you have to combine data from different collections, and the $lookup
operator proves to be helpful in such cases. Suppose that you have a transactions
collection that stores detailed transaction records, a separate accounts collection that
stores account information, and a customers collection with customer details. All those
collections are in the sample_analytics database. Using $lookup, you can join these
collections to include detailed account and customer information directly within each
transaction document. This approach is useful for generating comprehensive financial
reports that display not only transaction details, such as amounts and dates, but also
the associated account features and customer profiles, enhancing the data available
for financial analysis and customer relationship management.

In MongoDB, the $lookup operation conducts a left outer join within the same data-
base, bringing in documents from a joined collection for processing. This operation
enhances each input document with a new array field, populated with matching docu-
ments from the joined collection. Then these augmented documents are forwarded to
the subsequent stage for further processing. As of MongoDB 5.1, $lookup can also be
used with sharded collections.

The $lookup stage in MongoDB employs this syntax to conduct an equality match
between a field in the input documents and a field in the documents of the joined
collection:

132 Chapter 6  Building aggregation pipelines

{
 $lookup:
 {
 from: <collection to join>,
 localField: <field from the input documents>,
 foreignField: <field from the documents of the "from" collection>,
 as: <output array field>
 }
}

6.2.1	 Creating a MongoDB view using $lookup

You can use $lookup to create a MongoDB view. You create a view by applying a speci-
fied aggregation pipeline to the source collection or view. Views function as read-only
collections and are computed in real time during read operations. Views must be
established within the same database as the source collection. When performing read
operations on views, MongoDB runs them as part of the base aggregation pipeline.

In a database named sample_analytics, you have collections named transactions
and customers. You can create a view that enriches transaction data with customer
details, defined as shown in the following listing.

Listing 6.6  Creating a MongoDB view with $lookup

// Connect to the sample_analytics database
use sample_analytics

// Create a view named 'enriched_transactions' within
➥the 'sample_analytics' database
db.createView("enriched_transactions", "transactions", [
 {
 // Lookup to join 'transactions' with 'customers' based on
➥matching account_id
 $lookup: {
 from: "customers",
 localField: "account_id",
 foreignField: "accounts",
 as: "customer_details"
 }
 },
 {
 // Extract customer details
 $set: {
 "Customer Name": { $arrayElemAt: ["$customer_details.name", 0] },
 "Customer Email": { $arrayElemAt: ["$customer_details.email", 0] },
 "Customer Address": { $arrayElemAt:
➥["$customer_details.address", 0] },
 "Customer Tier and Benefits": { $arrayElemAt:
➥["$customer_details.tier_and_details", 0] }
 }
 },
 {
 // Remove the temporary 'customer_details' field no longer

	 133Joining collections

➥needed after extraction
 $unset: "customer_details"
 }
])

The $lookup stage joins the transactions collection with the customers collection
based on matching account_id, storing the result as an array in customer_details.
Because each transaction should have at most one matching customer, the $set stage
extracts the relevant customer fields using $arrayElemAt, selecting the first element
from the customer_details array. Then the $unset stage removes the temporary
customer_details field to keep the view streamlined.

To read data from the view you’ve created in MongoDB, you can use the find()
method, similar to the way you would query a regular collection. Here’s an example:

// Query the view to retrieve data
db.enriched_transactions.find().limit(5)

TIP  The view-definition pipeline cannot include the $out or $merge stage.
This limitation extends to embedded pipelines used in stages such as $lookup
and $facet.

6.2.2	 Using $lookup with $mergeobjects

Sometimes, you have to combine and streamline information from separate MongoDB
documents into a single document for each record. Using $lookup followed by $merge
Objects achieves this goal. First, you perform a join to fetch related data, and then you
merge the fetched data with the original document to simplify the structure:

db.transactions.aggregate([
 {
 $lookup: {
 from: "accounts", // Joining from the
➥accounts collection
 localField: "account_id", // Field from
➥transactions collection
 foreignField: "account_id", // Field from the
➥accounts collection
 as: "account_details"
 }
 },
 {
 $unwind: "$account_details" // Unwind the result
➥to merge objects properly
 },
 {
 $replaceRoot: {
 newRoot: {
 $mergeObjects: ["$account_details", "$$ROOT"]
➥// Merging the account details into the transaction

134 Chapter 6  Building aggregation pipelines

 }
 }
 },
 {
 $unset: "account_details" // Remove the account_details
➥field from the final output
 }
])

The pipeline uses the $lookup stage to join the transactions and accounts collec-
tions based on the account_id field; then it employs $mergeObjects in the $replace-
Root stage to combine the joined documents into a single document. This process
enhances the resulting documents by merging details from both collections, providing
a flattened, more accessible data structure.

WARNING  Excessive use of $lookup can lead to overly complex and slow que-
ries, complicating code management and maintenance. In such scenarios, con-
sider an alternative approach, such as data denormalization, instead of relying
heavily on collection joins. Thoughtful schema design is essential for optimiz-
ing database performance. It’s worth noting that joins, including $lookup, can
be resource-intensive operations, particularly on larger data sets, potentially
affecting query execution time significantly. Thus, it’s crucial to carefully eval-
uate the tradeoffs and performance implications before integrating joins into
your database queries.

TIP  To combine documents from two collections, use the $unionWith aggre-
gation pipeline stage. Unlike $lookup, which joins documents based on a
common field, $unionWith merges entire collections into a single stream of
documents.

Beginning with MongoDB 6.0, you can include the Atlas Search $search or $search-
Meta stage as part of a $lookup pipeline to perform searches within collections hosted
on the Atlas cluster. The $search or $searchMeta stage must be positioned as the first
stage in the $lookup pipeline.

6.3	 Deconstructing arrays with $unwind
The MongoDB $unwind operator flattens an array field in a document, creating sepa-
rate output documents for each item in the array. The primary difference between the
input and output documents is that the array field in the output documents contains a
single item from the original array.

This transformation simplifies complex documents, enhancing readability and
understanding. Also, it enables you to perform further operations, such as grouping
and sorting, on the resulting documents. $unwind does not output a document by
default if the field value is null or missing or the array is empty.

Consider the following document from the customers collection in the sample_
analytics database:

	 135Deconstructing arrays with $unwind

{
 "_id": ObjectId("5ca4bbcea2dd94ee58162a76"),
 "username": "portermichael",
 "name": "Lauren Clark",
 "address": "1579 Young Trail\nJessechester, OH 88328",
 "birthdate": ISODate("1980-10-28T16:25:59.000Z"),
 "email": "briannafrost@yahoo.com",
 "accounts": [883283, 980867, 164836, 200611, 528224, 931483],
 "tier_and_details": {
 "b0d8ebd346824edc890898b0b2ad6e2d": {
 "tier": "Silver",
 "benefits": ["concert tickets", "sports tickets"],
 "active": true,
 "id": "b0d8ebd346824edc890898b0b2ad6e2d"
 }
 }
}

The accounts field is an array containing multiple account numbers. Here’s how to
use the $unwind operator to deconstruct this array.

Listing 6.7  Using the $unwind operator

use sample_analytics
 db.customers.aggregate([
 {
 $match: { _id: ObjectId("5ca4bbcea2dd94ee58162a76") }
 },
 {
 $unwind: "$accounts"
 },
 {
 $project: {
 _id: 0,
 username: 1,
 accounts: 1
 }
 }
])

When this aggregation pipeline is executed, $match filters the documents to include
only the one with _id equal to ObjectId("5ca4bbcea2dd94ee58162a76"). $unwind
deconstructs the accounts array in the matched document, creating a separate docu-
ment for each account number:

[
 { username: 'portermichael', accounts: 883283 },
 { username: 'portermichael', accounts: 980867 },
 { username: 'portermichael', accounts: 164836 },
 { username: 'portermichael', accounts: 200611 },
 { username: 'portermichael', accounts: 528224 },
 { username: 'portermichael', accounts: 931483 }
]

136 Chapter 6  Building aggregation pipelines

Consider another example. The goal is to count the occurrences of account numbers
within an accounts array across the entire collection of documents in the customers
collection. In this scenario, $unwind can be valuable. The next listing shows how to use
aggregation to count occurrences of account numbers within arrays in all documents
in the collection, focusing on the accounts array.

Listing 6.8  Counting occurrences of each account number

db.customers.aggregate([
 { $unwind: "$accounts" },

 // Group by account number and count occurrences
 {
 $group: {
 _id: "$accounts", // Group by account number
 count: { $sum: 1 } // Count occurrences of each account number
 }
 },

 // Sort by the number of occurrences (descending)
 { $sort: { count: -1 } }
])

The aggregation employs $unwind to deconstruct the accounts array, $group to group
documents by account number, and $sum to tally occurrences. Optionally, the results
can be sorted by count in descending order.

6.4	 Working with accumulators
Accumulators in MongoDB are operators used in aggregation pipelines, mainly within
the $group and $project stages, to calculate data. They aggregate data by summing,
averaging, or finding extremes, aiding in statistical analysis.

Now let’s check the $max accumulator. It returns the highest value by comparing
value and type, adhering to Binary JSON (BSON) comparison order. The following
code demonstrates the use of aggregators in MongoDB aggregation pipelines.

Listing 6.9  Using aggregation accumulators

db.customers.aggregate([
 {
 $group: {
 _id: { username: "$username" }, // Group by username
 maxAccountNumber: { $max: "$accounts" } // Find the maximum
➥account number
 }
 }
])

	 137Using the MongoDB Atlas aggregation pipeline builder

The pipeline starts by grouping the documents by username. Within each group, it
calculates the maximum account number using the $max accumulator. Finally, it returns
the maximum account number for each unique username.

In the second example, I focus on the $avg accumulator. The pipeline starts by using
$group, where $size counts the number of accounts per user and $avg calculates the
average number of accounts:

db.customers.aggregate([
 {
 $group: {
 _id: null, // Group all documents together
 averageNumberOfAccounts: { $avg: { $size: "$accounts" } }
 }
 }
])

The pipeline calculates the average number of accounts per user in a single step by
combining $size and $avg in $group.

6.5	 Using the MongoDB Atlas aggregation pipeline builder
You can use the Atlas UI to manage your data through the construction of aggrega-
tion pipelines. The Atlas aggregation pipeline builder is designed mainly for creating
these pipelines rather than running them. It offers a convenient method to
export your pipelines for execution in a driver. Figure 6.1 shows the MongoDB Atlas
user interface for managing data via aggregation pipelines.

Figure 6.1  The MongoDB Atlas interface in the Aggregation tab of the sample_analytics.customers
collection, where you can manage data by building and modifying aggregation pipelines (Image © MongoDB 2025)

This section of the interface provides tools for creating new pipelines or exporting
them to code, facilitating easy integration with application codebases. It supports both
building pipelines from scratch and exporting existing ones for implementation.

138 Chapter 6  Building aggregation pipelines

Figure 6.2 shows an example of creating an aggregation pipeline using the pipeline
builder and exporting it to programming languages in MongoDB Atlas.

Figure 6.2  The interface shows the Export Pipeline to Language feature for a user-defined pipeline involving
a match stage that filters documents by email addresses. On the left, the pipeline configuration is displayed in
MongoDBs Shell (mongosh) syntax. On the right, the same pipeline is exported in Python syntax. (Image
© MongoDB 2025)

This functionality helps developers integrate MongoDB operations directly into
their application code, providing ready-to-use code snippets in various programming
languages.

Summary

¡	MongoDB’s aggregation framework lets you create complex data transformation
and aggregation pipelines for efficient operations such as filtering, grouping,
and transforming data.

¡	Operators such as $match filter data based on conditions, selecting relevant doc-
uments for further processing.

¡	The $group operator aggregates documents by criteria, enabling calculations
such as sums, averages, and other aggregate functions across grouped data.

¡	The $limit operator restricts data set size, limiting the number of documents
passed to subsequent pipeline stages or returned to the client, enhancing pro-
cessing efficiency.

	 139Summary

¡	The $sort operator arranges documents in order within a pipeline based on
specified fields, facilitating data organization for analysis or presentation.

¡	Use $set (or $addFields) instead of $project for field inclusion. Use $project
when you want a significantly different document structure and will retain only a
few original fields.

¡	$lookup enables integrating data from multiple collections through left outer
joins, combining related information for enhanced data analysis.

¡	The framework provides accumulators such as $sum, $avg, $max, and $min for
performing aggregation operations such as summing, averaging, and finding
extremes.

¡	The $unwind operator deconstructs arrays within documents, producing a sepa-
rate document for each array element, facilitating further processing.

¡	MongoDB aggregation pipelines also support full-text search, fuzzy search, and
vector search, enabling advanced data retrieval and analysis based on intricate
search parameters.

¡	MongoDB Atlas provides an aggregation pipelines builder, which is designed pri-
marily for building pipelines rather than executing them. The pipeline builder
offers a straightforward method to export a pipeline for execution in a driver.

140

7Indexing for query
performance

This chapter covers

¡	Understanding MongoDB’s query planner and 	
	 execution plan
¡	Creating, deleting, and viewing MongoDB indexes
¡	Learning MongoDB index types
¡	Understanding the Equality, Sort, Range rule of 	
	 thumb
¡	Measuring MongoDB index use

Over years of work, I have encountered numerous instances in which indexes were
not used correctly or at all. This is suboptimal, as indexes allow efficient query per-
formance and overall database optimization. In this chapter, I give you best prac-
tices for using indexes, rules of thumb, and methods for monitoring index use and
optimization.

Indexes are special data structures that store a small portion of the collection’s data
in an easily traversable B-tree form. An index orders the values of specific fields, sup-
porting efficient equality matches and range-based queries. MongoDB can also use
the index to return sorted results.

	 141MongoDB query planner

Without indexes, MongoDB must scan every document in a collection to return
query results. This process is very poor in terms of performance. A suitable index limits
the number of documents that need to be scanned.

Although indexes improve query performance, they can negatively affect write oper-
ations. In collections with a high write-to-read ratio, indexes can be costly because each
insert operation must update the indexes.

7.1	 MongoDB query planner
The query planner in MongoDB is a component that analyzes various ways to execute a
query and selects the most efficient execution plan. It uses indexes and other available
data to minimize response times and resource use. If no index is available for a given
query, the query planner performs a full collection scan, which involves searching every
document in the collection to find those that match the query criteria. This method
is typically less efficient than indexes and can significantly burden the database, espe-
cially in large data sets.

To determine the most efficient execution strategy, the query planner temporarily
tests all available options during what is known as a trial phase. This phase is part of
MongoDB’s plan caching mechanism; the database evaluates the efficiency of different
execution strategies under actual query conditions. The plan that demonstrates the
best balance of speed and resource use during this trial is selected and cached for future
use. Generally, the winning plan is the one that retrieves the most results with the least
effort, effectively balancing speed and resource use. Each query shape is categorized
into one of three states in the plan cache:

¡	Missing—No cache entry exists. MongoDB evaluates plans, selects a winner, and
creates a new Inactive cache entry with the plan’s work value.

¡	Inactive—This state is a placeholder. The query shape is recognized, and the
work required is noted. If queried again, MongoDB reevaluates plans. A new,
equally or more efficient plan replaces the Inactive entry and becomes Active.
If the new entry is less efficient, it remains Inactive, updating the work value.

¡	Active—The entry is a winning plan currently used. If performance degrades
or work increases, the entry may be reassessed and moved to Inactive if it no
longer meets efficiency criteria.

7.1.1	 Viewing query plan cache information

To access the query plan details in the MongoDB Shell (mongosh) for a specific query,
you can use db.collection.explain() or cursor.explain(). These methods are
MongoDB features that provide insight into how MongoDB executes a query. They can
be useful for understanding performance characteristics or diagnosing problems with
query efficiency. To obtain information about the plan cache for a collection, you can
use the $planCacheStats aggregation stage.

142 Chapter 7  Indexing for query performance

The db.collection.explain() helper method accepts the verbosity parameter,
which sets the level of detail provided by the explain output. The selected verbosity
mode affects how explain() operates and dictates the extent of information returned.
Available modes include

¡	"queryPlanner" (default)—Provides details about the chosen query plan

¡	"executionStats"—Includes all data from "queryPlanner" plus statistics about
the execution of the query

¡	"allPlansExecution"—Offers comprehensive information, including all possi-
ble query plans and their execution statistics

For compatibility with previous versions, passing true as a parameter is interpreted as
"allPlansExecution", whereas false is treated as “queryPlanner".

If you want to understand how MongoDB executes a specific query, append the
explain() method to your query, as shown in the following listing.

Listing 7.1  Appending the MongoDB explain () method

db.collection.find(
 { yourField: "value" }
).explain() // Explain the default query planner information

db.collection.find(
 { yourField: "value" }
).explain(
 "executionStats" // Explain the query execution statistics
)

db.collection.find(
 { yourField: "value" }
).explain(
 "allPlansExecution" // Explain the query execution
➥plan with all possible query plans
)

This listing returns detailed information about how MongoDB plans to execute the
query. As you see in listing 7.2, the output of explain() includes a tree of stages, with
each stage representing a specific operation in the query execution process. These
stages are connected, with the lower stages accessing the collection or indexes and the
middle stages processing the data retrieved from the lower stages. The top stage deliv-
ers the final results.

Listing 7.2  Execution-plan output structure

{
 "winningPlan": {
 "stage": "FETCH",
 "inputStage": {
 "stage": "IXSCAN",

	 143MongoDB query planner

 "indexName": "yourField_1",
 "keyPattern": {
 "yourField": 1
 },
 "indexBounds": {
 "yourField": [
 "[\"value\", \"value\"]"
]
 }
 }
 },
 "executionStats": {
 "nReturned": 1,
 "executionTimeMillis": 3,
 "totalKeysExamined": 1,
 "totalDocsExamined": 1
 }
}

In this execution plan, the IXSCAN stage scans the index yourField_1, efficiently locat-
ing the relevant keys that match the query condition { yourField: "value" }. These
index keys are passed to the FETCH stage, which retrieves the actual documents from
the collection. The executionStats section provides detailed insights into the que-
ry’s performance. It includes the number of documents returned, which in this case
is 1, indicating that one document was matched and retrieved. The executionTime-
Millis field shows that the query took 3 milliseconds (ms) to execute. Additionally,
totalKeysExamined and totalDocsExamined reveal how many index keys and docu-
ments were scanned during the query process, both of which are 1 in this example.
This indicates efficient use of the index, minimizing the need to scan unnecessary
documents.

MongoDB uses several types of stages during query execution, depending on the
operation:

¡	COLLSCAN for scanning the whole collection.

¡	IXSCAN for scanning index keys.

¡	FETCH for fetching documents.

¡	GROUP for grouping documents.

¡	SHARD_MERGE for combining results from different shards.

¡	SHARDING_FILTER for removing orphan documents from shards.

¡	BATCHED_DELETE for deleting multiple documents in batches.

¡	EXPRESS for specialized stages introduced in MongoDB version 8.0. They are
execution phases that allow specific queries to bypass the traditional query plan-
ning and use highly optimized index scan strategies directly. This approach is
designed to enhance performance for targeted query patterns, offering faster
query execution by focusing on indexed fields. The available EXPRESS stages
include

144 Chapter 7  Indexing for query performance

–	 EXPRESS_CLUSTERED_IXSCAN—Provides optimized index scanning for queries
targeting clustered indexes, enabling faster data retrieval

–	 EXPRESS_DELETE—Delivers high-performance execution for delete opera-
tions by using index optimizations

–	 EXPRESS_IXSCAN—Accelerates index scans for nonclustered indexes, improv-
ing query speed in relevant operations

–	 EXPRESS_UPDATE—Optimizes the execution of update operations, making
them more efficient when interacting with indexed data

TIP  To see the list of operations supported by db.collection.explain(),
run db.collection.explain().help().

NOTE  You can also use the MongoDB Compass GUI to view explain plans.

MongoDB uses two query engines to find and return results: the classic query engine
and the slot-based query engine. MongoDB automatically chooses the engine; you
can’t select it manually.

The slot-based engine usually offers better performance and lower CPU and mem-
ory use. If a query doesn’t meet the criteria for the slot-based engine, MongoDB uses
the classic engine instead. Two common pipelines that use the slot-based execution
engine are aggregations with $group or $lookup stages.

To determine which query engine was used, you can examine the explain results
for a query or check the logs. The explain results vary depending on the query engine.
Queries executed with the slot-based engine, for example, include the explain.query-
Planner.winningPlan.slotBasedPlan field:

{
 "winningPlan": {
 "queryPlan": {
 "stage": "FETCH",
 "inputStage": {
 "stage": "IXSCAN",
 "indexName": "yourField_1",
 "keyPattern": {
 "yourField": 1
 },
 "indexBounds": {
 "yourField": [
 "[\"value\", \"value\"]"
]
 }
 }
 },
 "slotBasedPlan": {
 "...": "..." // This represents internal details
➥specific to the slot-based engine
 }
 },

	 145Supported index types

 "executionStats": {
 "nReturned": 1,
 "executionTimeMillis": 3,
 "totalKeysExamined": 1,
 "totalDocsExamined": 1
 }
}

You can also check MongoDB logs if you want to determine which query engine
was used. (You will learn how to do this in chapter 21.) Log messages have a query
Framework field that shows the engine used:

¡	queryFramework: "classic" means that the classic engine executed the query.

¡	queryFramework: "sbe" means that the slot-based query engine executed the
query.

7.1.2	 MongoDB plan cache purges

The query plan cache is purged if a mongod process restarts or shuts down. Also

¡	Catalog operations such as dropping indexes or collections reset the plan cache.

¡	The least recently used (LRU) replacement method removes the least accessed
cache entry, regardless of state.

You also have the capability to

¡	Clear the plan cache for the collection manually via the PlanCache.clear()
method

¡	Selectively clear specific entries in the plan cache using the PlanCache.clear-
PlansByQuery() method

TIP  Beginning with MongoDB 5.0, the plan cache stores only complete plan
cache entries as long as the total size of the plan caches across all collections
remains below 0.5 GB. If the combined size of the plan caches for all collec-
tions surpasses this limit, new plan cache entries are recorded without debug
information.

NOTE  $planCacheStats returns the approximate size of a plan cache entry in
bytes.

7.2	 Supported index types
A database index is a specific type of data structure that enables quicker data retrieval,
contributing to application efficiency. Typically, an index includes two components:
the search key and the data pointer. The search key holds the value being searched,
and the pointer indicates the location of the data within the database.

Figure 7.1 shows an indexed search operation within a database called sample_mflix
for a movies collection. If you need to query a movie with a running time of less than

146 Chapter 7  Indexing for query performance

40 minutes, the index on the runtime field allows the system to efficiently scan blocks of
data rather than individual documents.

movies

Find score < 40 where score is an indexed
column, so only blocks < 40 are checked.

min

score: 35 score: 56 score: 19 score: 92 score: 68 score: 58

20 50 80 max

Figure 7.1  The index guides the search, allowing the system to skip entire blocks of data that
don’t meet the search criteria and examine only blocks that potentially contain relevant data. This
optimization significantly reduces the number of operations, highlighting the efficiency of using indexed
searches in managing and querying large data sets. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

MongoDB automatically creates a unique index on the _id field when a collection is
created. This _id index ensures that no two documents can have the same _id value.
This index cannot be dropped.

7.2.1	 Creating single field indexes

If your application frequently executes queries on specific fields, establishing an index
on these fields can enhance performance. Several types of indexes cater to different
data types and query requirements. This section examines the choices in detail.

Single-field indexes store and order data from a single field across each document in a
collection. You can create a single-field index on any document field, such as top-level
document fields, embedded documents, and fields within those embedded documents.
When you set up an index, define the field for the index and the direction of sorting
for the indexed values. A sort order of 1 indicates ascending order, and -1 indicates
descending order. Here’s how to create a single-field index on the runtime field in a
MongoDB movies collection using ascending order:

db.movies.createIndex({ "runtime": 1 })

The createIndexes command in MongoDB creates indexes on specified fields within
a collection. In mongosh, you can also run this command through the helper method.
It uses the syntax db.collection.createIndex(keys, options), where keys indicate

	 147Supported index types

the fields to index and the direction (ascending or descending), and options can spec-
ify additional properties, such as uniqueness. The index supports queries on the field
runtime, as in this example:

db.movies.find({ "runtime": { $lt: 40 } })
db.movies.find({ "runtime": 410 })

If you want to check all the indexes currently available in the movies collection, execute

db.movies.getIndexes()
[
 { v: 2, key: { _id: 1 }, name: '_id_' },
 { v: 2, key: { runtime: 1 }, name: 'runtime_1' }
]

The getIndexes() method here reveals two indexes in the movies collection. The
first is the default index on the _id field, labeled 'id', which MongoDB automatically
creates for all collections. The second index is on the runtime field and is named
'runtime_1'. To validate whether the query is truly using the index, you can append
the explain("executionStats") method to the query, as the next listing shows.

Listing 7.3  Using the explain() method with the query

db.movies.find({ "runtime": 100 }).explain("executionStats")
{
 explainVersion: '1',
 queryPlanner: {
 namespace: 'sample_mflix.movies',
 indexFilterSet: false,
 parsedQuery: { runtime: { '$eq': 100 } },
 queryHash: 'ADC785B0',
 planCacheKey: 'F015DF0A',
 maxIndexedOrSolutionsReached: false,
 maxIndexedAndSolutionsReached: false,
 maxScansToExplodeReached: false,
 winningPlan: {
 stage: 'FETCH',
 inputStage: {
 stage: 'IXSCAN',
 keyPattern: { runtime: 1 },
 indexName: 'runtime_1',
 isMultiKey: false,
 multiKeyPaths: { runtime: [] },
 isUnique: false,
 isSparse: false,
 isPartial: false,
 indexVersion: 2,
 direction: 'forward',
 indexBounds: { runtime: ['[100, 100]'] }
 }
 },

148 Chapter 7  Indexing for query performance

 rejectedPlans: []
 },
 executionStats: {
 executionSuccess: true,
 nReturned: 719,
 executionTimeMillis: 3,
 totalKeysExamined: 719,
 totalDocsExamined: 719

The explain() method output shows that the runtime_1 index optimizes the search,
with the IXSCAN stage specifically targeting the runtime field. This leads to the FETCH
stage, which retrieves the matching documents according to the winningPlan.
executionStats shows that the query successfully returned 719 documents in 3 ms,
with 719 keys and 719 documents examined due to the effective use of the runtime_1
index. The queryHash helps MongoDB determine whether the same query struc-
ture has been executed before, allowing the reuse of execution plans, and the plan-
CacheKey considers the current state and environment of the database to determine
whether a cached plan is appropriate. The complete explain plan is much longer and
more complex, but in this chapter, I’m showing only part of the explain plan.

You can create an index on a field within an embedded document by using dot nota-
tion. To index the wins field inside the awards embedded document, use the following
command:

db.movies.createIndex({ "awards.wins": 1 })

NOTE  A single collection can have no more than 64 indexes.

TIP  An index fully supports a query when it includes all the fields that the
query needs to scan. Instead of scanning the entire collection, the query scans
the index. By creating indexes that align with your queries, you significantly
enhance query performance. If the index does not include all the fields the
query needs, the query scans the index and then accesses the collection for the
remaining fields, which can still improve performance, though not as much as
when all required fields are included in the index.

Using an index to sort query results

Because indexes hold ordered records, MongoDB can derive sorted results directly
from an index that encompasses the fields used in the sort operation. If the sort
operation aligns with the indexes used in the query predicate, MongoDB can use the
index efficiently to perform the sorting. The following listing shows how to use the
runtime_1 index to sort and filter documents in the movies collection.

Listing 7.4  Using an index to filter and sort query results

db.movies.find(
 { "runtime": { $gt: 500 } }

	 149Supported index types

).sort(
 { "runtime": 1 }
).explain("executionStats")

{
 explainVersion: '1',
 queryPlanner: {
 namespace: 'sample_mflix.movies',
 indexFilterSet: false,
 parsedQuery: { runtime: { '$gt': 500 } },
 queryHash: '059DF6AA',
 planCacheKey: '8E8D39FB',
 maxIndexedOrSolutionsReached: false,
 maxIndexedAndSolutionsReached: false,
 maxScansToExplodeReached: false,
 winningPlan: {
 stage: 'FETCH',
 inputStage: {
 stage: 'IXSCAN',
 keyPattern: { runtime: 1 },
 indexName: 'runtime_1',
 isMultiKey: false,
 multiKeyPaths: { runtime: [] },
 isUnique: false,
 isSparse: false,
 isPartial: false,
 indexVersion: 2,
 direction: 'forward',
 indexBounds: { runtime: ['(500, inf.0]'] }
 }
 },
 rejectedPlans: []
 },
 executionStats: {
 executionSuccess: true,
 nReturned: 21,
 executionTimeMillis: 0,
 totalKeysExamined: 21,
 totalDocsExamined: 21,
}

MongoDB uses the runtime index for an index scan (IXSCAN) on documents in which
runtime > 500, optimizing match and sort operations. The forward scan matches the
ascending sort order (runtime: 1). ExecutionStats show 21 documents returned and
examined, with minimal execution time (0 ms), demonstrating efficient index use.

If MongoDB cannot use indexes for sorting, it uses a blocking sort operation, pro-
cessing all documents in memory before returning results.

TIP  Starting with MongoDB 6.0, if a pipeline execution stage requires more
than 100 MB of memory, MongoDB automatically writes temporary files to disk
unless the query explicitly sets { allowDiskUse: false }.

150 Chapter 7  Indexing for query performance

Converting an existing index to unique

A unique index ensures that the indexed fields in a database do not store duplicate
values, enforcing data uniqueness. This is beneficial because it guarantees data integ-
rity, improves search performance by allowing faster retrieval of unique entries, and
optimizes use of space by eliminating redundant data entries. To create a unique
index, use the .collection.createIndex(<key and index type specification>,
{ unique: true }) method with the unique option set to true.

If a collection already has a nonunique index, and you want to convert it to a unique
index, you can use the collMod command. This process involves several steps. If you
have an existing index on the email field in the users collection of the sample_mflix
database created with the command

db.getSiblingDB('sample_mflix').users.createIndex(
 { "email": 1 }
)

and you want to ensure that each user has a unique email, you have to convert this
existing index to a unique index. The getIndexes() method can help you display
existing nonunique indexes:

db.getSiblingDB('sample_mflix').users.getIndexes()
[
 { v: 2, key: { _id: 1 }, name: '_id_' },
 { v: 2, key: { email: 1 }, name: 'email_1' }
]

First, use the collMod command with the prepareUnique option. This command looks
like this:

use sample_mflix
db.runCommand({
 collMod: "users",
 index: {
 keyPattern: { email: 1 },
 prepareUnique: true
 }
})

After you set prepareUnique to true, MongoDB prevents any new insertions or updates
that would result in a duplicate email value in the users collection. If you try to insert
a document with an email that already exists in the database, MongoDB throws a
duplicate-key error, indicating a violation of the unique constraint.

Next, check for existing violations of what will become the unique constraint by run-
ning the collMod command with the unique and dryRun options:

db.runCommand({
 collMod: "users",

	 151Supported index types

 index: {
 keyPattern: { email: 1 },
 unique: true
 },
 dryRun: true
})

This operation simulates the application of the unique constraint without applying it,
allowing you to identify and resolve any existing duplicates in the email index. If the
command returns without errors, there are no duplicate values, and you can convert
the index permanently to unique. To finalize the conversion of the index to unique,
run the collMod command again, this time removing the dryRun flag:

db.runCommand({
 collMod: "users",
 index: {
 keyPattern: { email: 1 },
 unique: true
 }
})

This command modifies the index on the email field to enforce uniqueness, ensuring
that each document in the users collection has a unique email address. This change
will help maintain data integrity by preventing future duplicates in the email field.

7.2.2	 Understanding compound indexes

Compound indexes in MongoDB involve multiple fields within a document. You create
these indexes by specifying several fields in the index-creation command. Compound
indexes enable execution of queries that involve all the fields in the index or the fields
that prefix those in the index. To create a compound index, you can use this prototype.

Listing 7.5  Compound Index prototype

db.<collection>.createIndex({
 <field1>: <sortOrder>,
 <field2>: <sortOrder>,
 ...
 <fieldN>: <sortOrder>
})

If your application frequently runs queries involving multiple fields, setting up a com-
pound index on those fields can significantly enhance performance. Take, for exam-
ple, a movie-analytics platform that managers use to assess films based on release year,
type, and Internet Movie Database (IMDb) ratings to manage content effectively and
tailor recommendations. To optimize these search operations and boost performance,
you can create a compound index on the year, type, and imdb.rating fields in the
movies collection. To implement this index, execute the following command.

152 Chapter 7  Indexing for query performance

Listing 7.6  Creating a compound index on three fields

db.movies.createIndex(
 { year: 1, type: 1, "imdb.rating": 1 }
)

This command sets up the index to include these three key fields, sorting each in
ascending order. Compound indexes support queries on all fields included in the
index prefix, enabling fast, efficient retrievals.

An index prefix is any subset of the indexed fields starting from the first field defined in
a compound index. For the compound index { year: 1, type: 1, "imdb.rating": 1 },
the possible index prefixes are

{ year: 1 }
{ year: 1, type: 1 }
{ year: 1, type: 1, "imdb.rating": 1 }

MongoDB can use this compound index to optimize queries involving these field
combinations:

¡	Query by release year only:

db.movies.find({ year: 1914 })

¡	Query by release year and type:

db.movies.find(
 {
 year: 1914,
 type: "movie"
 }
)

¡	Query by release year, type, and specific IMDb rating:

db.movies.find(
 {
 year: 1914,
 type: "movie",
 "imdb.rating": { $gte: 7.6 }
 }
)

MongoDB cannot use this compound index to optimize queries that do not contain
the year field, such as querying by type alone or imdb.rating alone, because they do
not match any prefix defined by the index. Those queries are not supported by the
index:

	 153Supported index types

db.movies.find({ type: "movie" })
db.movies.find({ "imdb.rating": { $gte: 7.6 } })
db.movies.find(
 { type: "movie", "imdb.rating": { $gte: 7.0 } }
)

The next listing shows the execution plan for a query that is not supported by a com-
pound index, highlighting the COLLSCAN stage in the winning plan.

Listing 7.7  Example COLLSCAN stage in the winning plan

db.movies.find(
 { "imdb.rating": { $gte: 7.6 } }
).explain("executionStats")
{
 explainVersion: '1',
 queryPlanner: {
 namespace: 'sample_mflix.movies',
 indexFilterSet: false,
 parsedQuery: { 'imdb.rating': { '$gte': 7.6 } },
 queryHash: '5D6975B4',
 planCacheKey: 'AD7111A5',
 maxIndexedOrSolutionsReached: false,
 maxIndexedAndSolutionsReached: false,
 maxScansToExplodeReached: false,
 winningPlan: {
 stage: 'COLLSCAN',
 filter: { 'imdb.rating': { '$gte': 7.6 } },
 direction: 'forward'
 },
 rejectedPlans: []
 },
 executionStats: {
 executionSuccess: true,
 nReturned: 3472,
 executionTimeMillis: 20,
 totalKeysExamined: 0,
 totalDocsExamined: 21349

The output shows that MongoDB performs a full collection scan (COLLSCAN) for the
"imdb.rating" query due to the lack of a suitable index. Consequently, all 21,349 doc-
uments in the collection are scanned (totalDocsExamined: 21349). No index keys
were examined (totalKeysExamined: 0), leading to inefficiency in large data sets.
This results in a longer execution time of 20 ms to return 3,472 results.

TIP  If your collection includes both a compound index and an index on its
prefix—such as { a: 1, b: 1 } and { a: 1 }—you can safely delete the index
on the prefix ({ a: 1 }). MongoDB will use the compound index in all situa-
tions in which it would have used the prefix index.

NOTE  A compound index can have a maximum of 32 fields.

154 Chapter 7  Indexing for query performance

Understanding the ESR rule

The Equality, Sort, Range (ESR) rule in MongoDB is a guideline for designing com-
pound indexes to optimize query performance. It dictates the order in which the
query elements should be indexed: first by fields used in equality conditions, followed
by fields used for sorting, and finally by fields used in range conditions. This ordering
ensures that MongoDB indexes efficiently by quickly narrowing down the results using
equality, efficiently sorting them, and then applying range filters.

Consider a query that looks for movies released in 1914, with an IMDb rating greater
than 7.0, and sorts the results by the movie title:

db.movies.find(
 { year: 1914, "imdb.rating": { $gte: 7 } }
).sort(
 { title: 1 } // Find movies released in 1914 with
➥an IMDb rating of at least 7 and sort by title
)

To enhance the efficiency of this query, set up the following compound index:

db.movies.createIndex(
 { year: 1, title: 1, "imdb.rating": 1 } // Create a compound
➥index on the year, title, and imdb.rating fields
)

This index is designed according to the ESR rule. It prioritizes the equality condition on
year, optimizes sorting on title, and then applies the range filter on "imdb.rating".
This structure is beneficial because it allows MongoDB to effectively narrow, sort, and
filter the data, using the index’s sequence to match the query’s needs efficiently. The
following sections explore why this rule is advantageous.

Equality

Equality means matching one value exactly. Consider queries that search the movies
collection for documents in which the year field exactly matches a specific year:

db.movies.find({ year: { $eq: 1914 }})
db.movies.find({ year: 1914 })

Place fields that require exact matches at the beginning of the index. Index searches
using exact matches reduce the number of documents MongoDB must review to
complete a query. Ensure that equality tests are selective to minimize the number
of index keys scanned and to filter out a significant portion of potential document
matches.

Sort

Sort means organizing the results and following equality matches to reduce the number
of documents to sort. This configuration allows MongoDB to perform a nonblocking

	 155Supported index types

sort. An index supports sorting when the fields in the query match a subset of the
index keys, but only if there are equality conditions for all preceding prefix keys in the
index before the sort keys:

db.movies.find({ year: 1914 }).sort({ title: 1 })

This query retrieves documents from the movies collection in which the year field
exactly matches 1914.

Range

Range filters scan fields by matching values within a specified range rather than requir-
ing exact matches. For more efficient queries, narrow the range, and use equality
matches to reduce the number of documents scanned. Range filters can be formatted
as follows:

db.movies.find({ year: 1914, "imdb.rating": { $gte: 7.0 } })

MongoDB cannot use an index to sort results if a range filter is applied to a different
field. To enable MongoDB to perform an index-based sort, place the range filter after
the sorting condition.

Figure 7.2 shows the execution of a query in MongoDB Compass (introduced in
chapter 3) that filters the movies collection in the sample_mflix database to find docu-
ments in which year is 1914 and imdb.rating is greater than or equal to 7.

Figure 7.2  The MongoDB Compass GUI executes the query { year: 1914, "imdb.rating":
{ $gte: 7 } } on the movies collection. The results are sorted by { title: 1 }. (Image
© MongoDB 2025)

To display the explain plan, click the Explain button, located in the top-right section
of the screen next to the Generate Query button. Figure 7.3 shows the explain plan
for the query executed in MongoDB Compass.

156 Chapter 7  Indexing for query performance

Figure 7.3  The explain plan for a
query optimized with an index using the
ESR rule in Compass. The plan contains
an IXSCAN stage, which uses the
year_1_title_1_imdb.rating_1
index to scan and fetch documents.
This stage returned two documents
and examined four index keys with an
execution time of 0 ms. Then the FETCH
stage retrieves the documents with
an execution time of 0 ms. (Image
 © MongoDB 2025)

The query performance summary provides detailed metrics on the query’s execution
and its interaction with the database. It shows that two documents were returned as a
result of the query and two documents were examined, indicating precise, efficient
query execution. The execution time was measured at 0 ms, reflecting optimal perfor-
mance with minimal processing overhead.

The summary further highlights the fact that the query results were not sorted in
memory, meaning that no in-memory sort operation was required and suggesting that
the existing index handled sorting efficiently. Four index keys were examined, indi-
cating the number of index entries scanned to satisfy the query conditions. The query
used a compound index consisting of the fields year, title, and imdb.rating, as noted
in the summary. Using this index significantly enhanced query performance by mini-
mizing the need to scan unindexed data, resulting in a highly efficient operation.

7.2.3	 Using multikey indexes

Multikey indexes in MongoDB are B-tree indexes that enable efficient querying of array
values. When you create an index on a field that contains an array, MongoDB creates
separate index entries for each element of the array. This allows MongoDB to quickly
perform queries that involve elements of arrays, such as checking if an array contains a
specific value or if it matches certain criteria.

MongoDB is capable of generating multikey indexes for arrays containing both sca-
lar values (such as strings and numbers) and embedded documents. When an array
includes several occurrences of the same value, the index records only one entry for
that value. To create a multikey index, you can use the following prototype.

Listing 7.8  Multikey index prototype

db.<collection>.createIndex({ <arrayField>: <sortOrder> })

	 157Supported index types

Suppose that the application frequently has to identify customers based on their
account numbers, which are stored in the sample_analytics database within the
customers collection. To optimize this common query, consider using a multikey
index. Here’s a snippet of a document from the customers collection, demonstrating
how the accounts are stored in an array:

{
_id: ObjectId('5ca4bbcea2dd94ee58162a68'),
username: 'fmiller',
accounts: [371138, 324287, 276528, 332179, 422649, 387979]
}

You can optimize search efficiency by creating a multikey index:

db.customers.createIndex({ accounts: 1 })

This command sets up an index in which each element of the accounts array is indexed
individually; MongoDB stores this index as a multikey index. With the multikey index
in place, searching for a customer by account number becomes more efficient. To find
all customers with the account number 371138, simply run

db.customers.find({ accounts: 371138 })

This use of the multikey index allows MongoDB to locate and retrieve the relevant
documents swiftly.

Compound multikey index

A compound multikey index is created on multiple fields, but only one of these fields can
be an array to avoid creating an overly complex index structure. If your application
frequently queries username (nonarray) and accounts (array) in the customers collec-
tion, create a compound multikey index . Here’s how to create this index:

db.customers.createIndex({ username: 1, accounts: 1 })

This index supports queries involving these fields because it indexes username as a sca-
lar and accounts as an array. To find all customers with the username 'fmiller' and
account number 371138, run

db.customers.find({ username: 'fmiller', accounts: 371138 })

MongoDB can quickly locate documents based on username and then filter results
using specific account numbers.

Multikey indexes with embedded fields in arrays

You can create indexes on embedded document fields within arrays. When you create
an index on a field inside an array, MongoDB stores that index as a multikey index. In

158 Chapter 7  Indexing for query performance

the sample_training database, within the grades collection, you can create an index
to improve the performance of queries on the scores.score field:

db.grades.createIndex({ "scores.score": 1 })

The following query returns documents in which at least one element in the scores
array has a score greater than 70:

db.grades.find({ "scores.score": { $gt: 70 } })

This query uses the multikey index to find documents efficiently. MongoDB can
quickly locate all documents in which any score field within the scores array is greater
than 70. This eliminates the need for a full collection scan, significantly improving
query performance.

The index also supports sort operations on the scores.score field. To sort the docu-
ments by scores.score in descending order, use the following query:

db.grades.find().sort({ "scores.score": -1 })

This index enables MongoDB to sort the documents efficiently based on the scores
.score field, providing faster results for queries that require ordered data.

7.2.4	 Using text indexes

In MongoDB, a standard text index is created on the entire value of a field, which
means that searches must also target the full value to use the index efficiently, resulting
in fast query performance. This type of index, however, does not support searches
for partial values, such as those conducted with regular expressions. In such cases,
MongoDB bypasses the index and performs a full collection scan, significantly slowing
the search process.

Conversely, a search index, available in Atlas, requires more data storage but enables
partial value searches, commonly referred to as full-text searches.

NOTE  Make sure not to confuse MongoDB’s text indexes with the full-text
search capabilities available in Atlas. Using Atlas Search is the recommended
approach and is much better than relying on traditional MongoDB text
indexes.

Let’s focus on the classical MongoDB text index. The next listing shows a text index
prototype. Collections can have only one text index, but that index can cover multiple
fields.

Listing 7.9  Text index prototype

db.<collection>.createIndex(
 {
 <field1>: "text",

	 159Supported index types

 <field2>: "text",
 ...
 }
)

The $text operator in MongoDB performs text search queries on content within a
collection that has a text index. This operator can search for words and phrases within
string fields that are indexed with a text index. It includes features such as these:

¡	Case insensitivity—By default, the search does not consider case, making it easier
to find matches regardless of text case.

¡	Language-specific rules—MongoDB can apply language-specific rules for stem-
ming and stop words (commonly ignored words such as and) when performing
searches, improving the relevance of search results.

¡	Searching on multiple fields—You can create text indexes on multiple fields, and
searches using the $text operator can include any or all of these indexed fields.

¡	Text scoring and sorting—Results can be scored based on the relevance to the
search, allowing you to sort by how well each result matches the search criteria.

The $text operator has the following syntax:

{
 $text: {
 $search: <string>,
 $language: <string>,
 $caseSensitive: <boolean>,
 $diacriticSensitive: <boolean>
 }
}

Suppose that an application frequently searches for specific movies based on titles and
plots. Setting up a text index on these fields enhances search capability with flexible,
keyword-based queries. This type of index is useful for users who remember parts of
the plot but not exact titles. Text indexes handle partial or mixed terms efficiently,
improving search performance and user experience in movie databases. The following
listing shows how to create such an index.

Listing 7.10  Creating a text index on two fields

db.movies.createIndex({
 title: "text",
 fullplot: "text"
})

After you set up the text index on the title and fullplot fields, the application can
handle searches that include partial and keyword-based terms. The following query
uses the text index to search for movies involving any title or plot containing the words
Zone and drinks:

160 Chapter 7  Indexing for query performance

db.movies.find(
 { $text: { $search: "Zone drinks" } },
 { score: { $meta: "textScore" } }
).sort(
 { score: { $meta: "textScore" } }
).limit(3) // Find and sort the top 3 documents by text
➥search score for the query "Zone drinks"

This query searches the movies collection for documents that match the text search
criteria "Zone drinks" and sorts the results by their text search score, limiting the out-
put to the top three results. Here is one of the results documents:

[{ _id: ObjectId('573a13c0f29313caabd615ad'),
 plot: "For her, there have always been two kinds of guys:
the ones you desire and the ones who buy you drinks.
➥For him, she is the woman of his dreams, the one he's been
➥waiting for. He is madly ...",
 genres: ['Comedy'],
 runtime: 80,
 title: 'Friend Zone',
 fullplot: "For her, there have always been two kinds of guys:
➥the ones you desire and the ones who buy you drinks.
➥For him, she is the woman of his dreams, the one he's been
➥waiting for. He is madly in love with her and patiently waiting
➥for her to realize it. The thing is that she actually wants
➥him to buy her a drink and stay in the friend zone.",
 score: 2.0769230769230766 }]

This document shows a movie titled Friend Zone with a plot involving characters who
desire drinks and relationships. The score, which rounds to 2.08, indicates the rele-
vance of this document to the search terms "Zone drinks", with a higher score rep-
resenting a closer match. This scoring helps users quickly identify the most relevant
movies, enhancing user experience by prioritizing results that best match their search
criteria.

You can execute more nuanced queries, such as those that search for movies that
explicitly exclude certain terms. This query searches for movies that do not include
Zone in the title or full plot but include the word drinks:

db.movies.find({ $text: { $search: "-Zone drinks" } })

In this query, the minus sign (-) before Zone acts as a negation operator, instructing
MongoDB to exclude results that contain the word Zone. This allows you to filter out
specific movies and focus on those that include the term drinks.

7.2.5	 Creating wildcard indexes

MongoDB supports creating wildcard indexes on a field or a set of fields. Wildcard
indexes on a single field allow queries on any subfield of the indexed field, making
them useful for querying fields with unknown or varying names between documents.

	 161Supported index types

Wildcard indexes can be compound starting in MongoDB 7.0. A compound wild-
card index includes one wildcard term and one or more additional index terms, allow-
ing for more complex queries across multiple fields.

To create wildcard indexes, use a standard index creation command, and include
the wildcard specifier ($**) in the index key. Here’s how to create a wildcard index on
a single field:

db.collection.createIndex({ "fieldName.$**": <sortOrder> })

A compound wildcard index includes a wildcard term along with one or more addi-
tional index terms.

Use wildcard indexes when fields to be indexed are unpredictable or subject to
change. Targeted indexes on specific fields usually perform better. If your collection
has unpredictable field names, consider redesigning your schema for consistency. Use
wildcard indexes in these scenarios:

¡	If field names vary among documents, a wildcard index supports queries on all
possible field names.

¡	If embedded document fields have inconsistent subfields, a wildcard index sup-
ports queries on all subfields.

¡	If documents have shared characteristics, a compound wildcard index efficiently
covers many queries for those common fields.

Suppose that your application frequently queries various subfields within the tomatoes
field in the movies collection of the sample_mflix database, but the exact subfields are
unpredictable or may change over time. To support queries on all possible subfields
within the tomatoes field, create a wildcard index with the following command:

db.getSiblingDB('sample_mflix').movies.createIndex(
 { "tomatoes.$**": 1 } // Create a wildcard index on all
➥subfields of the tomatoes field in the movies collection
)

The wildcard index on the tomatoes field allows you to query on any subfield within
tomatoes efficiently without knowing the specific subfields. This type of index is useful
when the tomatoes field has varying subfields across documents, ensuring that any
subfield can be queried. Although targeted indexes on known fields generally offer
better performance, wildcard indexes provide a flexible solution for unknown or vary-
ing subfields, which is crucial for maintaining query performance in dynamic schemas.

TIP  You can create a wildcard index to support queries on all potential doc-
ument fields. Wildcard indexes are useful for querying arbitrary or unknown
field names. To create a wildcard index that covers all fields except _id, use
the wildcard specifier ($**) as the index key: db.<collection>.createIndex
({ "$**": <sortOrder> }).

162 Chapter 7  Indexing for query performance

7.2.6	 Geospatial indexes

Geospatial indexes store and retrieve data efficiently based on geographic location. They
involve creating an index on spatial data using a specialized structure that can quickly
determine which objects or data points are within a specific area.

This type of indexing is especially valuable in applications that handle large vol-
umes of geographic data, such as mapping applications, geolocation services, and spa-
tial analytics. Geospatial indexing allows these applications to query and analyze data
by location quickly, eliminating the need to scan extensive data sets to find relevant
information.

MongoDB offers two types of geospatial indexes:

¡	2dsphere—Used for queries that interpret geometry on a spherical surface

¡	2d—Used for queries that interpret geometry on a flat plane

If your application often queries a field with geospatial data, creating a geospatial index
can significantly improve performance. Some query operations mandate a geospatial
index. To perform queries using the $near or $nearSphere operator or the $geoNear
aggregation stage, create a geospatial index.

2dsphere indexes

2dsphere indexes support geospatial queries on an earthlike sphere, such as determin-
ing points within an area, calculating proximity to a point, and finding exact matches
on coordinate queries. Indexed field values must be GeoJSON objects (a format for
encoding a variety of geographic data structures) or legacy coordinate pairs—older
formats stored as [longitude, latitude], which MongoDB converts to GeoJSON
points. A simple GeoJSON point looks like this:

{
 "type": "Point",
 "coordinates": [40.7128, -74.0060]
}

This object represents a point at latitude 40.7128 and longitude -74.0060, which are
the coordinates of New York City. To create a 2dsphere index, specify the location
field with the type “2dsphere".

To create a 2dsphere index in the shipwrecks collection stored in the sample_
geospatial database, use the following command:

db.shipwrecks.createIndex({ coordinates: "2dsphere" })

To find shipwrecks within a 5-kilometer radius of the coordinates [-79.9081268,
9.3547792], use the following query:

db.shipwrecks.find({
 coordinates: {
 $near: {

	 163Supported index types

 $geometry: { type: "Point", coordinates: [-79.9081268, 9.3547792] },
 $maxDistance: 5000
 }
 }
})

This query returns shipwrecks close to the specified location:

 {
 "_id": ObjectId("578f6fa2df35c7fbdbaed8c4"),
 "feature_type": "Wrecks - Visible",
 "coordinates": [-79.9081268, 9.3547792]
 }

Longitude must be between -180 and 180, and latitude must be between -90 and 90.
Use cases include finding nearby restaurants, calculating shortest routes, and identi-
fying parks within city limits. 2dsphere indexes are always sparse and can be part of
compound indexes that reference multiple location and nonlocation fields.

2d indexes

2d indexes support queries on data stored as points on a two-dimensional plane,
intended for legacy coordinate pairs.

To find shipwrecks within a 0.1-degree radius of the coordinates [-79.9081268,
9.3547792] on a planar surface, create an index with

db.shipwrecks.createIndex({ coordinates: "2d" })

and execute the following query:

db.shipwrecks.find({
 coordinates: {
 $near: [-79.9081268, 9.3547792],
 $maxDistance: 0.1
 }
})

This query returns shipwrecks close to the specified location:

 {
 "_id": ObjectId("578f6fa2df35c7fbdbaed8c4"),
 "feature_type": "Wrecks - Visible",
 "coordinates": [-79.9081268, 9.3547792]
 }

NOTE  2d indexes cannot be used for GeoJSON objects; for those, use 2dsphere
indexes.

When you create a 2d index, longitude must be between -180 and 180, and latitude
must be between -90 and 90.

164 Chapter 7  Indexing for query performance

7.2.7	 Hashed indexes

Hashed indexes collect and store hashes of the values of the indexed field. These indexes
support sharding using hashed shard keys, which means that they use a hashed index
of a field as the shard key to partition data across your sharded cluster.

Hashed indexing is ideal for shard keys with fields that change monotonically, such
as ObjectId values and timestamps. In traditional ranged sharding, a monotonically
increasing shard-key value can lead to a problem: the chunk with an upper bound of
MaxKey receives most of the incoming writes. This behavior restricts insert operations
to a single shard, negating the advantage of using distributed writes in a sharded clus-
ter. Hashed sharding helps distribute the writes more evenly across shards, solving this
problem. (Sharding is explained in chapter 9.)

To create a hashed index on a single field, set the index key’s value to "hashed":

db.<collection>.createIndex(
 {
 <field>: "hashed"
 }
)

To create a compound hashed index, set "hashed" as the value for one index key:

db.<collection>.createIndex(
 {
 <field1>: "hashed"
 ...
 }
)

TIP  When MongoDB uses a hashed index to resolve a query, it automatically
computes the hash values using an internal hashing function. Applications do
not need to calculate these hashes themselves.

Hashed indexes convert floating-point numbers to 64-bit integers before hashing. The
values 2.3, 2.2, and 2.9, for example, will share the same hash key due to this conver-
sion, causing a collision when multiple values are assigned to a single hash key. These
collisions can negatively affect query performance.

To prevent collisions, do not use a hashed index for floating-point numbers that can-
not be reliably converted to 64-bit integers and then back to floating-point numbers.
Also, hashed indexes do not support floating-point numbers larger than 253.

TIP  Hashed indexes have limitations regarding array fields and the unique
property. The hashing function does not support multikey indexes, which
means that you cannot create a hashed index on a field that contains an array
or insert an array into a hashed indexed field.

	 165MongoDB index attributes

NOTE  You cannot specify a unique constraint on a hashed index. Instead, to
enforce uniqueness on a field, you need to create an additional no-hashed
index with the unique constraint. MongoDB will use this nonhashed index to
ensure the uniqueness of the field.

7.3	 Dropping indexes
To drop an index in MongoDB, you can use the db.collection.dropIndex(index)
mongosh helper method, which removes a specified index from a collection. The
index parameter specifies the index to drop and can be provided as either the index
name (string) or the index specification document (object).

WARNING  Dropping an actively used index in production can lead to perfor-
mance degradation in your application. To assess the potential effect before
dropping an index, hide the index, and observe any changes in performance.
Hidden indexes are explained in section 7.4.4.

You can also use the Atlas User Interface, shown in figure 7.4, for this purpose. The
Atlas UI lets you add and drop indexes as you do with mongosh. To add an index, click
the Create Index button to the right of the list of existing indexes.

NOTE  The index on the _id field cannot be removed.

Figure 7.4  The MongoDB Atlas IU allows you to add and remove indexes. (Image © MongoDB 2025)

To remove an index, click the trashcan icon in the Action column for the specific
index. Then type the index name in the confirmation dialog box, and click the red
Drop button.

7.4	 MongoDB index attributes
Index attributes influence how the query planner uses an index and how indexed doc-
uments are stored. You can set these attributes as optional parameters when creating
an index.

7.4.1	 Partial indexes

Partial indexes index only the documents in a collection that meet a specified fil-
ter expression. By indexing only a subset of the documents, partial indexes have

166 Chapter 7  Indexing for query performance

lower storage requirements and reduced performance costs for index creation and
maintenance.

To create a partial index, use the db.collection.createIndex() method with the
partialFilterExpression option. The partialFilterExpression option accepts a
document that specifies the filter condition using various operators, such as equality
expressions (such as field: value or the $eq operator); the $exists: true expression;
the $gt, $gte, $lt, and $lte expressions; the $type expression; and the $and, $or, and
$in operators.

Here, we’ll see that the compound index used earlier in this chapter would look like
a partial index with the $eq operator:

db.getSiblingDB('sample_mflix').movies.createIndex(
 {
 year: 1,
 type: 1,
 "imdb.rating": 1
 },
 {
 partialFilterExpression: { type: { $eq: "movie" } }
 } // Creates a partial index on the movies collection
➥for documents where type is "movie"
)

This command creates a partial index on the movies collection, indexing only the
documents in which the type of field is "movie". By using the $eq operator, the fil-
ter ensures that only documents with type equal to "movie" are indexed. Because the
index includes only documents in which the type is "movie", it requires less storage
space and reduces the overhead associated with index creation and maintenance.

7.4.2	 Sparse indexes

Sparse indexes include entries only for documents that have the indexed field, even if
the field contains a null value. The index ignores any document that is missing the
indexed field, making the index sparse because it does not cover all documents in a
collection. By contrast, nonsparse indexes include all documents in a collection, stor-
ing null values for documents that do not have the indexed field.

TIP  Partial indexes provide a broader range of functionality compared with
sparse indexes and should be preferred over sparse indexes.

To create a sparse index, use the db.collection.createIndex() helper method with
the sparse option set to true. Here, we’ll look at how the single index used earlier in
this chapter would look as a sparse index:

db.movies.createIndex(
 { "runtime": 1 },
 { sparse: true } // Create a sparse index on the runtime field
)

	 167MongoDB index attributes

This command creates a sparse index on the runtime field in the movies collection.
The index includes entries only for documents that contain the runtime field, ignor-
ing any documents that do not have this field.

7.4.3	 Time-to-live indexes

Time-to-live (TTL) indexes are single-field indexes in MongoDB that automatically
delete documents from a collection after a specified duration or at a specific time.
This feature is particularly useful for managing data with a limited lifespan, such as
machine-generated event data, logs, and session information. In flight search systems,
for example, you can use TTL indexes to remove flight documents automatically when
the flight has departed. Other examples include expiring session data after a user logs
out, deleting temporary files after a certain period, and removing outdated promo-
tional offers when they have expired.

To create a TTL index, use the createIndex() method. Choose an index field that
is either the date type or an array containing date-type values. Use the expireAfter
Seconds option to set a TTL value in seconds.

NOTE  The expireAfterSeconds value for a TTL index must be between 0 and
2147483647, inclusive.

To create a TTL index on the date field in the sample_analytics database and the
transactions collection, use the following command:

db.getSiblingDB('sample_analytics').transactions.createIndex(
 { "date": 1 },
 { expireAfterSeconds: 31536000 } // Creates a TTL index on
➥the "date" field. Documents will expire 1 year after the
➥value in the "date" field.
)

This command creates a TTL index on the date field of the transactions collection in
the sample_analytics database. The expireAfterSeconds option is set to 31536000,
which corresponds to one year. This means that any document in the transactions
collection with a date field older than one year will be deleted automatically.

Setting Expire After Seconds to 0

You can expire documents at a specific clock time by creating a TTL index on a field
that holds Binary JSON (BSON) date type values or an array of BSON date-typed
objects and specifying an expireAfterSeconds value of 0. For each document in the
collection, set the indexed date field to the time when the document should expire. If
the indexed date field contains a date in the past, MongoDB considers the document
expired.

The following operation creates an index on the transactions collection’s date
field in the sample_analytics database and specifies an expireAfterSeconds value
of 0:

168 Chapter 7  Indexing for query performance

db.getSiblingDB('sample_analytics').runCommand(
 {
 collMod: "transactions",
 index: {
 keyPattern: { date: 1 },
 expireAfterSeconds: 0
 }
 } // Set the TTL index on the date field to expire documents immediately
)

MongoDB automatically deletes documents from the transactions collection when
the documents’ date value is older than the number of seconds specified in expire
AfterSeconds, which is 0 in this case. As such, the data expires at the specified date
value.

Converting a non-TTL Index to a TTL Index

You can add the expireAfterSeconds option to an existing single-field index.
To change a non-TTL single-field index to a TTL index, use the collMod database
command:

db.getSiblingDB('sample_analytics').runCommand({
 "collMod": "transactions",
 "index": {
 "keyPattern": { "date": 1 },
 "expireAfterSeconds": 31536000 // 1 year in seconds
 }
})

This command modifies the existing index on the date field in the transactions col-
lection to include the expireAfterSeconds option. As a result, documents with a date
value older than one year will be deleted automatically, ensuring that the collection
retains only recent data.

WARNING  After creating a TTL index, you may find that you have a large
number of qualifying documents to delete at the same time. This substantial
workload can lead to performance problems on the server. To mitigate these
potential problems, consider creating the index during off-peak hours when
server load is lower. Alternatively, you can delete qualifying documents man-
ually in batches before creating the TTL index, ensuring that the index will
manage only future documents and thus reducing the initial load.

TTL indexes restrictions as follows:

¡	TTL indexes are restricted to single-field indexes; compound indexes do not
support TTL and ignore the expireAfterSeconds option.

¡	The _id field does not support TTL indexes.

¡	You cannot create a TTL index on a capped collection.

¡	For a time-series collection, you can create TTL indexes only on the collection’s
timeField.

	 169MongoDB index attributes

¡	You cannot use the createIndex() method to change the expireAfterSeconds
value of an existing index. Instead, use the collMod database command.

If a non-TTL single-field index already exists for a field, you cannot create a TTL
index on the same field because indexes with the same key specification but differing
options are not allowed. To convert a non-TTL single-field index to a TTL index, use
the collMod database command.

TIP  If you are deleting documents to reduce storage costs, consider using the
Online Archive feature in MongoDB Atlas (chapter 17). Online Archive auto-
matically moves infrequently accessed data to fully managed Amazon S3 buck-
ets, providing a cost-effective solution for data tiering.

NOTE  Beginning with MongoDB 7.1, TTL indexes can be created on capped
collections.

7.4.4	 Hidden indexes

By hiding an index, you can test the effects of its absence without removing it perma-
nently. If the results are unfavorable, you can unhide the index instead of re-creating it.

Hidden indexes are not visible to the query planner and are not used to support que-
ries. If you hide an index on the runtime field and notice a significant slowdown in user
lookup queries, for example, you can unhide the index to restore performance without
re-creating it.

To hide an existing index, use the db.collection.hideIndex () method. To hide
and index on the runtime field in the sample_mflix.movies collection, use the follow-
ing command:

db.getSiblingDB('sample_mflix').movies.hideIndex(
 { runtime: 1 } // Specify the index key specification document
)

To unhide a hidden index, use the collMod command or mongosh helper method:

db.collection.unhideIndex()
db.getSiblingDB('sample_mflix').movies.unhideIndex(
 { runtime: 1 } // Specify the index key specification document
)

These commands allow you to manage the visibility of indexes in the movies collection
within the sample_mflix database.

Apart from being hidden from the planner, hidden indexes behave like unhidden
indexes. A hidden index that is a unique index still enforces its unique constraint on
the documents. Similarly, if a hidden index is a TTL index, it still expires documents
as expected. Hidden indexes are updated with write operations to the collection and
continue to consume disk space and memory. Hiding an unhidden index or unhiding

170 Chapter 7  Indexing for query performance

a hidden index resets its $indexStats (explained in section 7.6.1), but hiding an
already-hidden index or unhiding an already-unhidden index does not.

7.5	 Understanding index builds
Index builds engage in an optimized construction technique that involves securing an
exclusive lock on the collection at the beginning and end of the build. Throughout
the rest of the construction process, it allows the interleaving of read and write opera-
tions. Index builds across a replica set or sharded cluster occur simultaneously on all
data-bearing members of the replica set. The primary node mandates that a minimum
number of data-bearing, voting members, including itself, complete the build. Only
then is the index marked as ready for use.

Beginning with MongoDB 7.1, improvements have been made to index builds,
enhancing error-reporting speed and bolstering failure resilience. Also, you can spec-
ify the minimum required disk space for index builds using the new indexBuildMin
AvailableDiskSpaceMB parameter. This parameter halts index builds if available disk
space falls below the set threshold. Table 7.1 outlines the differences in index build
behavior between MongoDB 7.1 and previous versions.

Table 7.1  Mongo build behavior for different versions

MongoDB 7.1 Earlier MongoDB versions

During the collection scan phase, any index errors
detected, except duplicate key errors, are reported
immediately, and the index build is halted.

Delays in reporting index build errors may occur
because the errors are returned toward the end of
the index build, in the commit phase.

If an index build encounters an error, a secondary
member can instruct the primary member to halt
the index build, preventing the secondary member
from crashing.

An error during an index build might lead to the
crash of a secondary member.

An index build can be halted automatically if avail-
able disk space falls below the threshold specified
in the indexBuildMinAvailableDisk-
SpaceMB parameter.

An index build is not halted due to insufficient avail-
able disk space.

Currently, MongoDB exclusively locks only the collection being indexed at the begin-
ning and end of the build to safeguard metadata changes. The rest of the build pro-
cess uses the yielding behavior of background builds, enhancing read–write access to
the collection during construction. This approach maintains efficient index structures
while allowing more flexible access.

The index build process unfolds as follows:

1	 Upon receiving the createIndexes command, the primary immediately logs a
"startIndexBuild" oplog entry tied to the index build.

2	 The secondary members initiate the index build upon replicating the "start
IndexBuild" oplog entry.

	 171Understanding index builds

3	 Each member casts a vote to commit the build after completing the indexing of
the collection’s data.

4	 If no violations occur, the build continues with these steps:

a	 While waiting for the primary to confirm a quorum of votes, secondary mem-
bers integrate any new write operations into the index.

b	 When a quorum is confirmed, the primary checks for key-constraint viola-
tions, such as duplicate keys.

c	 If no violations are found, the primary finalizes the index build, marks the
index as ready, and logs a "commitIndexBuild" oplog entry.

5	 If key constraint violations occur, the index build is deemed a failure:

a	 The primary logs an "abortIndexBuild" oplog entry and halts the build.

b	 Secondaries that replicate the "commitIndexBuild" oplog entry complete the
index build.

c	 If secondaries replicate an "abortIndexBuild" oplog entry, they terminate
the index build and discard the build task.

TIP  Index builds can affect the performance of a replica set. For workloads
that cannot afford a decrease in performance during index builds, consider
using a rolling index build process. This method involves taking one replica-
set member offline at a time, beginning with the secondary members, and
building the index on that member while it is temporarily running as a
standalone server outside the replica set. Rolling index builds necessitate at
least one replica-set election.

NOTE  If you invoke db.collection.createIndex() on an index that already
exists, MongoDB will not re-create the index.

7.5.1	 Monitoring in-progress index builds

To monitor the status of an index build operation, you can use the db.currentOp()
method in mongosh (chapter 3). The next listing show the executed command that
returns information on index creation operations on any number of fields.

Listing 7.11  Status of an Index build operation

db.adminCommand(
 {
 currentOp: true,
 $or: [
 { op: "command", "command.createIndexes": { $exists: true } },
 { op: "command", "command.$truncated": /^\{ createIndexes/ },
 { op: "none", "msg" : /^Index Build/ }
]
 }
)

172 Chapter 7  Indexing for query performance

7.5.2	 Terminating in-progress index builds

To terminate an in-progress index build, use the dropIndexes command or its shell
helpers dropIndex() or dropIndexes(). If an index specified in dropIndexes is still
being built, the command attempts to halt the in-progress build. Halting an index
build effectively has the same result as dropping the completed index.

NOTE  Do not use killOp (chapter 21) to terminate an in-progress index build
in replica sets or sharded clusters; this can lead to inconsistent state across
nodes and may require manual cleanup.

7.6	 Managing indexes
Effective index management is crucial for optimizing query performance and ensur-
ing efficient data retrieval in MongoDB. Proper handling of indexes can significantly
enhance the efficiency and speed of your database operations. Always check whether
the indexes in your database are appropriate and being used; if they are not used,
remove them. Having too many indexes can lead to additional overhead, consuming
more disk space and slowing write operations. Ensure that only necessary, frequently
used indexes are maintained for optimal performance.

7.6.1	 Discovering the $indexStats aggregation pipeline stage

The more indexes you have, the more work MongoDB must do when inserting a docu-
ment because it needs to update each index. Indexes operate behind the scenes, mak-
ing it difficult to determine whether they are being used.

MongoDB monitors use statistics for each index. To access these statistics, you can
use the $indexStats aggregation pipeline stage. The following listing shows how to
retrieve these statistics.

Listing 7.12  Displaying $indexStats statistics

db.movies.aggregate([{ $indexStats: { } }])
[
 {
 name: 'year_1_title_1_imdb.rating_1',
 key: { year: 1, title: 1, 'imdb.rating': 1 },
 accesses: { ops: Long('11'), since: ISODate('2024-06-01)},
 host: 'ac-pikzgq8-shard-00-02.a7niyd4.mongodb.net:27017'
 }
]

The name of the index is year_1_title_1_imdb.rating_1. The key pattern of the
index is { year: 1, title: 1, 'imdb.rating': 1 }. The number of operations that
have accessed the index is 11, collected since 2024-06-01. The host information in
which the index resides is ac-pikzgq8-shard-00-02.a7niyd4.mongodb.net:27017.

You can also use this script to log index-use statistics across all databases, excluding
the admin, config, and local system databases:

	 173Managing indexes

db.getMongo().getDBNames().forEach(function(dbname) {
 // Processing the database
 if (dbname !== "admin" && dbname !== "config" && dbname !== "local")
➥{ // Skip system databases
 var currentDB = db.getSiblingDB(dbname);
 currentDB.getCollectionNames().forEach(function(cname) {
 // Processing the collection
 var indexStats = currentDB[cname].aggregate([{ $indexStats: {}
➥ }]).toArray(); // Use $indexStats aggregation
 indexStats.forEach(function(indexStat) {
 // Log index usage statistics
 print("Index usage statistics: " +
➥JSON.stringify(indexStat));
 });
 });
 }
})

For each database, the script retrieves all collection names and processes each collec-
tion. Using the $indexStats aggregation stage, it collects index-use statistics for each
collection and prints these statistics to the console.

 You can also use MongoDB Compass to display index statistics. Figure 7.5 shows
the Compass GUI used to manage indexes in the sample_mflix.movies collection.
The interface displays details about each index, including name, type, size, use, and
properties.

Figure 7.5  Index statistics help you make decisions about index maintenance and optimization. For the sample_
mflix.movies collection, the title_text_fullplot_text index is a text index that has been accessed 0
times since December 17, 2024, whereas the year_1_title_1_imdb.rating_1 compound index has been
accessed 16 times since December 17, 2024. (Image © MongoDB 2025)

TIP  Index statistics are reset on every mongod service restart.

7.6.2	 Modifying indexes

To modify an existing index, you have to drop and re-create it. TTL indexes are an
exception, however; you can modify them by using the collMod command along with
the index collection flag.

Dropping an actively used index in production can lead to performance degrada-
tion. To prevent this degradation, you can create a temporary redundant index that

174 Chapter 7  Indexing for query performance

includes the existing index keys as a prefix and a dummy field as a suffix. This approach
ensures that queries can still use an index during the modification process.

After dropping the original index, re-create it with the desired modifications. When
the new index is in place, drop the temporary index, ensuring that queries continue to
operate efficiently. Confirm that the new index has been updated successfully by view-
ing the collection’s indexes. This method ensures seamless index modifications without
disrupting application performance.

7.6.3	 Controlling index use with hint ()

Sometimes, you want to compel MongoDB to use a specific index. To do this for a
db.collection.find() operation, use the hint() method. Attach the hint() method
to the find() method to specify the desired index, as in this example:

db.movies.find(
 { year: 1914, "imdb.rating": { $gte: 7 } }
).sort(
 { title: 1 }
).hint(
 { year: 1, type: 1, "imdb.rating": 1 })

The hint() method tells MongoDB to use the specific compound index { year:
1, type: 1, "imdb.rating": 1 } to execute the query. You can check it by adding
explain() to the query:

db.movies.find(
 { year: 1914, "imdb.rating": { $gte: 7 } }
).sort(
 { title: 1 }
).hint(
 { year: 1, type: 1, "imdb.rating": 1 }
).explain("executionStats");

This approach can be useful if the index you want to use is not being selected by the
query planner. If you know that a particular index will provide better performance
for a specific query, using hint() ensures MongoDB uses that index. Also, if you are
diagnosing query performance problems or want to test the effect of different indexes,
hint() allows you to force the use of a specific index for precise control and analysis.

7.6.4	 Using indexes with $OR queries

When evaluating the clauses in a $or expression, MongoDB performs a collection scan
or, if all clauses are supported by indexes, performs index scans. For MongoDB to use
indexes to evaluate a $or expression, all the clauses in the $or expression must be sup-
ported by indexes; otherwise, MongoDB performs a collection scan.

When you use indexes with $or queries, each clause of a $or can use its own index.
Consider the following query on the movies collection in the sample_mflix database:

	 175Managing indexes

db.movies.find({
 $or: [
 { year: 1914 },
 { "imdb.rating": { $gt: 7 } }
]
}).explain("executionStats")

The movies collection had this index created earlier in the chapter: { year: 1, type:
1, "imdb.rating": 1 }. Because the existing compound index { year: 1, type: 1,
"imdb.rating": 1 } does not fully support both conditions in the $or clause, MongoDB
performs a collection scan instead of using the index. The index does not have imdb
.rating as the leading field, so it cannot be used effectively for the { "imdb.rating":
{ $gt: 7 } } condition.

To avoid a collection scan and optimize the query performance, you must ensure that
each condition in the $or clause is supported by an appropriate index. MongoDB uses
indexes to evaluate a $or expression only if all the clauses are supported by indexes. To
ensure that both conditions in the $or clause are supported by indexes and to optimize
query performance, create an additional index for the imdb.rating condition:

db.movies.createIndex({ "imdb.rating": 1 })

This setup ensures that both conditions in the $or clause are supported by indexes,
preventing a collection scan and optimizing query performance.

7.6.5	 Using indexes with the $NE, $NIN, and $NOT operators

The performance effect of the $ne (not equal), $nin (not in), and $not operators
depends on the index structure. Although single-field indexes may offer limited bene-
fits, the query planner can still use multifield indexes effectively.

7.6.6	 Ensuring that indexes fit in RAM

To follow best practices, ensure that random-access indexes fit entirely in RAM for fast-
est processing. This prevents the system from reading the index from disk.

To determine the size of your indexes, use the db.collection.totalIndexSize()
helper, which provides the size in bytes:

var indexSizeBytes = db.movies.totalIndexSize();
var indexSizeGB = indexSizeBytes / (1024 * 1024 * 1024);
print("Total Index Size in GB: " + indexSizeGB);

Total Index Size in GB: 0.015438079833984375

TIP  You can also use MongoDB Compass to check index sizes.

NOTE  Indexes don’t always need to fit entirely into RAM. If the indexed
field increments with each insert, and most queries target recent documents,

176 Chapter 7  Indexing for query performance

MongoDB needs to keep only the most recent or “rightmost” parts of the index
in RAM. This ensures efficient index use for reading and writing operations
while minimizing RAM use.

7.6.7	 Sorting on multiple fields

You can use a compound index to enable sorting on multiple fields. You can sort using
all the keys in the index or only a subset, but the sort keys must be in the same order
as they are in the index. The index key pattern { a: 1, b: 1 }, for example, supports
sorting by { a: 1, b: 1 } but not by { b: 1, a: 1 }.

Suppose that you want to sort by runtime and then by year in the movies collection.
First, create a compound index on these fields:

db.movies.createIndex({ runtime: 1, year: 1 })

Then use the following query to sort movies by runtime in ascending order and then
by year in ascending order:

db.movies.find().sort({ runtime: 1, year: 1 })

You can also execute a query that filters documents in which runtime is greater than 40
and then sort the results by runtime in ascending order and year in ascending order.
Here is the query:

db.movies.find({ runtime: { $gt: 40 } }).sort({ runtime: 1, year: 1 })

The index { runtime: 1, year: 1 } allows MongoDB to filter documents in which
runtime is greater than 40 and then sort the results by runtime and year.

In the theaters collection, create a compound index on theaterId, location
.address.city, and location.address.zipcode:

db.theaters.createIndex({ theaterId: 1, "location.address.city": 1,
➥"location.address.zipcode": 1 })

Use the following code to sort theaters by theaterId in ascending order, then by city in
ascending order, and finally by zip code in ascending order:

db.theaters.find().sort({ theaterId: 1,
➥"location.address.city": 1, "location.address.zipcode": 1 })

MongoDB can use compound indexes to optimize sort operations. By understanding
and using index prefixes, you can ensure that your queries are as efficient as possi-
ble. Ensure that the order of fields in your sort operations matches the order in your
indexes to maximize performance.

	 177When to not use an index

7.6.8	 Introducing covered queries

A covered query in MongoDB is one in which all the fields used in the query and the
fields returned by the query are included in an index. This allows MongoDB to retrieve
the results directly from the index without scanning the documents in the collection,
leading to more efficient query performance.

The following code is a covered query because there is already an index, { year:
1, title: 1, "imdb.rating": 1 }, that includes all the fields used in the query filter
(year and imdb.rating) and the fields returned by the query (title and year). This
allows MongoDB to use the index to retrieve the results directly without scanning the
documents in the collection:

db.movies.find(
{ year: 1914, "imdb.rating": { $gte: 7 } },
{ title: 1, year: 1, _id: 0 }
).explain("executionStats")

……
winningPlan: {
 stage: 'PROJECTION_COVERED',
 transformBy: { title: 1, year: 1, _id: 0 },
 inputStage: {
 stage: 'IXSCAN',
 keyPattern: { year: 1, title: 1, 'imdb.rating': 1 },
 indexName: 'year_1_title_1_imdb.rating_1'
……
 executionStats: {
 executionSuccess: true,
 nReturned: 2,
 executionTimeMillis: 0,
 totalKeysExamined: 4,
 totalDocsExamined: 0

The execution plan shows that the query used the compound index { year: 1,

title: 1, "imdb.rating": 1 }. It was a covered query (PROJECTION_COVERED), mean-
ing that all the required fields were retrieved directly from the index without scanning
the documents in the collection. The index scan (IXSCAN) used the specified index to
filter the results. The execution was successful, returning two documents in 0 ms, with
four index keys examined and zero documents scanned.

WARNING  Forgetting to exclude _id is a common failure in creating a covered
query. Also, multikey indexes cannot provide a covered query plan if any of the
returned fields contains arrays.

7.7	 When to not use an index
Indexes are best for retrieving small data subsets. For large queries, they can be slower
because they require two lookups: one for the index entry and one for the document.
A collection scan needs only one lookup. If a query returns a large portion of the

178 Chapter 7  Indexing for query performance

collection, using an index can be inefficient and slow. There’s no exact rule about
when an index helps or hinders; the decision to use one depends on data size and
other factors. Typically, an index speeds queries if they return less than 30% of the col-
lection, though this figure can range from 2% to 60%.

Suppose that you have a monitoring system that collects server logs. Your application
queries the system for all logs from a specific server to analyze activity from the past
week:

db.logs.find(
{ "server_id": "server123",
"timestamp": { "$gt": weekAgo } }
)

You index “timestamp” to speed this query. When you first launch, the result set is
small, and the query returns instantly. But after a few weeks, the amount of data grows,
and after a month, this query starts taking too long to run.

Summary

¡	The MongoDB query planner analyzes multiple execution plans to select the
most efficient one, using indexes to minimize response times and resource use. If
no suitable index is available, it performs a full collection scan, which is less effi-
cient and can significantly burden the database, especially with large data sets.

¡	MongoDB uses two query engines—the classic query engine and the slot-based
query engine—to find and return results. MongoDB chooses the engine auto-
matically, and you can’t select it manually. The slot-based engine usually offers
better performance and lower CPU and memory use.

¡	To access query plan details in MongoDB, use db.collection.explain()
or cursor.explain() with verboseness levels such as "queryPlanner",
"executionStats", and "allPlansExecution" for varying detail. These tools
help you understand performance characteristics and diagnose query efficiency
problems.

¡	MongoDB supports various index types to enhance query performance, includ-
ing single-field, compound, multikey, text, wildcard, geospatial, and hashed.
Each index type caters to different query requirements, optimizing data retrieval
based on the fields and operations involved.

¡	You can create an index using the db.collection.createIndex() mongosh
helper method, the database createIndexes command, or the Compass or Atlas
UI.

¡	MongoDB index attributes affect how the query planner uses indexes and stores
documents. Partial indexes reduce storage and performance costs by indexing
only documents that meet a filter expression. Sparse indexes include only docu-
ments with the indexed field, and TTL indexes delete documents automatically

	 179Summary

after a set time. Hidden indexes let you test their absence without removal,
remaining invisible to the planner but still enforcing constraints and TTL
deletions.

¡	Index builds in MongoDB secure exclusive locks on collections at the beginning
and end, allowing interleaved read and write operations during the process. You
can monitor and terminate in-progress index builds using commands such as
db.currentOp() and dropIndexes.

¡	To optimize sort operations, use compound indexes, ensuring that the sort keys
match the order of the index fields. You can create an index on { field1: 1,
field2: 1 } and then sort documents by field1 and field2 in ascending order
using db.collection.find().sort({ field1: 1, field2: 1 }).

¡	Managing indexes involves using tools such as the $indexStats aggregation
stage to monitor index use and hint() to control which indexes are used for
specific queries.

¡	Indexes that fit in RAM optimize performance, and covered queries improve effi-
ciency by retrieving results directly from indexes without scanning documents.

¡	MongoDB uses indexes to evaluate a $or expression only if all clauses are sup-
ported by indexes; otherwise, it performs a collection scan.

180

8Executing
multidocument

ACID transactions

This chapter covers

¡	Understanding the WiredTiger Storage Engine
¡	Examining the ACID principles
¡	Comparing the Core and Callback APIs
¡	Implementing transactions with the Node.js 	
	 driver
¡	Performing transactions using the Python driver
¡	Managing transactions with the Ruby driver

Transactions are discrete units of operation within a database management system,
comprising multiple related read and write actions. These operations are grouped
together and must all succeed as a whole or fail together, ensuring that no partial
updates are left in the database. Consider a transaction for booking a travel package
that includes a flight and a hotel. If the booking process successfully reserves a flight
but encounters a problem with the hotel reservation, the entire transaction must be
aborted. This means the flight reservation would also be undone, maintaining the
status quo in the database.

	 181WiredTiger storage engine

Although MongoDB is a nonrelational database and traditionally does not follow the
relational model’s approach to transactions, it has long ensured data integrity through
its single-document operations. With the introduction of multidocument atomicity,
consistency, isolation, and durability (ACID) transactions, however, MongoDB has sig-
nificantly broadened its applicability and enhanced its capability to handle complex
transaction scenarios.

8.1	 WiredTiger storage engine
WiredTiger is a high-performance, scalable, open source NoSQL platform for data
management, characterized by its extensibility and production-quality capabilities.
MongoDB acquired WiredTiger, incorporating it as its default storage engine, which
significantly enhances MongoDB’s performance and scalability. WiredTiger uses mul-
tiversion concurrency control (MVCC) to allow multiple read and write operations to
occur simultaneously without blocking, which minimizes contention. Its support for
compression reduces the amount of storage needed and improves I/O efficiency. It
also uses in-memory caching, which reduces the need for frequent disk access, further
speeding read and write operations. Its free locking mechanism allows operations to
target specific data, improving concurrency and reducing bottlenecks. It supports mul-
tiple storage architectures:

¡	Row-oriented storage—All columns of a row are stored together, which is efficient
for accessing complete records.

¡	Column-oriented storage—Columns are stored separately, optimizing the storage
and retrieval of subsets of columns.

WiredTiger also features ACID transactions, supporting standard isolation levels and
providing durability at both checkpoint and fine-grained levels. It can function as a
simple key-value store and offers a comprehensive schema layer that includes indices
and projections.

8.1.1	 Snapshots and checkpoints

WiredTiger uses MVCC to provide a consistent point-in-time snapshot of the data,
ensuring consistent views of in-memory data. When writing to disk, all snapshot data
is committed in a consistent manner across data files, creating a durable checkpoint.
Checkpoints ensure data file consistency up to the last checkpoint and serve as recov-
ery points.

MongoDB checkpoints are scheduled every 60 seconds. Even during checkpoint cre-
ation, the previous checkpoint remains valid, facilitating recovery from the last valid
checkpoint in case of errors or shutdowns. A new checkpoint becomes permanent and
replaces the old one when WiredTiger’s metadata table is atomically updated.

Since MongoDB 5.0, you can use the minSnapshotHistoryWindowInSeconds param-
eter to specify how long WiredTiger retains snapshot history. Increasing this value
results in greater disk use as more history is maintained—crucial in high-volume envi-
ronments. The history is stored in the WiredTigerHS.wt file in the specified dbPath.

182 Chapter 8  Executing multidocument ACID transactions

8.1.2	 Journaling

WiredTiger uses a write-ahead logging journal in conjunction with checkpoints to
ensure data durability. The journal records all modifications between checkpoints. If
MongoDB exits unexpectedly between checkpoints, the journal is used to replay data
modifications since the last checkpoint, ensuring no data loss. WiredTiger compresses
journal entries using the snappy compression library by default, but you can customize
it through the storage.wiredTiger.engineConfig.journalCompressor setting.

8.1.3	 Compression

Compression in WiredTiger allows MongoDB to reduce storage for all collections and
indexes; this incurs the cost of increased CPU use. WiredTiger defaults to block com-
pression using the Snappy library for collections and prefix compression for indexes.
Additional block compression options for collections include zlib and zstd. The
WiredTiger journal is also compressed by default.

8.1.4	 Memory use

In MongoDB, memory use is managed through both the WiredTiger internal cache
and the filesystem cache. The default size for the WiredTiger internal cache is deter-
mined by whichever is greater:

¡	50% of the remaining RAM after deducting 1 GB

¡	A minimum of 256 MB

On a system with 8 GB of RAM, the WiredTiger cache would be set to 3.5 GB of RAM,
calculated as 50% of (8 GB–1 GB). Alternatively, on a system with only 1.28 GB of
RAM, the WiredTiger cache would default to 256 MB because 50% of the remaining
RAM after deducting 1 GB (which would be 128 MB) is below the 256 MB minimum
threshold.

8.2	 Single-document transaction
Let’s start by discussing single-document transactions. In MongoDB, each operation
on a single document is atomic. This means that any operation—whether it’s updating,
deleting, or inserting a document—is completed in full or not completed. This level of
atomicity ensures data integrity without traditional locking mechanisms.

If an update operation on a document is initiated but fails midway due to a system
crash or network problem, MongoDB ensures that no changes are applied, maintaining
the pretransaction state of the document. This built-in atomicity is crucial for maintain-
ing consistency and reliability in applications when they do not require the complexity
of multidocument transactions

MongoDB ensures atomicity at the single-document level by using an underlying
storage WiredTiger mechanism. When an operation is performed on a document, the
changes are first applied in-memory. Only when the operation is fully successful are the
changes written to disk.

	 183Defining ACID

WiredTiger supports document-level concurrency control for write operations,
allowing multiple clients to modify different documents in the same collection at the
same time. This is achieved using optimistic concurrency control with intent locks at
the global, database, and collection levels. If there is a conflict, WiredTiger detects
it, and one operation might face a write conflict, causing MongoDB to retry the
operation.

Optimistic concurrency control (OCC) handles data conflicts during transactions,
which works well in MongoDB’s WiredTiger, where conflicts are expected to be rare.
Transactions use minimal up-front locking, reducing system overhead and improving
performance. A transaction reads data and keeps a snapshot of the data at the begin-
ning, using version numbers or timestamps to detect changes. If a change is detected
during a write, it triggers a write conflict.

When a conflict occurs, the transaction might be aborted and restarted or forced to
wait and retry, depending on the configuration. OCC’s main benefit is preventing locks
during the read phase, boosting performance when write conflicts are rare. If conflicts
are frequent, however, the cost of restarting transactions can reduce this benefit.

8.3	 Defining ACID
ACID is a set of principles that ensure reliable processing of database transactions:

¡	Atomicity—Guarantees that each transaction is treated as a single unit that either
completes entirely or is completely undone; no intermediate states are allowed.
If any part of a transaction fails, the entire transaction fails, and the database state
is left unchanged.

¡	Consistency—Ensures that any transaction brings the database from one valid
state to another. No transaction can violate the database rules.

¡	Isolation—Determines how transaction integrity is visibly affected by the interac-
tion between concurrent transactions. The goal is to make transactions appear
isolated from one another even though they may be executed concurrently.

¡	Durability—Ensures that when a transaction has been committed, it remains so,
even in the event of a power loss, crash, or other system failures.

These properties are necessary for maintaining the integrity and reliability of a data-
base, preventing data corruption and ensuring that the database accurately reflects
confirmed transactions.

A database is said to be ACID-compliant when it consistently upholds the principles
of atomicity, consistency, isolation, and durability across all its transactions. This com-
pliance ensures that the database processes transactions in a reliable, error-resistant
manner, safeguarding against data loss and ensuring data integrity even in adverse
conditions such as system crashes or power failures. ACID compliance is crucial for
applications that require strong data consistency, such as financial systems, in which the
accuracy and reliability of transaction processing are paramount.

184 Chapter 8  Executing multidocument ACID transactions

8.4	 Multidocument transactions
In MongoDB, operations on single documents are atomic. Because MongoDB uses
embedded documents and arrays to represent relationships within a single document
rather than normalizing data across multiple documents and collections, its single-
document atomicity often eliminates the need for distributed transactions in many
common scenarios.

For use cases that require atomic operations across multiple documents or collec-
tions, MongoDB supports distributed transactions. These transactions can span multi-
ple operations, collections, documents, databases, and shards.

8.4.1	 Differentiating the Core and Callback APIs

MongoDB offers two distinct APIs for handling ACID transactions, detailed in table
8.1. The first, known as the Core API, employs syntax similar to that of relational data-
bases, featuring commands such as startTransaction and commitTransaction. The
second is the callback API, which is the preferred method for implementing transac-
tions and the one we focus on in this chapter.

The core API, while straightforward, does not include automatic retry logic for most
errors, leaving developers responsible for manually coding the transaction operations,
the commit function, and any necessary retry and error-handling mechanisms.

Table 8.1  Core API vs. Callback API

Core API Callback API

Requires an explicit call to initiate and commit the
transaction

Initiates a transaction, performs the specified
operations, and commits them or aborts if an error
occurs

Does not automatically handle errors such
as TransientTransactionError and
UnknownTransactionCommitResult.
Instead, it allows the integration of custom
error-handling mechanisms.

Automatically includes error-handling logic
for TransientTransactionError and
UnknownTransactionCommitResult

Requires explicitly passing a logical session to the
API for each transaction

Requires explicitly passing a logical session to the
API for each transaction

The Callback API in MongoDB offers a comprehensive function that simplifies trans-
action management . It manages starting a transaction linked to a specific logical ses-
sion, running a callback function, and committing or aborting the transaction based
on the presence of errors. This function also integrates retry logic for handling com-
mit errors. The Callback API aims to ease application development with transactions
and facilitates the addition of retry logic for handling transaction errors.

In both the Core and Callback APIs, developers must initiate the logical session
required for the transaction. Each operation within a transaction must be associ-
ated with this logical session. MongoDB uses logical sessions to track the timing and
sequence of operations across the entire deployment. The logical or server sessions are

	 185Multidocument transactions

fundamental for supporting retriable writes and causal consistency, which are essen-
tial for transaction capabilities. These sessions ensure that a sequence of related read
and write operations maintains its causal relationships through their order, known as
causally consistent client sessions. A client session started by an application engages with a
server session for these purposes.

8.4.2	 Using transactions with mongosh

Transactions are usually created and run through external applications using API
methods via the appropriate MongoDB driver for the application’s programming
language. But let’s start with the first example executed in MongoDB Shell (mongosh).
Listing 8.1 demonstrates how to manually initiate a transaction in mongosh, perform
specified operations, and commit or abort the transaction if an error occurs. Although
this method requires explicit handling of each step and does not manage error-
handling logic automatically, it is useful for understanding the fundamental steps
involved in transaction management in MongoDB. Run this code in mongosh part
by part.

Listing 8.1  Executing a multidocument transaction in mongosh

function executeTransaction(session) {
 const dbSampleAnalytics = session.getDatabase('sample_analytics')

 session.startTransaction({
 readConcern: { level: 'snapshot' },
 writeConcern: { w: 'majority' },
 readPreference: 'primary'
 })

 try {
 const account = dbSampleAnalytics.accounts.findOne
➥({ account_id: 371138 })
 if (!account) {
 throw new Error('Account not found')
 }

 const newTransactionCount = (account.transaction_count || 0) + 1

 dbSampleAnalytics.accounts.updateOne(
 { account_id: 371138 },
 { $set: { limit: 12000, last_transaction_date: new Date() },
 $inc: { transaction_count: 1 }
 }
)
 dbSampleAnalytics.customers.updateMany(
 { accounts: { $in: [371138] } },
 { $inc: { transaction_count: 1 },
 $set: { last_transaction_date: new Date() }
 }
)
 dbSampleAnalytics.transactions.insertOne({

186 Chapter 8  Executing multidocument ACID transactions

 account_id: 371138,
 transaction_count: newTransactionCount,
 date: new Date(),
 amount: 1500,
 transaction_code: 'buy'
 })
 session.commitTransaction()
 } catch (error) {
 session.abortTransaction()
 throw error;
 }
}

The first part of the code defines a function executeTransaction(session), which
initiates a transaction in MongoDB using mongosh. It starts a transaction with specified
read and write concerns and read preferences. Within a try block, it performs sev-
eral database operations: finding an account (ID 371138), updating the account and
related customers, and inserting a new transaction document. If any operation fails,
it aborts the transaction and throws an error. If all operations succeed, it commits the
transaction:

function runTransactionWithRetry() {
 const maxRetries = 5
 let session
 for (let attempt = 0; attempt < maxRetries; attempt++) {
 session = db.getMongo().startSession()
 try {
 executeTransaction(session)
 return
 } catch (error) {
 console.error("Attempt " + attempt + ": an error occurred", error)
 if (error.hasOwnProperty('errorLabels') &&
 (error.errorLabels.includes('TransientTransactionError')
➥|| error.errorLabels.includes('UnknownTransactionCommitResult'))) {
 continue
 }
 throw error
 } finally {
 session.endSession()
 }
 }
 throw new Error('Max retries reached. Transaction failed.')
}

The second part of the code defines the runTransactionWithRetry function,
which attempts to execute a transaction up to five times using the execute
Transaction function. It starts a new session for each attempt. If an error labeled
TransientTransactionError or UnknownTransactionCommitResult occurs, the func-
tion retries the transaction. If it encounters other errors or exceeds the retry limit, it
throws an error. Each session ends in the finally block:

	 187Multidocument transactions

try {
 runTransactionWithRetry();
} catch (error) {
 throw new Error('Transaction failed after retries: ' + error.message)
}

The final code block attempts to run the runTransactionWithRetry function. If it fails
after all retries, it catches the error and throws a new error with a message indicating
the transaction failure.

8.4.3	 Using transactions with the Callback API

It’s important to use the Callback API instead of the Core API in any language, as the
Core API can lead to potential problems with scalability and error handling. The Call-
back API provides a more robust and reliable approach to transaction management.

Each language has its own syntax and constructs for handling transactions, yet the
underlying methodology for executing and managing transactions is similar.

TIP  You can also create collections and indexes in transactions.

NOTE  In most cases, distributed transactions come with higher performance
costs compared with single-document writes, and their availability should not
replace proper schema design. In many use cases, a denormalized data model
using embedded documents and arrays remains the best choice. By mod-
eling your data properly, you can often reduce the necessity for distributed
transactions.

Node.js transactions

Now let’s see how transaction handling works using Node.js. Listing 8.2 demonstrates
a multidocument transaction in Node.js using the MongoDB Node.js. This script ini-
tiates a transaction using the withTransaction method from the MongoDB Driver’s
Callback API. The withTransaction method is part of the higher-level Callback API
that simplifies transaction management by allowing you to define a callback function
containing the operations to be performed within the transaction. It handles starting,
committing, and retrying the transaction in case of transient errors, ensuring that all
operations succeed or fail together, maintaining atomicity and consistency.

Listing 8.2  Executing a multidocument transaction with Node.js and Callback API

const { MongoClient } = require('mongodb')

// Replace with your actual connection string
const uri = "your_mongodb_connection_string"

async function run(accountId) {
 const client = new MongoClient(uri)

 try {

188 Chapter 8  Executing multidocument ACID transactions

 await client.connect()
 const session = client.startSession()

 const transactionOptions = {
 readConcern: { level: 'snapshot' },
 writeConcern: { w: 'majority' },
 readPreference: 'primary'
 }

 await session.withTransaction(async () => {
 const accounts = client.db('sample_analytics').collection('accounts')
 const customers = client.db('sample_analytics').collection('customers')
 const transactions = client.db('sample_analytics').
collection('transactions')
 const currentDate = new Date()

 const account = await accounts.findOne(
 { account_id: parseInt(accountId) },
 { session }
)
 if (!account) throw new Error('Account not found')

 const accountsUpdateResult = await accounts.updateOne(
 { account_id: parseInt(accountId) },
 {
 $set: { limit: 12000, last_transaction_date: currentDate },
 $inc: { transaction_count: 1 }
 },
 { session }
)

 const customersUpdateResult = await customers.updateMany(
 { accounts: { $in: [parseInt(accountId)] } },
 {
 $inc: { transaction_count: 1 },
 $set: { last_transaction_date: currentDate }
 },
 { session }
)

 const transactionsInsertResult = await transactions.insertOne(
 {
 account_id: parseInt(accountId),
 transaction_count: account.transaction_count + 1,
 bucket_start_date: currentDate,
 bucket_end_date: currentDate,
 transactions: [
 {
 date: currentDate,
 amount: 1500,
 transaction_code: 'buy',
 symbol: 'amzn',
 price: '125.00',
 total: '187500.00'
 }

	 189Multidocument transactions

]
 },
 { session }
)

 console.log("Transaction committed.")
 console.log("Accounts updated:", accountsUpdateResult.modifiedCount)
 console.log("Customers updated:", customersUpdateResult.modifiedCount)
 console.log("New transaction inserted:", transactionsInsertResult.
insertedId)

 }, transactionOptions)

 session.endSession()
 } catch (error) {
 console.error("Transaction aborted due to error:", error)
 } finally {
 await client.close()
 }
}

// Get accountId from command line arguments
const accountId = process.argv[2]
if (!accountId) {
 console.error("Please provide an account ID as an argument.")
 process.exit(1)
}

run(accountId).catch(console.dir)

To run the script, first install Node.js from nodejs.org. Then install the MongoDB
Node.js Driver by running npm install mongodb in your terminal. Create a file named
transaction.js, and copy the script into this file. Update the uri variable in the script
with your MongoDB connection string, and run the script with node transaction.js
714727. (714727 is one of the account IDs in the accounts collection.)

The script imports MongoClient from the MongoDB library and defines the con-
nection URI. The run function creates a new MongoClient instance, connects to the
MongoDB server, and defines collections for accounts, customers, and transactions.
It fetches the current date and, inside a try block, retrieves an account document.
If it finds an account document, the function calculates a new transaction count,
updates the account’s limit to 12000 using $set, increments the transaction count
using $inc, updates the customers’ transaction count and last transaction date using
$inc, and inserts a new transaction document for $1,500. If all operations succeed,
the transaction is committed; if any operation fails, the transaction is aborted, and
the error is logged. The session ends in the finally block, and the client connection
is closed.

As you can see, running transactions with the MongoDB Node.js Driver is more
seamless than using mongosh. The script connects to MongoDB, starts a session, and
uses the withTransaction method to streamline transaction management. This

190 Chapter 8  Executing multidocument ACID transactions

approach automatically handles starting, committing, and retrying transactions in
case of errors, ensuring atomicity and consistency, which makes it ideal for production
environments.

Python transactions

In this section, you’ll see how transactions are handled using Python. Listing 8.3 shows
executing a transaction in MongoDB using Python, also with the Callback API. This
example showcases a similar scenario to the Node.js driver: how to start a transaction,
perform multiple operations across collections, and ensure atomicity by committing or
aborting the transaction based on success or failure.

Listing 8.3  Executing a multidocument transaction with PyMongo and Callback API

#!/usr/bin/env python3

from pymongo import MongoClient, WriteConcern, ReadPreference
from pymongo.read_concern import ReadConcern
from pymongo.errors import ConnectionFailure
from datetime import datetime
import sys

Replace the uri string with your connection string
Example: uri = "mongodb+srv://<username>:<password>@
➥mongodb-in-action.fpomkke.mongodb.net"
uri = "your_mongodb_connection_string"

Callback function to be executed within the transaction
def callback(session, accountId):
 accounts = session.client.sample_analytics.accounts
 customers = session.client.sample_analytics.customers
 transactions = session.client.sample_analytics.transactions

 current_date = datetime.now()

 # Find the account document
 account = accounts.find_one({"account_id": int(accountId)},
➥ session=session)
 if not account:
 raise Exception('Account not found')

 # Update the account document
 accountsUpdateResult = accounts.update_one(
 {"account_id": int(accountId)},
 {"$set": {"limit": 12000,
➥"last_transaction_date": current_date},
➥"$inc": {"transaction_count": 1}},
 session=session
)

 # Update the customer documents
 customersUpdateResult = customers.update_many(
 {"accounts": {"$in": [int(accountId)]}},

	 191Multidocument transactions

 {"$inc": {"transaction_count": 1},
➥"$set": {"last_transaction_date": current_date}},
 session=session
)

 # Insert a new transaction document
 transactionsInsertResult = transactions.insert_one({
 "account_id": int(accountId),
 "transaction_count": account.get('transaction_count', 0) + 1,
 "bucket_start_date": current_date,
 "bucket_end_date": current_date,
 "transactions": [{
 "date": current_date,
 "amount": 1500,
 "transaction_code": "buy",
 "symbol": "amzn",
 "price": "125.00",
 "total": "187500.00"
 }]
 }, session=session)

 # Log the results
 print("Transaction committed.")
 print("Accounts updated:", accountsUpdateResult.modified_count)
 print("Customers updated:", customersUpdateResult.modified_count)
 print("New transaction inserted:", transactionsInsertResult.inserted_id)

Function to run the transaction
def run(accountId):
 client = None
 try:
 # Connect to the MongoDB client
 client = MongoClient(uri)

 # Start a session and execute the transaction
 with client.start_session() as session:
 session.with_transaction(
 lambda s: callback(s, accountId),
➥# Pass accountId to the callback
 read_concern=ReadConcern("local"),
 write_concern=WriteConcern("majority"),
 read_preference=ReadPreference.PRIMARY,
)
 except ConnectionFailure as err:
 print(f"Connection error: {err}")
 except Exception as e:
 print(f"Transaction aborted due to error: {e}")
 finally:
 if client:
 client.close()

Entry point of the script
if __name__ == "__main__":
 if len(sys.argv) < 2:
 print("Please provide an account ID as an argument.")

192 Chapter 8  Executing multidocument ACID transactions

 sys.exit(1)

 accountId = sys.argv[1]
 run(accountId)

To run the script, first install Python 3 from https://www.python.org and the pymongo
library by running pip install pymongo==4.7.3 in your terminal. Create a file named
transaction.py, and copy the script into this file. Update the uri variable in the
script with your MongoDB connection string. Finally, run the script with python3
transaction.py 785786. (785786 is one of the account IDs in the accounts collection.)

Ruby transactions

Let’s also see how to use the Callback API and execute transactions with Ruby. The
next listing shows an example of executing a transaction with Ruby, using the Callback
API to manage the process.

Listing 8.4  Executing a multidocument transaction with Ruby and Callback API

#!/usr/bin/env ruby

require 'mongo'
require 'date'

Replace the uri string with your connection string
uri = "your_mongodb_connection_string"

Function to be executed within the transaction
def transaction_callback(session, accountId)
 db = session.client.use('sample_analytics')
 accounts = db[:accounts]
 customers = db[:customers]
 transactions = db[:transactions]

 current_date = DateTime.now

 # Find the account document
 account = accounts.find({ "account_id" => accountId.to_i },
➥session: session).first
 raise 'Account not found' if account.nil?

 # Ensure transaction_count is not nil
 account['transaction_count'] ||= 0

 # Update the account document
 accounts_update_result = accounts.update_one(
 { "account_id" => accountId.to_i },
 { "$set" => { "limit" => 12000, "last_transaction_date" =>
➥current_date }, "$inc" => { "transaction_count" => 1 } },
 session: session
)

 # Update the customer documents

https://www.python.org

	 193Multidocument transactions

 customers_update_result = customers.update_many(
 { "accounts" => { "$in" => [accountId.to_i] } },
 { "$inc" => { "transaction_count" => 1 }, "$set" =>
➥{ "last_transaction_date" => current_date } },
 session: session
)

 # Insert a new transaction document
 transactions_insert_result = transactions.insert_one({
 "account_id" => accountId.to_i,
 "transaction_count" => account['transaction_count'] + 1,
 "bucket_start_date" => current_date,
 "bucket_end_date" => current_date,
 "transactions" => [{
 "date" => current_date,
 "amount" => 1500,
 "transaction_code" => "buy",
 "symbol" => "amzn",
 "price" => "125.00",
 "total" => "187500.00"
 }]
 }, session: session)

 # Log the results
 puts "Transaction committed."
 puts "Accounts updated: #{accounts_update_result.modified_count}"
 puts "Customers updated: #{customers_update_result.modified_count}"
 puts "New transaction inserted: #{transactions_insert_result.inserted_id}"
end

Function to run the transaction
def run(uri, accountId)
 client = Mongo::Client.new(uri, write_concern: { w: :majority })
 begin
 session = client.start_session

 # Start a session and execute the transaction
 session.with_transaction(
 read_concern: { level: :snapshot },
 write_concern: { w: :majority },
 read: { mode: :primary }
) do |s|
 transaction_callback(s, accountId)
 end

 rescue Mongo::Error::OperationFailure => e
 puts "Transaction aborted due to error: #{e.message}"
 ensure
 client.close
 end
end

Entry point of the script
if ARGV.length < 1
 puts "Please provide an account ID as an argument."

194 Chapter 8  Executing multidocument ACID transactions

 exit 1
end

accountId = ARGV[0]
run(uri, accountId)

To run the script, first install Ruby from https://www.ruby-lang.org and the mongo
library by running gem install mongo in your terminal. Create a file named
transaction_script.rb, and copy the script into this file. Update the uri variable
in the script with your MongoDB connection string. Finally, run the script with ruby
transaction_script.rb 721914. (721914 is one of the account IDs in the accounts
collection.)

8.5	 MongoDB transaction considerations
MongoDB supports multidocument distributed transactions on sharded clusters,
enabling multidocument transactions across multiple shards. This ensures consistency
across distributed data while preserving the ACID properties, even in complex sharded
environments. Transactions allow rollback of changes if any operation within the trans-
action fails, providing a reliable mechanism for maintaining data integrity across dif-
ferent deployment topologies. Here are the best recommendations for transactions in
MongoDB:

¡	Structure your data so that related data is stored together. This improves perfor-
mance and often eliminates the need for transactions.

¡	Split long-running transactions into smaller parts to avoid exceeding the default
60-second timeout. This timeout can be extended if necessary.

¡	Ensure that all operations within a transaction use indexes for faster execution.

¡	Limit each transaction to modifying a maximum of 1,000 documents.

¡	Configure appropriate read and write concerns.

¡	Implement robust error-handling and retry mechanisms for transactions that fail
due to transient errors.

¡	Be mindful that transactions involving multiple shards will have a performance
overhead.

The following operations are not permitted within transactions:

¡	Creating new collections in cross-shard write transactions. If you write to an exist-
ing collection in one shard and implicitly create a collection in another shard,
MongoDB cannot handle both operations in the same transaction.

¡	Explicitly creating collections (e.g., using the db.createCollection()
method) and indexes (e.g., using the db.collection.createIndexes() and
db.collection.createIndex() methods) when using a read concern level
other than local. (Chapter 9 covers read concerns.)

¡	The listCollections and listIndexes commands and their corresponding
helper methods.

https://www.ruby-lang.org

	 195Summary

¡	Other non-CRUD and noninformational operations, such as createUser, get-
Parameter, and count, along with their helper methods.

Summary
¡	Transactions in database management systems ensure that sets of related read

and write actions either fully succeed or fail as a unit, preventing partial updates.

¡	WiredTiger, MongoDB’s default storage engine, enhances performance and
scalability with row-oriented, column-oriented storage configurations.

¡	Write-ahead logging and checkpoints in WiredTiger ensure data durability, with
changes logged in a journal to prevent data loss if MongoDB exits unexpectedly.

¡	Compression in WiredTiger reduces storage needs for collections and indexes,
using Snappy for collections and prefix compression for indexes, though it
increases CPU use.

¡	WiredTiger supports document-level concurrency for write operations, allowing
multiple clients to modify documents simultaneously within the same collection.

¡	OCC in WiredTiger minimizes up-front locking and uses versioning to handle
conflicts, enhancing performance when write conflicts are infrequent.

¡	MongoDB offers two APIs for managing ACID transactions: the Core API, similar
to relational databases, and the Callback API, which automates processes.

¡	The Core API requires manual handling of transaction operations, commits, and
error resolution, lacking automatic retry mechanisms.

¡	MongoDB allows multidocument transactions within sharded clusters, spanning
multiple shards.

¡	Organize your data so that related information is kept together. This boosts per-
formance and frequently makes transactions unnecessary.

196

9Using replication
and sharding

This chapter covers

¡	Learning the MongoDB replica set concept
¡	Identifying replica set members
¡	Understanding the MongoDB oplog
¡	Tracking change streams
¡	Creating sharded clusters in Atlas
¡	Horizontal scaling with sharding

People often mix up replication and sharding, though they’re different systems
used in database management for distinct purposes. What’s the difference? Replica-
tion involves copying data and operations from a primary server to secondary ones
to enhance data availability. It’s particularly useful for recovering from disasters and
distributing read queries among multiple nodes to improve read performance and
reduce load on the primary. But all write operations still go through the primary
server, which can become a bottleneck.

Conversely, sharding partitions a large database into smaller segments, known as
shards, each housing a fraction of the complete data set on its own database server

	 197Ensuring data high availability with replication

instance. Because the entire data set is distributed across multiple server instances,
write operations affecting multiple shards can be handled by the corresponding pri-
mary server instances, reducing the write bottleneck. To preserve data integrity and
availability, each shard must implement replication.

The integration of sharding and replication in MongoDB aims to bolster data dura-
bility and ensure consistent availability. Should a server instance of a shard fail, having
solely one data copy on that shard could lead to temporary data inaccessibility until the
server’s functionality is recovered or substituted. When replication is adopted within
each shard, however, the sharded architecture can sustain data accessibility and miti-
gate any service interruptions stemming from server downtimes. Moreover, this method
facilitates seamless, downtime-free rolling updates across the sharded setup, promoting
continuous and smooth operational maintenance.

MongoDB Atlas provides built-in replication by default to ensure high availability,
whereas sharding is available as an option for horizontal scaling. That means when
you’re using Atlas, you don’t have to set up and manage these configurations manu-
ally. Atlas automates the provisioning, setup, and scaling of your databases, taking the
burden of manual administration off your shoulders. This allows developers to focus
more on application development than on the operational challenges associated with
database management.

9.1	 Ensuring data high availability with replication
A replica set in MongoDB consists of a group of mongod processes that hold identical
data sets. Replica sets ensure redundancy and high availability, serving as the founda-
tion for all production environments. These members can exist in various states and
fulfill different roles within the replica set.

9.1.1	 Distinguishing replica set members

Listing 9.1 demonstrates the output of the db.adminCommand("replSetGetStatus")
command within the Atlas cluster we created in chapter 2. This output details the sta-
tus of each replica set member. This command is crucial for overseeing the health and
configuration of the replica set within MongoDB cluster.

Listing 9.1  Output of the replSetGetStatus command

db.adminCommand("replSetGetStatus").members.map((m) =>
➥({ _id: m._id, name: m.name, state: m.state, stateStr: m.stateStr }))
[
 {
 _id: 0,
 name: 'ac-5dhjxpf-shard-00-00.fpomkke.mongodb.net:27017'
 state: 2,
 stateStr: 'SECONDARY'
 },
 {
 _id: 1,

198 Chapter 9  Using replication and sharding

 name: 'ac-5dhjxpf-shard-00-01.fpomkke.mongodb.net:27017'
 state: 1,
 stateStr: 'PRIMARY'
 },
 {
 _id: 2,
 name: 'ac-5dhjxpf-shard-00-02.fpomkke.mongodb.net:27017'
 state: 2,
 stateStr: 'SECONDARY'
 }
]

As you can see by checking the command output in listing 9.1 or using the helper
method rs.status(), each member of a MongoDB replica set operates in a specific
state. Table 9.1 outlines the 10 possible states that a replica set member can inhabit.

Table 9.1  Possible state of each member of a replica set

Number Name Description

0 STARTUP Initial state. Parses config document.

1 PRIMARY Accepts writes. Eligible to vote.

2 SECONDARY Replicates data. Eligible to vote.

3 RECOVERING In self-checks, rollback, or resync. No reads. Votes.

4 STARTUP2 Running initial sync. Can’t vote.

5 UNKNOWN State not known by others.

6 ARBITER Only votes. Doesn’t replicate data.

7 DOWN Unreachable by others.

8 ROLLBACK Performing a rollback. No reads. Votes.

9 REMOVED Was part of a set, now removed.

Each state reflects the specific role and current condition of a member within the set.
These states vary widely, from STARTUP, which denotes a member’s initial setup phase,
to PRIMARY and SECONDARY, which designate members that are handling write opera-
tions and data replication, respectively. STARTUP2 represents members in performing
an initial sync with the replica set—a crucial step before they become fully functional
members. ROLLBACK indicates that a member is reverting changes to align its data with
the rest of the replica set, a process that temporarily prevents it from serving read que-
ries or participating in the replica set as a data-bearing node.

In certain scenarios, such as when a replica set consists of a primary and a secondary,
but additional costs deter the inclusion of another secondary, introducing an ARBITER
into the set can be a strategic choice. An arbiter engages in electing a primary, yet it does
not store a replica of the data set and is incapable of assuming the primary role.

Let’s look at another helpful command. Listing 9.2 demonstrates the output of the
command db.adminCommand("replSetGetConfig") command in MongoDB Shell
(mongosh). This command retrieves the current configuration of a MongoDB replica

	 199Ensuring data high availability with replication

set and is designed to gather detailed information about each member and its role
within the set. Note that this operation works only on M10 clusters and larger, one of
which you will create in section 9.3.2.

Listing 9.2  Output of the replSetGetConfig command

db.adminCommand("replSetGetConfig").config.members.map((m) =>
➥({ host: m.host, arbiterOnly: m.arbiterOnly, hidden: m.hidden,
➥priority: m.priority,
➥secondaryDelaySecs: m.secondaryDelaySecs,votes: m.votes }))
[
 {
 host: ' ac-5dhjxpf-shard-00-00.fpomkke.mongodb.net:27017',
 arbiterOnly: false,
 hidden: false,
 priority: 1,
 secondaryDelaySecs: Long("0"),
 votes: 1
 },
 {
 host: 'ac-5dhjxpf-shard-00-01.fpomkke.mongodb.net:27017',
 arbiterOnly: false,
 hidden: false,
 priority: 1,
 secondaryDelaySecs: Long("0"),
 votes: 1
 },
 {
 host: 'ac-5dhjxpf-shard-00-02.fpomkke.mongodb.net:27017',
 arbiterOnly: false,
 hidden: false,
 priority: 1,
 secondaryDelaySecs: Long("0"),
 votes: 1
 }
]

The output of the replSetGetConfig command—alternatively, you can use the
rs.config() mongosh helper—provides detailed information about each member of a
MongoDB replica set, including its roles and behaviors within the set. Here’s what the
specific fields in the output tell you:

¡	arbiterOnly—This Boolean value indicates whether the member is an arbiter.
Arbiters participate in elections but do not hold data.

¡	hidden—A hidden member is part of the replica set but is not visible to client
applications. Hidden members can vote in elections but are not eligible to
become primary. They do not accept read operations from clients. This setup
is particularly useful for dedicated backup members or for members intended
for reporting or analytics. These operations can run on hidden members with-
out affecting the operational performance of the primary or secondary members

200 Chapter 9  Using replication and sharding

visible to clients. Hidden members ensure data redundancy and availability for
specific tasks without influencing the primary selection process or serving client
requests.

¡	priority—This setting determines the member’s eligibility to become a primary
during elections. A higher priority value increases the member’s chances of
being elected as the primary. A member with a priority of 0 cannot become pri-
mary, effectively making it a secondary member that can only replicate data.

¡	secondaryDelaySecs—This field indicates whether the replica set member
is configured as a delayed member. Delayed members, which are required to be
hidden, replicate and perform operations with a specified delay. This delay is
intended to maintain a historical version of the replica set’s data. If it is 09:15,
and a member has a configured replication delay of one hour, the most up-to-
date operation applied to this member would represent the state of the data-
base at or before 08:15. These members provide a rolling backup and a historical
account of the data, acting as a protective measure against human errors. They
can assist in recovering from problems such as failed updates to applications or
accidental deletions of databases and collections.

¡	votes—This field indicates how many votes a member has in replica set elec-
tions. In most configurations, each member has one vote, but certain configura-
tions may change this to control the election process more finely.

Given that a replica set may comprise up to 50 members, with only 7 members eligi-
ble to vote, including nonvoting members enables a replica set to expand beyond 7
members. Members designated as nonvoting (their votes count is 0) must have their
priority set to 0.

9.1.2	 Electing primary replica-set member

MongoDB uses protocol version 1, which is based on the Raft consensus algorithm,
to manage elections within a replica set, thereby ensuring data consistency across dis-
tributed systems. This protocol features a voting system that enables the replica set to
determine which member will take on the primary role. Several scenarios can trigger
an election, such as

¡	The addition of a node to or removal of a node from the replica set

¡	Initialization of the replica set

¡	A heartbeat failure between any of the secondary members and the primary last-
ing longer than the preset timeout period (default: 10 seconds)

Figure 9.1 shows the process of electing a new primary in a MongoDB replica set when
the current primary becomes unavailable.

The replica that has the most up-to-date write timestamp has the highest probability
of being elected. This approach reduces the likelihood of a rollback when a former
primary is reintegrated into the set. The election also takes into account the term, a
monotonically increasing number representing the number of election attempts. The

	 201Ensuring data high availability with replication

term prevents double voting and
enables faster detection of simulta-
neous primaries and multiple suc-
cessful elections in a short period.
After an election, a freeze period is
implemented in which nodes are
prevented from starting another
election; this freeze aims to pre-
vent frequent successive elections
that could disrupt system stability.
At present, MongoDB replica sets
operate exclusively with a protocol
referred to as protocolVersion: 1
(PV1).

The replica set is prevented
from performing write operations
while the election is in progress.
Nonetheless, read queries can be processed during this time if they are configured
to be served by the secondary nodes. Typically, with the standard configuration of a
replica set, the cluster is expected to complete the election of a new primary in no more
than 12 seconds. This period includes the necessary steps of recognizing the primary
as unavailable, commencing the election, and concluding it with the selection of a new
primary. You can adjust the election duration by modifying the settings.election-
TimeoutMillis option in the replication configuration.

When an election concludes, MongoDB’s algorithm prioritizes high-priority second-
aries to initiate subsequent elections. Although these primaries are more likely to be
chosen, occasionally a lower-priority member temporarily becomes primary. Elections
persist until the highest-priority member assumes the primary role. Members with zero
priority do not become primary and are ineligible to initiate elections.

It’s crucial for your application’s connection-handling strategy to accommodate
automatic failovers and subsequent elections. MongoDB drivers are designed to detect
the loss of the primary and can automatically retry certain read or write operations
once, adding an extra layer of resilience to your application during elections.

TIP  You can find more details about the structure of a MongoDB replica set
in the official documentation at https://www.mongodb.com/docs/manual/
replication.

9.1.3	 Understanding the oplog collection

The oplog (operations log) is a capped collection that stores an ordered history of log-
ical writes to a MongoDB database. The oplog is the basic mechanism enabling repli-
cation in MongoDB. If write operations neither change data nor succeed, they won’t
generate oplog entries.

Figure 9.1  The election mechanism within a MongoDB
replica set is activated when the primary node becomes
nonoperational. The secondary replicas vote to elect a
new primary. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

Election for new primary

Election for new primary

Secondary

Primary

HeartbeatSecondary

Secondary
Heartbeat
Replication

Primary

https://www.mongodb.com/docs/manual/replication
https://www.mongodb.com/docs/manual/replication

202 Chapter 9  Using replication and sharding

MongoDB executes database operations on the primary node and logs these oper-
ations in the primary’s oplog. The primary streams these operations (push-based) to
the secondaries as they occur. Secondary nodes asynchronously replicate and execute
these operations. Every member of the replica set holds a copy of the oplog in the local
.oplog.rs collection, enabling them to keep up with the database’s current state. Every
operation recorded in the oplog is idempotent, meaning that the outcome of applying an
oplog operation to the target dataset remains consistent whether it is applied once or
multiple times.

Following is an example of a single document from the oplog collection. This log
entry captures a deletion event that occurred within the sample_mflix.sessions
namespace.

Listing 9.3  A single document from the oplog collection

 {
 op: 'd',
 ns: ' sample_mflix.sessions',
 ui: new UUID("99f8f10f-e144-4419-a543-da211dd1a2de"),
 o: { _id: ObjectId("65b1a0a4edf7e1f8d9ccc396") },
 ts: Timestamp({ t: 1710267182, i: 5 }),
 t: Long("38"),
 v: Long("2"),
 wall: ISODate("2024-03-12T18:13:02.838Z")
 },

This listing presents an example of a single document from the oplog collection. The
document details a delete operation (op: 'd') on the sessions collection within the
sample_mflix database. The operation has a unique identifier (ui) for the collection,
and the deleted document is identified by its _id. The operation was timestamped (ts)
at the moment of execution, with an increment (i) to ensure uniqueness. Addition-
ally, the term (t) indicates the replica set election term during which the operation was
logged, and the version (v) signifies the oplog entry format. Finally, the wall-clock time
(wall) indicates the actual time when the operation occurred.

Let’s see one more example. The following listing showcases an insert operation in
the MongoDB oplog for the sample_mflix.sessions collection. This operation adds
a new document containing user-specific data including user_id and jwt (JSON Web
Token).

Listing 9.4  An insert operation visible in oplog

{
 op: 'i',
 ns: 'sample_mflix.sessions',
 ui: new UUID("b2d3f810-g234-5239-b543-da211dd1a3cd"),
 o: {
 _id: ObjectId("5fc8a1d3bcf1b3298b3fdb78"),
 user_id: "12345",

	 203Ensuring data high availability with replication

 jwt: "token123456"
 },
 ts: Timestamp({ "t": 1720567182, "i": 1 }),
 t: Long("39"),
 v: Long("2"),
 wall: ISODate("2024-03-15T10:20:30.123Z")
}

The document, uniquely identified by a MongoDB ObjectId, contains session-specific
information such as the user’s ID and JWT. Metadata including the timestamp (ts),
operation sequence (i), transaction identifier (t), MongoDB oplog version (v), and
exact time of the operation (wall) offer comprehensive details on how the transac-
tion was processed within the MongoDB oplog, showcasing the database’s capability
for real-time logging and activity tracking.

Any secondary member can import oplog entries from any other member, facilitat-
ing a mechanism known as chained replication. This mode of replication manifests when
a secondary member opts to replicate from another secondary rather than directly
from the primary. Such a decision arises when a secondary member prioritizes replica-
tion targets by ping time, leading to situations in which the nearest available member is
another secondary.

Chained replication can reduce load on the primary. But chained replication can
also result in increased replication lag, depending on the topology of the network.

Listing 9.5 demonstrates the db.getReplicationInfo() command, which returns a
document with the status of the replica set, using data polled from the oplog. Use this
output to diagnose problems with replication. Note that this command works only on
M10 clusters and larger, one of which you will create in section 9.3.2.

Listing 9.5  Output of the db.getReplicationInfo() command

db.getReplicationInfo()
{
 configuredLogSizeMB: 4096,
 logSizeMB: 4096,
 usedMB: 4074.63,
 timeDiff: 635133,
 timeDiffHours: 176.43,
 tFirst: 'Wed Mar 20 2024 10:44:15 GMT+0000 (Coordinated Universal Time)',
 tLast: 'Wed Mar 27 2024 19:09:48 GMT+0000 (Coordinated Universal Time)',
 now: 'Wed Mar 27 2024 19:09:49 GMT+0000 (Coordinated Universal Time)'
}

The db.getReplicationInfo() method provides a snapshot of the replication status
within a MongoDB replica set by analyzing the oplog data. It reveals that the replica set
is configured with an oplog size of 4096 MB, which is fully matched by the actual oplog
size, indicating that the total allocated disk space for oplog entries is configured to its
capacity. The document shows that 4074.63 MB of the oplog space is currently in use,
highlighting the volume of replication data stored. It covers a time span of 635,133

204 Chapter 9  Using replication and sharding

seconds, equivalent to 176.43 hours, reflecting the duration between the earliest and
latest oplog entries. The timestamp of the first oplog entry is marked 'Wed Mar 20 2024
10:44:15 GMT+0000', establishing the beginning of the oplog window, whereas the last
entry is timestamped 'Wed Mar 27 2024 19:09:48 GMT+0000', and the current time is
'Wed Mar 27 2024 19:09:49 GMT+0000', closely following the latest oplog entry. This
information is important for understanding the operational and replication dynamics
within the replica set.

TIP  For script-based automation in MongoDB, use db.getReplication-
Info() because it outputs JSON, which is ideal for parsing. Conversely,
rs.printReplicationInfo() is suited for manual checks within mongosh
because it does not return JSON.

Oplog size

When you start a replica set member for the first time, MongoDB creates an oplog of
a default size if you don’t specify the size. On UNIX and Windows systems, the default
oplog size depends on the storage engine:

¡	For the In-Memory Storage Engine, the oplog size is set to 5% of the physical
memory, with a minimum of 50 MB and a maximum of 50 GB.

¡	The WiredTiger Storage Engine calculates the oplog size based on 5% of the
available disk space, with a bottom limit of 990 MB and a top limit of 50 GB.

Typically, the default oplog size is adequate for most situations. When an oplog occu-
pies 5% of the disk space and fills up after 24 hours of activity, for example, it allows
secondary nodes to pause copying entries from the oplog for up to 24 hours without
falling too far behind for replication.

Listing 9.6 shows the process of checking how behind the secondary nodes are in
copying data from the primary node in MongoDB. This check is made via the db.print-
SecondaryReplicationInfo() command, which shows how current the secondary
nodes are with the primary node’s data, using the oplog for synchronization.

Listing 9.6  Output of the db.printSecondaryReplicationInfo() command

db.printSecondaryReplicationInfo()
source: ac-5dhjxpf-shard-00-00.fpomkke.mongodb.net:27017
{
 syncedTo: 'Wed Mar 27 2024 18:21:52 GMT+0000
➥(Coordinated Universal Time)',
 replLag: '0 secs (0 hrs) behind the primary '
}

source: ac-5dhjxpf-shard-00-01.fpomkke.mongodb.net:27017
{
 syncedTo: 'Wed Mar 27 2024 18:21:53 GMT+0000
➥(Coordinated Universal Time)',
 replLag: '10 secs (0 hrs) behind the primary '
}

	 205Ensuring data high availability with replication

The command reveals the synchronization status of two replica set members with
the primary node. The first member, ac-5dhjxpf-shard-00-00.fpomkke.mongodb
.net:27017, is synchronized to the primary with no delay, showing a replication lag
of 0 seconds. The second member, ac-5dhjxpf-shard-00-01.fpomkke.mongodb
.net:27017, has a replication lag of 10 seconds, indicating that it is 10 seconds behind
the primary in receiving updates.

TIP  The db.printSecondaryReplicationInfo() method used in mongosh
does not produce JSON output. To check things yourself, use db.print
SecondaryReplicationInfo(); for automated scripts, use rs.status().

If your application mainly performs read operations with few writes, a smaller oplog
may suffice. But if your replica set’s activity is expected to follow any of these patterns,
consider using an oplog larger than the default size:

¡	Batch document updates—For maintaining idempotency, the oplog needs to break
batch updates into separate actions, consuming substantial oplog space without
necessarily increasing data or disk use.

¡	Equal volumes of data deletions and insertions—When data deletion volume
matches data insertion, disk use remains stable, yet oplog size can expand
significantly.

¡	Frequent in-place updates—When many updates alter existing documents without
enlarging them, the database logs numerous operations, keeping the data vol-
ume on disk constant.

TIP  Before mongod initializes an oplog, you can define its size with the oplog-
SizeMB parameter. After initiating a replica set member for the initial time,
employ the replSetResizeOplog admin command to modify the size of the
oplog. The replSetResizeOplog command allows dynamic resizing of the
oplog, eliminating the need to restart the mongod process.

Oplog window

The oplog window needs to be sufficiently large to ensure that a secondary can retrieve
all new oplog entries generated during the logical initial sync process (described in the
next section). If the window is too short, there’s a chance that entries will be purged
from the oplog before the secondary has a chance to apply them.

By default, MongoDB doesn’t enforce a minimum retention time for oplog entries;
it automatically trims the oldest ones to keep within the maximum size limit. You can
define a minimum time that an oplog entry must be kept, however. An entry will be
deleted only if it satisfies two conditions:

¡	The oplog’s size has hit its configured limit.

¡	The entry’s age exceeds the set number of hours based on the system clock of the
host.

206 Chapter 9  Using replication and sharding

TIP  To set the minimum oplog retention period when initiating mongod, you
can include the storage.oplogMinRetentionHours setting in the mongod con-
figuration file or use the command-line option --oplogMinRetentionHours.

MongoDB version 6.0 and later offers two different approaches to initial sync: logical
initial sync and file-based initial sync (limited to MongoDB Enterprise). File-based ini-
tial sync is designed for large data sizes (1 TB+). If a failure occurs—either due to falling
off the oplog or a transient network problem—MongoDB can resume a logical initial
sync within a 24-hour window, or a file-based initial sync within a shorter 10-minute
window. You can configure the time window of each approach with mongod parameters.

Logical initial sync process

During a logical initial sync, MongoDB does the following things:

¡	Clones all nonlocal databases by scanning and inserting data from each collec-
tion into its own versions

¡	Constructs indexes for each collection simultaneously with the document copy-
ing process

¡	Retrieves ongoing oplog entries while copying data, ensuring that the target
member has adequate disk space to store these oplog records temporarily

¡	Applies all data modifications using the oplog records to update its data set to the
current state of the replica set

¡	After completing the initial sync, changes the member status from STARTUP2 to
SECONDARY

MongoDB offers three methods for initial sync:

¡	Restart the mongod with an empty data directory, allowing MongoDB’s standard
initial sync process to restore the data. This method is simple, but replenishing
the data may take longer.

¡	Reboot the machine using a recent data directory copy from another replica set
member. This approach restores data faster but involves more manual effort.

¡	In MongoDB 6.0 and later, use the file-based initial sync approach by changing
the initialSyncMethod parameter passed to the mongod to fileCopyBased.

9.2	 Understanding change streams
Before the introduction of MongoDB change streams, tracking changes in a database
required polling or tailing the oplog, which was both complex and inefficient. Devel-
opers had to query the database or oplog repeatedly to detect changes, often resulting
in performance problems and increased latency in data processing. With the advent
of MongoDB change streams, you can subscribe to real-time updates on changes
(inserts, updates, deletes, and more) across a MongoDB collection, a database, or even
the entire deployment. This feature provides a continuous, event-driven stream of
data that reflects changes in the underlying data source. For applications that rely on

	 207Understanding change streams

real-time notifications of data changes, change streams are essential. The main bene-
fits of using MongoDB change streams include

¡	Access control—Change streams respect MongoDB’s role-based access control
(RBAC, explained in chapter 20), allowing only authorized applications to access
data changes based on their read permissions.

¡	Reliable API—Change streams offer a consistent, well-documented API across all
MongoDB drivers, ensuring reliable change-event notifications.

¡	Data durability—Change events are guaranteed to be committed to a majority of
the replica set, reducing the risk of data rollbacks during failovers.

¡	Ordered changes—MongoDB ensures a global order of changes across shards,
making it safe to process events in the order in which they arrive.

¡	Resumability—Change streams can resume from the last known event after a net-
work error or restart, using a resume token. A resume token is a unique identifier gen-
erated for each event in a MongoDB change stream, allowing the stream to resume
exactly where it left off after an interruption, such as a network error or restart.

¡	Aggregation pipeline integration—Applications can filter or modify change events
server-side using MongoDB’s aggregation pipeline, enhancing data processing
efficiency.

Change streams are available for replica sets and sharded clusters, and they require
specific conditions to operate effectively:

¡	They require the WiredTiger storage engine.

¡	They must operate on replica set PV1.

9.2.1	 Connections for a change stream

To establish connections for a change stream, you can use the +srv connection option
with Domain Name System (DNS) seed lists or specify the servers directly in the con-
nection string. When a driver loses its connection to a change stream or the connection
fails, it tries to reconnect using another node in the cluster that meets the specified
read preference. If it doesn’t find a suitable node, it generates an exception.

You can initiate change streams on individual collections (except system, admin,
local, and config collections), entire databases (excluding admin, local, and config
databases), or across the entire deployment (replica sets or sharded clusters), exclud-
ing system collections and certain databases. This functionality has expanded over vari-
ous MongoDB versions, allowing broader monitoring scopes.

Let’s start with mongosh. The following operation in mongosh opens a change-stream
cursor on the sample_mflix database. The returned cursor reports on data changes to
all the nonsystem collections in that database:

> watchCursor = db.getSiblingDB("sample_mflix").watch()
ChangeStreamCursor on sample_mflix
>

208 Chapter 9  Using replication and sharding

To monitor these changes, iterate through the cursor to monitor new events. As in the
following listing, combine the cursor.isClosed() method with cursor.tryNext() to
ensure that the iteration stops only when the change-stream cursor is closed and no
more documents are left in the current batch.

Listing 9.7  The cursor.tryNext() nonblocking method

// Iterate over the cursor to monitor for new events
while (!watchCursor.isClosed()) {
 let next = watchCursor.tryNext();
 // Continue retrieving the next document in the cursor as
➥ // long as there is a next document
 while (next !== null) {
 printjson(next); // Print the next document
 next = watchCursor.tryNext(); // Try to get the next document
 }
}

Now add a single document to the collection to observe how change streams work. To
do this, use mongosh to open a new connection. Next, execute the following insertion
operation to add a new document to the sessions collection in the sample_mflix
database, containing fields for user_id and jwt:

db.getSiblingDB("sample_mflix").sessions.insertOne({
 user_id: "12345",
 jwt: "token123456"
});

The change-stream cursor captures and returns the operation’s details, showing the
insertion action, its timing, and the full document content. The following listing shows
the returned document.

Listing 9.8  Change-stream cursor

{
 _id: {
 _data: '8266073FD1000000022B022C0100296E5A1004E43
➥C0CEEB6D74D84814318056E6EECDC46645F6964006466073FD1359139DD
➥FE70B1D70004'
 },
 operationType: 'insert',
 clusterTime: Timestamp({ t: 1711751121, i: 2 }),
 wallTime: ISODate("2024-03-29T22:25:21.073Z"),
 fullDocument: {
 _id: ObjectId("66073fd1359139ddfe70b1d7"),
 user_id: '12345',
 jwt: 'token123456'
 },
 ns: {
 db: 'sample_mflix',

	 209Understanding change streams

 coll: 'sessions'
 },
 documentKey: {
 _id: ObjectId("66073fd1359139ddfe70b1d7")
 }
}

Every change event comes with an _id field, which holds a document. This document
acts as a resume token for restarting a change stream. To resume a change stream, you
specify this resume token using resumeAfter or startAfter when opening the cursor.

TIP  In change-stream event documents, the _id field is the resume token.
Don’t change or delete the _id field with the pipeline. From MongoDB 4.2 on,
if the pipeline changes an event’s _id field, change streams return an error.

9.2.2	 Changing streams with Node.js

You can use Node.js to set up a change stream specifically for the sessions collection
within the sample_mflix database. This setup allows you to monitor and log changes
in that collection alone. Listing 9.9 demonstrates how to implement this change
stream in JavaScript using the MongoDB Node.js driver. This code initializes a change
stream on the sessions collection and iterates over it to process the change-stream
documents.

Listing 9.9  Monitoring a change stream in Node.js

const { MongoClient } = require('mongodb');

const uri = "<connection string uri>"
const client = new MongoClient(uri, { serverApi: '1' });

async function monitorChangeStream() {
 try {
 await client.connect();
 const database = client.db("sample_mflix");
 const sessionsCollection = database.collection('sessions');
 const changeStream = sessionsCollection.watch();

 console.log("Listening for changes in the sessions collection...");
 await changeStream.forEach(change => {
 console.log("Received a change in the sessions collection:", change);
 });
 } catch (error) {
 console.error("Error watching change stream for sessions
➥collection:", error);
 } finally {

Replaces the uri string with your connection string. Example:
const uri = "mongodb+srv://<username>:<password>

@mongodb-in-action.fpomkke.mongodb.net".

210 Chapter 9  Using replication and sharding

 await client.close();
 }
}

monitorChangeStream();

Replace "<connection string uri>" with the genuine MongoDB connection string
specific to your database. This script establishes a connection to the sample_mflix
database using MongoDB’s Node.js driver and monitors the sessions collection for
any changes in real time. When it detects a change (such as an insert, update, or delete
operation), it outputs the details of that change to the console. It’s useful for tracking
and responding to data modifications in the sessions collection as they happen.

9.2.3	 Modifying the output of a change stream

Tailoring the change stream to specific needs is straightforward. You can control the
output of the change stream by providing an array of one or more pipeline stages during
its setup. These stages could include $addFields, $match, $project, $replaceRoot,
$replaceWith, $redact, $set, and $unset, allowing for extensive customization of the
data received from the change stream. This allows you to filter the complete change
stream down to only those changes you want to listen for. The following example shows
how to modify the change stream’s output with Node.js.

Listing 9.10  Modifying change-stream output with Node.js

const { MongoClient } = require('mongodb');

const uri = "<connection string uri>"

async function monitorChangeStream() {
 const client = new MongoClient(uri, { apiVersion: '1' });
 await client.connect();
 const sessionsCollection =
➥client.db("sample_mflix").collection('sessions');

 const pipeline = [
 { $match: { 'fullDocument.user_id': '12345' } },
 { $addFields: { newField: 'this is an added field!' } }
];
 const changeStream = sessionsCollection.watch(pipeline);

 changeStream.on('change', next => {
 console.log("Received a change in the sessions collection:", next);
 });
}

monitorChangeStream();

Replaces the uri string with your connection string. Example:
const uri = "mongodb+srv://<username>:<password>

@mongodb-in-action.fpomkke.mongodb.net".

	 211Scaling data horizontally through sharding

Replace "<connection string uri>" with the genuine MongoDB connection string
specific to your database. This script connects to the sample_mflix database, targets
the sessions collection, and sets up a change stream that filters for changes in docu-
ments in which user_id equals 12345. Then it augments each detected change event
with an additional field (newField) and outputs the modified event to the console.
The script continuously monitors the collection for such changes, providing real-time
updates when they occur.

9.3	 Scaling data horizontally through sharding
When databases become sizable or encounter high processing loads, a single server
may become insufficient. An influx of queries can exhaust the CPU resources of the
server, for example. Likewise, if the data volume surpasses the server’s RAM capacity,
it can strain the disk’s I/O capabilities. Also, as data volume increases, a problem with
the capacity of the disks may occur.

To manage growth, systems can scale in two ways: vertically by enhancing the capabil-
ities of a single server (such as increasing its CPU, RAM, or storage) or horizontally by
integrating additional servers into the architecture.

Vertical scaling makes a single server more powerful, such as by upgrading its CPU,
adding RAM, or expanding storage. There’s a limit to how much a single server can be
upgraded, however, due to technological constraints and the maximum configurations
offered by cloud providers.

Horizontal scaling spreads the data and workload across many servers, enhancing
capacity by adding more servers as needed. This approach doesn’t rely on a single
powerful machine but uses multiple units to handle parts of the workload, often more
cost-effectively. The downside is added complexity in managing and maintaining a
larger network of servers.

MongoDB uses sharding to partition data across multiple servers, enabling horizon-
tal scaling and improved handling of large data volumes and high transaction rates. A
MongoDB sharded cluster can consist of any number of shards (separate servers), each
holding a fragment of data distributed across all machines. The total database size can
easily exceed 100 TB; in fact, it’s difficult to define an upper size limit.

Sharding occurs at the collection level within a database, which may contain both
sharded and unsharded collections. Although sharded collections are split and dis-
persed among various shards within the cluster, unsharded collections reside on a pri-
mary shard. You can move these unsharded collections to other shards in MongoDB
8.0+ using the moveCollection command. Each database is assigned its own primary
shard to manage these collections.

How can I be certain of the maturity and effectiveness of MongoDB’s sharding capa-
bility for powering large-scale database clusters? This confidence comes from my expe-
rience working for a company in Munich, where I managed the operation of MongoDB
sharded clusters. Each cluster was immense, exceeding 130 TB, with up to 135 shards
per cluster. It was and perhaps still is the largest MongoDB farm in Europe. But for

212 Chapter 9  Using replication and sharding

such a large cluster to function efficiently, both in operational terms and data-access
logic, several requirements must be fulfilled, and I discuss them in this chapter.

The biggest challenge is managing this type of cluster, especially when the number
of shards along with replica sets is large. I don’t recommend running such clusters with-
out the proper tools because it is difficult to meet challenges such as backups, restores,
and upgrades.

You can employ Ops Manager, which is ideally suited for managing sharded clusters,
by using agents installed on each server within the cluster. These agents automate tasks
such as starting and stopping mongod processes, upgrading and downgrading database
versions, performing backups and restores, and monitoring.

You can also run a MongoDB sharded cluster on Kubernetes with the MongoDB
Enterprise Kubernetes Operator, using Kubernetes’ native capabilities. Together with
Ops Manager, this operator is a powerful tool for automating MongoDB sharded clus-
ter operations.

Further, you have the option to create and operate a MongoDB sharded cluster using
MongoDB Atlas. This book focuses on launching a sharded cluster with MongoDB
Atlas.

9.3.1	 Viewing sharded cluster architecture

A MongoDB sharded cluster architecture includes the following:

¡	Shards—Each shard contains a portion of the sharded data and functions as a
replica set. The cluster can consist of 1 to n shards, with each shard holding a
subset of the overall data. I recommend having shards no larger than 1 TB each.
This limit facilitates faster index building, accelerates initial synchronization,
and improves the efficiency of backup and restore processes.

¡	mongos—mongos functions as the gateway for client applications and enables
tools such as mongosh to interact with the cluster, adeptly handling both read and
write operations. It routes client requests to the suitable shards and amalgam-
ates the outcomes from the shards into a unified client response. Connections
to the cluster are made via mongos instances instead of directly to the shards. For
high availability, I advise operating multiple mongos instances within production
environments.

¡	Config servers—These servers operate as a replica set and serve as the special-
ized storage for sharding metadata, which is crucial for the cluster’s opera-
tions. The metadata stored includes information about the composition of the
sharded data, such as the list of sharded collections and the specifics of data
routing. The role of config servers is vital for the efficient management and
direction of queries within the sharded cluster. Starting with MongoDB version
8.0, configuration servers can be embedded in sharded clusters, simplifying
the architecture and reducing infrastructure costs without affecting scale and
performance.

	 213Scaling data horizontally through sharding

MongoDB shards data at the collection level, distributing collection data across all the
shards in the cluster. Some collections can be sharded; others may not be. There is no
strict requirement that every collection be sharded. Figure 9.2 illustrates the interac-
tion of components within a sharded cluster.

Application

Driver

Driver

Primary

Shard1

Secondary

Secondary

Primary

Shard2

Secondary

Secondary

Primary

Shard3

Secondary

Secondary

Primary

Shard4: Config shard

Secondary

Secondary

Figure 9.2  This MongoDB sharded cluster configuration includes multiple app servers connected to
routers (mongos), which direct queries to the appropriate shard. Three shards, each of which is a replica
set, hold segments of the data. Also, an embedded config shard contains the config servers (along
with user data), which hold the cluster’s metadata. Starting with MongoDB 8.0, config servers can be
embedded in sharded clusters. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

Sharding enables the scaling of your database to handle more extensive load capacity
by enhancing read/write throughput and thereby expanding storage capability. Let’s
delve into these aspects more closely:

¡	Enhanced read/write throughput—Distributing the data set over several shards
boosts capacity for read and write operations, especially when these operations
are restricted to individual shards.

¡	Expanded storage capability—Adding more shards increases the total storage capac-
ity of the database, facilitating near-limitless scalability.

¡	Data locality—Zone sharding permits you to allocate databases across varied
geographical zones, which is optimal for distributed applications. Through
policy enforcement, you can confine data to specific regions, each holding one
or more shards, thus enhancing both efficiency and adaptability in data man-
agement. Zone sharding associates different shard-key value ranges with each
zone, allowing swifter, more accurate data retrieval pertinent to geographical
significance.

214 Chapter 9  Using replication and sharding

9.3.2	 Creating sharded clusters via Atlas CLI

In this section, you create a MongoDB Atlas sharded cluster. These clusters are not free
in Atlas, unlike the M0 cluster you set up in chapter 1, so you need to set up a payment
method if you haven’t already. To do this, see the official MongoDB documentation at
https://mng.bz/AGVW.

After adding a payment method, you’re ready to use the Atlas command-line inter-
face (CLI) to set up your first Atlas sharded cluster. Use the "MongoDB 8.0 in Action"
project you created in chapter 2.

Remember that the setup process is fully automated. Atlas handles the configuration
of your shards and deployment of config servers and mongos processes, which manage
your cluster’s metadata and query routing, respectively.

Begin with a two-shard cluster for simplicity. Note that Atlas allows a variety of shard
counts, from one to many, yet sharding is available only for clusters that are on the M30
tier or higher. This command

atlas clusters create "MongoDB-in-Action-Sharded"
--provider GCP
--region CENTRAL_US --tier M30 --type SHARDED --shards 2
--mdbVersion 8.0

Cluster 'MongoDB-in-Action-Sharded' is being created.

creates a new sharded cluster named "MongoDB-in-Action-Sharded" in MongoDB
Atlas. It sets the cloud service provider to Google Cloud Platform (GCP) and selects
the CENTRAL_US region for deployment. The cluster is created with the M30 tier, which
supports sharding and is configured with two shards. The MongoDB version to be
deployed on this cluster is 8.0.

After a few minutes, you can check the status of your new sharded cluster using the
following Atlas CLI command:

atlas clusters list ID NAME MDB VER
6609c17a7396d94a17a9fb78 MongoDB-in-Action-Sharded 8.0.4

Figure 9.3 shows the MongoDB Atlas UI displaying the details of a new sharded
cluster.

TIP  If you’re not using your cluster for production purposes, you can pause it at
any time to save costs. To use the Atlas CLI for this purpose, issue the command
atlas clusters pause "MongoDB-in-Action-Sharded", and to start the cluster,
issue the command atlas clusters start "MongoDB-in-Action-Sharded".

You also need to add a sample data set. Atlas creates databases and collections with test
data, which are necessary for sharding the collections. Again, use the Atlas CLI:

atlas clusters sampleData load "MongoDB-in-Action-Sharded"

https://mng.bz/AGVW

	 215Scaling data horizontally through sharding

Figure 9.3  Each of the two shards—atlas-up0q2r-config (config shard) and atlas-up0q2r-shard-0—is
a replica set with three nodes. In MongoDB 8.0+, a config server storing metadata and application data is called
a config shard. Both shards are located in the Iowa (us-central1) region. Key statistics such as disk use,
operations, and connections over the past six hours, are displayed. Each node is labeled PRIMARY or SECONDARY,
indicating the node’s replication status within the sharded cluster. (Image © MongoDB 2025)

In a few minutes, loading the sample data results in the creation of test databases and
documents within their collections. Remember to display the connection string. You
can interact with the cluster via mongosh or drivers:

atlas clusters connectionStrings describe "MongoDB-in-Action-Sharded"

STANDARD CONNECTION STRING
mongodb+srv://mongodb-in-action-shard.nu96v.mongodb.net

NOTE  Your connection string will be different. Check it on your console.

Now connect mongosh to your Atlas sharded cluster, using the 'manning' user you cre-
ated in chapter 2 at the project level. This user is active in your new cluster, which is
part of the project.

Note that this time, you are connected directly to mongos, not to the primary replica
set member, as was the case in chapter 2 when you created a MongoDB replica set:

mongosh "mongodb+srv://mongodb-in-action-shard.nu96v.mongodb.net" \
--apiVersion 1 --username 'manning'

Atlas [mongos] test> show dbs
admin 296.00 KiB
config 2.26 MiB
sample_airbnb 52.21 MiB

216 Chapter 9  Using replication and sharding

sample_analytics 9.52 MiB
sample_geospatial 1.24 MiB
sample_guides 40.00 KiB
sample_mflix 111.07 MiB
sample_restaurants 6.19 MiB
sample_supplies 1.03 MiB
sample_training 47.62 MiB
sample_weatherdata 2.56 MiB
Atlas [mongos] test>

mongos is your interface for managing queries and distributing them across the various
shards of a MongoDB sharded cluster. The show dbs command displays the list of data-
bases created during loading of the sample data set.

9.3.3	 Working with a shard key

MongoDB shards data at the collection level, distributing the collection data across the
shards in the cluster using the shard key, which is made up of one or more fields within
the documents. The choice of a shard key is pivotal in sharding clusters because an
unsuitable selection may lead to inefficient distribution of data, create load imbalances
across the shards, and result in subpar query performance. In certain scenarios, an
overwhelmed shard, often referred to as a hot shard, may underperform and become
a system bottleneck, adversely affecting the overall performance of the cluster. There-
fore, it is crucial to choose an appropriate shard key to ensure optimal functionality
within a sharded setup.

MongoDB uses the shard key, composed of one or more fields from the documents,
to disperse the documents across the different shards. The data set is segmented into
distinct, nonoverlapping chunks based on the range of shard-key values. The objective
is to distribute these chunks as evenly as possible throughout the shards of a cluster,
achieving an efficient distribution.

Recent updates to MongoDB have made significant enhancements in sharding:

¡	From version 4.4 on, sharded collection documents can lack shard-key fields,
which are treated as null for distribution purposes.

¡	From MongoDB 4.4 on, you can augment a shard key by adding a suffix field or
multiple fields to an existing shard key.

¡	Version 5.0 introduces the ability to reshard a collection by changing its shard
key.

¡	Version 8.0 introduces embedded config servers in sharded clusters, allowing
you to move unsharded collections to different shards without sharding the col-
lections and selecting a shard key, improving the resharding process and making
it four times faster.

9.3.4	 Choosing a shard key

MongoDB offers two primary sharding strategies for distributing data across sharded
clusters. The first strategy is ranged sharding, which involves partitioning data into

	 217Scaling data horizontally through sharding

continuous sequences according to the values of the shard key. Documents with similar
shard-key values are initially stored in the same chunk, but MongoDB’s balancer may
redistribute chunks across shards as needed. An optimal shard key ensures even distri-
bution of documents across the cluster (to prevent bottlenecks) and aligns well with
common query patterns (to reduce scatter-gather queries). To choose an appropriate
key for the ranged sharding strategy, consider the following:

¡	Query pattern analysis—Identify the most frequent read and write operations in
your application. The optimal shard key ensures an even spread of data across
the sharded cluster and supports frequent query patterns. When you choose a
shard key, consider whether a given shard key covers your most common query
patterns.

¡	Cardinality—Choose a shard key with high cardinality (a large number of unique
values) to prevent clustering of data on a few shards.

¡	Frequency—Ensure that the shard-key values are evenly distributed. If certain
values occur too frequently (using 'status' as a shard key, for example, where
'active' is a common value that can lead to an excessive concentration of data
on one shard), data skew may result, causing bottlenecks.

¡	Monotonically changing shard keys—Using a consistently increasing or decreasing
shard key, such as a datetime stamp, can lead to write bottlenecks. This happens
because such keys concentrate new data into specific chunks (e.g., datetime
stamp increases direct inserts to the maxKey chunk), causing an uneven load and
affecting performance.

The second strategy is hashed sharding, which computes a hash value of the shard key
field’s value and then assigns each chunk a range based on these hashed values. Even
if shard-key values in a set are close numerically, the corresponding hashed values are
likely to be distributed across different chunks. It’s crucial to understand that hashed
sharding isn’t suitable for range-based queries. Hashed keys help counteract problems
caused by fields that change in a predictable, monotonic fashion, such as ObjectId
values and timestamps. An example is the default _id field, provided that it contains
ObjectId values.

A shard-key index could be a single ascending index on the shard key, a compound
index beginning with the shard key in ascending order, or a hashed index.

NOTE  A shard-key index must not be a descending index on the shard key, a
partial index, or any geospatial, multikey, text, or wildcard index type.

9.3.5	 Using a shard-key analyzer

Beginning with version 7.0, MongoDB simplifies selecting a shard key. The analyze-
ShardKey command provides metrics to assess a potential shard key for unsharded or
sharded collections. These metrics, derived from sampled queries, facilitate a data-
driven decision on your shard key.

218 Chapter 9  Using replication and sharding

Let’s see how this looks in practice and enable sharding on the routes collection,
which is located in the sample_training database in the Atlas test data set. Following is
an example document from the routes collection.

Listing 9.11  Single document from the sample_training.routes collection

Atlas [mongos] sample_training> db.routes.findOne()
{
 _id: ObjectId('56e9b39b732b6122f877fa36'),
 airline: { id: 410, name: 'Aerocondor', alias: '2B', iata: 'ARD' },
 src_airport: 'DME',
 dst_airport: 'NBC',
 codeshare: '',
 stops: 0,
 airplane: 'CR2'
}Atlas [mongos] sample_training >

The document contains flight route information, including airline details, source and
destination airports, codeshare status, number of stops, and airplane type, illustrating
the data structure for a flight route in the database. Let’s assume that the most fre-
quent query on this collection follows the pattern

{"src_airport": <value>, "dst_airport": <value>, "airline.name": <value>}

Using the shard-key analyzer, check whether a shard key composed of these fields is
good enough to be the basis of the sharding logic for this collection.

Enabling query sampling

Next, you must enable query sampling on the target sample_training.routes collec-
tion. The shard-key analyzer needs these statistics to determine whether the proposed
key is good enough. Execute this command:

db.collection.configureQueryAnalyzer(
 {
 mode: <string>,
 samplesPerSecond: <double>
 }
)

The following code shows how to enable query sampling on the routes collection.
This step is crucial for assessing the effectiveness of the shard key by analyzing the col-
lection’s query patterns.

Listing 9.12  Enabling query sampling

Atlas [mongos] sample_training>
➥db.routes.configureQueryAnalyzer({ mode: "full", samplesPerSecond: 1 })
{
 newConfiguration: { mode: 'full', samplesPerSecond: 1 },

	 219Scaling data horizontally through sharding

 ok: 1,
 '$clusterTime': {
 clusterTime: Timestamp({ t: 1712592942, i: 1 }),
 signature: {
 hash: Binary.createFromBase64('cQVeIvFIgltUun2S4ycqZT+VEGw=', 0),
 keyId: Long('7352622473289924630')
 }
 },
 operationTime: Timestamp({ t: 1712592934, i: 1 })
}
Atlas [mongos] sample_training>

The db.routes.configureQueryAnalyzer command used in the sample_training
database sets the query analyzer for the routes collection to full mode, with a rate of
one sample per second. This setup enables detailed query tracking on the collection.

Analyzing a shard key

Now you can move on to analyzing the proposed shard key, which is created on the
fields {"src_airport": 1, "dst_airport": 1, "airline.name": 1} because the most
frequent query on this collection follows the pattern: {"src_airport": <value>,

"dst_airport": <value>, "airline.name": <value>}. The first step is creating a
supporting compound index on these fields:

Atlas [mongos] sample_training>
➥db.routes.createIndex({ src_airport: 1,
➥dst_airport: 1, "airline.name": 1 })
src_airport_1_dst_airport_1_airline.name_1

Next, execute a few trial queries on real data to generate statistics:

db.routes.find({"src_airport": "YRB", "dst_airport": "YGZ",
➥"airline.name": "Askari Aviation" })

This query searches the routes collection of the database for flights in which the source
airport is "YRB", the destination airport is "YGZ", and the airline name is "Askari
Aviation". Substitute different values in this query pattern to try it out. Review the
routes collection to see which src_airport, dst_airport, and airline names you can
use to generate queries. Then check how effective the proposed shard key is by using
the command db.routes.analyzeShardKey(({ src_airport: 1, dst_airport: 1,
"airline.name": 1 }), as shown in the next listing.

Listing 9.13  Analyzing a proposed shard key

Atlas [mongos] sample_training>
➥db.routes.analyzeShardKey({ src_airport: 1,
➥dst_airport: 1,"airline.name": 1 })
{
 keyCharacteristics: {
 numDocsTotal: Long('66985'),

220 Chapter 9  Using replication and sharding

 avgDocSizeBytes: Long('184'),
 numDocsSampled: Long('66985'),
 isUnique: false,
 numDistinctValues: Long('66984'),
 mostCommonValues: [
 {
 value: {
 src_airport: 'HAM',
 dst_airport: 'AMS',
 'airline.name': 'Eurowings'
 },
 frequency: Long('2')
 },
 {
 value: {
 src_airport: 'KTM',
 dst_airport: 'DXB',
 'airline.name': 'Fly Dubai'
 },
 frequency: Long('1')
 },
 {
 value: {
 src_airport: 'ADB',
 dst_airport: 'ARN',
 'airline.name': 'SunExpress'
 },
 frequency: Long('1')
 },
 {
 value: {
 src_airport: 'FOC',
 dst_airport: 'TNA',
 'airline.name': 'Air China'
 },
 frequency: Long('1')
 },
 {
 value: {
 src_airport: 'DTW',
 dst_airport: 'MEX',
 'airline.name': 'AeroMéxico'
 },
 frequency: Long('1')
 }
],
 monotonicity: {
 recordIdCorrelationCoefficient: 0.0163877874,
 type: 'not monotonic'
 }
 },
 readDistribution: {
 sampleSize: {
 total: Long('525'),
 find: Long('525'),

	 221Scaling data horizontally through sharding

 aggregate: Long('0'),
 count: Long('0'),
 distinct: Long('0')
 },
 percentageOfSingleShardReads: 84.1904761905,
 percentageOfMultiShardReads: 12.1904761905,
 percentageOfScatterGatherReads: 3.6190476191,
 writeDistribution: {
 sampleSize: {
 total: Long('0'),
 update: Long('0'),
 delete: Long('0'),
 findAndModify: Long('0')
 }
 },
 ok: 1,
 '$clusterTime': {
 clusterTime: Timestamp({ t: 1712596218, i: 99 }),
 signature: {
 hash: Binary.createFromBase64('E31gLvizNd2gwwpFIx9AESXDg8A=', 0),
 keyId: Long('7352622473289924630')
 }
 },
 operationTime: Timestamp({ t: 1712596218, i: 99 })
}
Atlas [mongos] sample_training>

analyzeShardKey returns metrics about the key characteristics of a shard key and its
read and write distribution. The metrics are based on sampled queries.

The shard-key analysis for { src_airport: 1, dst_airport: 1, "airline.name":
1 } on the routes collection yielded detailed metrics. The key is not unique, yet it
distinguishes a high number of values (66,984 distinct values out of 66,985 total doc-
uments), facilitating effective data distribution across shards. The query distribution
data shows that 84.19% of reads were single-shard, indicating the shard key’s strong
query-isolation capabilities and enhancing performance by directing queries efficiently
to the relevant shard. The analysis also shows multishard (12.19%) and scatter-gather
reads (3.62%), suggesting that some queries span multiple shards, which could affect
performance and may require further optimization.

The monotonicity aspect is marked by a recordIdCorrelationCoefficient of
0.0163877874, denoting a not-monotonic sequence. This lack of strict sequencing
in the shard-key values relative to document insertion means that there is less risk of
creating write hotspots on specific shards, leading to more balanced shard use over
time.

In this way, you can evaluate the adequacy of your proposed shard key before creat-
ing it. If you are satisfied with the analysis results for your key and are confident that it
is sufficiently good (it’s better to spend more time analyzing to create the best possible
key at the outset rather than change the shard key later), you can initiate sharding on
the routes collection by executing this command:

222 Chapter 9  Using replication and sharding

sh.shardCollection("sample_training.routes",
 { src_airport: 1, dst_airport:1,"airline.name": 1 })

TIP  Use sh.status() to print a formatted report of the sharding configura-
tion and information on existing chunks in a sharded cluster.

9.3.6	 Detecting shard-data imbalance or uneven data distribution

There may be an existing imbalance or uneven distribution of your data across your
shards, which you can identify by using various commands. The sh.status() com-
mand provides a summary overview of the sharded cluster, including the number of
chunks per shard. If one or more shards have significantly more chunks than others,
this may indicate an imbalance. The db.collection.getShardDistribution() com-
mand provides detail on the size of data and the number of documents on each shard
for a specific collection. An uneven distribution of either metric may indicate an imbal-
ance. $shardedDataDistribution is an aggregation stage that provides details on each
sharded collection in the database. Starting with MongoDB 8.0, it provides details on
the primary shard only when chunks or orphan documents are present.

To analyze the total size and number of chunks per shard, use the following aggrega-
tion pipeline stage:

db.getSiblingDB("config").chunks.aggregate([
 { $group: { _id: «$shard», totalSize: { $sum: «$size» },
➥count: { $sum: 1 } } }
])

If a large difference exists in the sizes or the chunk counts across the shards, it is likely
that you have an uneven distribution. These commands provide information to help
you determine whether to take any additional steps.

9.3.7	 Resharding a collection

The optimal shard key for MongoDB ensures uniform document distribution across
the cluster and supports frequent query patterns. An inadequate shard key might
cause uneven data distribution, leading to performance or scalability problems. From
MongoDB 5.0 onward, it’s possible to modify the shard key of a collection, allowing a
redistribution of data throughout the cluster.

Resharding operates straightforwardly. Executing the reshardCollection com-
mand initiates the creation of a new, implicitly empty collection by MongoDB, using
the specified new shard key; then data is transferred chunk by chunk from the current
collection. The balancer needs a 2-second lock to ascertain the fresh data arrangement.
Throughout the copying phase, however, the application can access and modify the col-
lection without disturbances. As a result of this copying phase, the larger the collection
is, the longer the resharding process takes.

	 223Scaling data horizontally through sharding

Before beginning the resharding process, you must meet certain prerequisites,
which can be costly in some instances:

¡	Disk space—Ensure that you have at least 1.2 times the size of the collection you
plan to reshard. For a 1 TB collection, you should have at least 1.2 TB of available
disk space.

¡	I/O capacity—This metric should remain below 50%.

¡	CPU use—This metric should stay below 80%.

It’s crucial to assess available resources on each shard.

TIP  The database does not enforce these requirements, so not allocating
enough resources can cause the database to run out of space and shut down,
lead to decreased performance, and extend the duration of the resharding
operation beyond expected time frames. I advise you to reshard your collec-
tion during times of lower traffic within your application, if possible.

Another crucial aspect is updating your application’s queries. For optimal database
performance during resharding, the queries should apply filters for both existing and
new shard keys. You can remove the old shard-key filters from your queries only when
the resharding process is complete.

You also need to be aware of other constraints:

¡	Resharding cannot occur while an index is being built.

¡	Certain queries—such as deleteOne(), findAndModify(), and updateOne()—
produce errors unless the current and new shard keys are included.

¡	You can reshard only one collection at a time.

¡	Operations such as addShard(), removeShard(), dropDatabase(), and
db.createCollection() are not possible during resharding.

¡	The new shard key must not have a uniqueness constraint, and resharding collec-
tions with a uniqueness constraint is unsupported.

If you meet these requirements and want to start the resharding process, execute the
following command:

db.adminCommand({
 reshardCollection: "<database>.<collection>",
 key: <new shardkey>
})

To monitor the resharding operation, use the $currentOp pipeline stage:

db.getSiblingDB("admin").aggregate([
 { $currentOp: { allUsers: true, localOps: false } },
 {
 $match: {
 type: "op",

224 Chapter 9  Using replication and sharding

 "originatingCommand.reshardCollection": "<database>.<collection>"
 }
 }
])

NOTE  Remember that the resharding operation requires proper preparation
and can take a long time for large databases, so it’s best to choose the optimal
shard key from the beginning so you don’t have to change it later.

WARNING  If the resharded collection uses Atlas Search, the search index is
unavailable upon completion of the resharding operation. You have to rebuild
the search index manually when the resharding process is complete.

9.3.8	 Understanding chunk balancing

MongoDB structures sharded data into units known as chunks or ranges. From version
5.2 on, each chunk defaults to 128 MB, an increase from the previous 64 MB. A chunk
is defined by a lower bound (inclusive) and an upper bound (exclusive) set by the
shard key, holding a continuous sequence of shard-key values within a shard. With the
release of MongoDB 6.1, chunks ceased to autosplit; now they split only when trans-
ferred between shards. Before MongoDB 6.1, an autosplitter split chunks when they
exceeded the maximum chunk size.

In MongoDB 6.0.3 and later, sharded clusters distribute data based on the size of
the data, not merely the count of chunks. A background process known as the balancer
ensures that each shard for every sharded collection has a uniform data distribution,
moving chunks across shards to maintain balance. When a shard for a sharded collec-
tion reaches certain data limits, the balancer redistributes the data to maintain unifor-
mity across shards, respecting any set zones.

This balancing act is managed by the primary node of the config server replica set
(CSRS) and typically remains transparent to users and the Application layer, although
you may notice slight performance effects during its operation. The balancer limits
each shard to a single migration at a time, preventing concurrent data migrations on
one shard. Although MongoDB allows for parallel migrations, a shard can only be
involved in one migration at any time. In a cluster with n shards, MongoDB can handle
up to n/2 migrations at the same time.

Balancing rounds are initiated when the data difference between the most- and least-
loaded shards for a collection exceeds a set threshold. If the range size is 128 MB and
the data variation exceeds 384 MB (three times the range size), a migration is triggered.

It’s good practice to set a specific time frame for the balancer’s operations, known
as the balancing window or balancer window, to minimize disruption to peak production
traffic. To schedule the balancing window, connect to mongos using mongosh, and switch
to the config database:

use config

	 225Scaling data horizontally through sharding

Ensure that the balancer is not stopped because it will not activate in a stopped state.
Execute the following command:

sh.startBalancer()

Now you can set or modify the balancer window using the updateOne() command:

db.settings.updateOne(
 { _id: "balancer" },
 { $set: { activeWindow : { start : "<start-time>",
➥stop : "<stop-time>" } } },
 { upsert: true }
)

For <start-time> and <end-time>, substitute time values formatted as two-digit hours
and minutes (HH:MM) to define the start and finish times of the balancing window.

NOTE  The balancing window must be long enough to accommodate the
migration of all data entered during the day. Given that the rate of data inser-
tion can vary with different activity and use levels, it’s crucial to select a bal-
ancing window that adequately meets the operational requirements of your
system.

You can check the current state of the balancer by executing the following command
in mongosh (while connected to mongos):

sh.getBalancerState()

This command retrieves the active status of the balancer process, showing whether it is
enabled. You can also use the following command to determine whether the balancer
is running:

sh.isBalancerRunning()

9.3.9	 Administrating chunks

In most situations, it’s best to allow the automatic balancer to transfer ranges between
shards. In instances such as these, however, you may need to migrate ranges manually:

¡	To presplit an empty collection, move ranges manually to ensure even distribu-
tion across shards. Use presplitting in limited situations to support bulk data
ingestion.

¡	If the balancer in an active cluster cannot distribute ranges within the balancing
window, you have to migrate ranges manually.

In most cases, a sharded MongoDB cluster automatically creates, splits, and distrib-
utes chunks. Sometimes, however, it can’t generate enough chunks or distribute data

226 Chapter 9  Using replication and sharding

quickly enough to meet throughput needs. Presplitting chunks in a sharded collection
can aid throughput, especially when large data volumes are ingested into an unbal-
anced cluster or when such ingestion would cause data imbalance, as with monotoni-
cally changing shard keys.

TIP  Presplit chunks only in an empty collection to avoid unpredictable
chunk sizes and ineffective balancing. Manually splitting chunks in a pop-
ulated collection can result in inefficient balancing and inconsistent chunk
ranges.

To segment data within a sharded cluster manually, use the split command to divide
a single chunk into multiple distinct chunks. This operation is performed within the
admin database of the sharded cluster. Consider partitioning the sample_training
.routes collection using the shard key:

{ "src_airport": 1, "dst_airport": 1, "airline.name": 1 }.

To presplit the collection into meaningful segments, you might target specific combi-
nations of these fields that represent significant traffic routes. Here’s how to set this up
in mongosh:

// Split points to segment the collection into chunks
➥ // based on common routes and airlines
var splitPoints = [
 { "src_airport": "JFK", "dst_airport": "LHR",
➥"airline.name": "British Airways" },
 { "src_airport": "LAX", "dst_airport": "NRT",
➥"airline.name": "Japan Airlines" },
 { "src_airport": "DXB", "dst_airport": "SYD",
➥"airline.name": "Emirates" }
];

// Loop through the split points and apply the 'split' command
splitPoints.forEach(function(point) {
 db.adminCommand({
 split: "sample_training.routes",
 middle: point
 });
});

Executing the script organizes the sample_training.routes data in segments based
on common air-travel routes:

¡	Flights between "JFK" and "LHR" operated by "British Airways"

¡	Flights between "LAX" and "NRT" operated by “Japan Airlines"

¡	Flights between "DXB" and "SYD" operated by "Emirates"

¡	Flights that do not fall into these categories, representing other combinations of
source and destination airports with respective airlines

	 227Scaling data horizontally through sharding

From MongoDB 6.0 on, the balancer is responsible for distributing data across shards
according to the size of the data. Merely splitting ranges may not guarantee uniform
distribution of data across shards. To ensure balanced distribution, you may need to
relocate chunks manually:

// Define the shards for distributing the chunks
var shards = ["shard0000", "shard0001", "shard0002", "shard0003"];
var splitPoints = [/* Route data split points */];

// Determine the bounds for each chunk
splitPoints.forEach(function(point, index) {
 var lowerBound = { "src_airport": MinKey,
➥"dst_airport": MinKey, "airline.name": MinKey };
 var upperBound = { "src_airport": MaxKey,
➥"dst_airport": MaxKey, "airline.name": MaxKey };
 if (index > 0) {
 lowerBound = splitPoints[index - 1];
 }
 if (index < splitPoints.length) {
 upperBound = point;
 }

 // Manually assign a chunk to a shard using the moveChunk command
 db.adminCommand({
 moveChunk: "sample_training.routes",
 find: lowerBound,
 to: shards[index % shards.length],
 bounds: [lowerBound, upperBound]
 });
});

This script manually assigns chunks of the sample_training.routes collection to
specific shards by using the moveChunk command. It ensures even distribution of data
across the shards based on predefined split points, which optimizes the sharding pro-
cess and enhances query performance by aligning the data distribution with the access
patterns.

Jumbo chunks

In MongoDB, when a chunk surpasses the designated size range and can’t be divided
automatically, it is tagged as jumbo. MongoDB generally handles the division and dis-
tribution of chunks seamlessly, but occasionally, you need to manage a jumbo chunk
manually. Split the chunk, and the jumbo tag is discarded. For this purpose, you can
employ the sh.splitAt() or sh.splitFind() function to split the oversize chunk.

Invisible chunks

In certain cases, MongoDB is unable to split a no-longer-jumbo chunk, such as a chunk
with a range of a single shard-key value, and you cannot split the chunk to clear the
flag. In such cases, you can modify the shard key (reshard a collection) to make the
chunk divisible or remove the flag manually.

228 Chapter 9  Using replication and sharding

To clear the flag manually, in the admin database, initiate the clearJumboFlag com-
mand, providing the namespace of the sharded collection and either of the following:

¡	The boundaries of the jumbo chunk:

db.adminCommand({
 clearJumboFlag: "sample_training.routes",
 bounds: [
 { "airline.id": 410 },
 { "airline.id": 411 }
]
})

¡	The find document with a shard key and value that falls within the jumbo chunk:

db.adminCommand({
 clearJumboFlag: "sample_training.routes",
 find: { "airline.id": 410 }
})

These commands clear the jumbo flag manually from chunks in the sample_training
.routes sharded collection. The first command specifies chunk boundaries, targeting
the chunk between airline.id 410 and airline.id 411. The second command tar-
gets a chunk containing a document in which airline.id is 410. Clearing the jumbo
flag indicates that these chunks are no longer considered excessively large and can be
split or migrated as needed.

9.3.10	 Automerging chunks

In MongoDB 7.0, the introduction of AutoMerger as part of the balancer’s functional-
ity enhances the management of data shards. This feature automatically merges data
chunks that meet predefined criteria, streamlining operations in the background.

The mergeAllChunksOnShard function in MongoDB combines all contiguous
chunks within a collection on a single shard that qualify for merging. Chunks can be
merged if they meet the following criteria:

¡	They reside on the same shard.

¡	They are not jumbo chunks. These larger chunks are ineligible for merging due
to their inability to be moved during migrations.

¡	You must be able to remove their historical data safely, ensuring that transactions
and snapshot reads remain intact. Specifically, enough time must have elapsed
since the last migration of the chunk—at least the duration defined in min
SnapshotHistoryWindowInSeconds and transactionLifetimeLimitSeconds.

Table 9.2 shows how mergeAllChunksOnShard works. The routes collection in the
sample_training database is sharded and consists of chunks that are eligible for merg-
ing due to their nonjumbo size and lack of historical data. Each chunk has a minimum
and a maximum shard-key value, indicating the range of data it contains. The Shard

	 229MongoDB 8.0 sharded cluster features

column specifies which shard hosts each chunk, indicating how the collection’s data is
partitioned across different shards in the cluster.

Table 9.2  Distribution of chunks in a sharded MongoDB collection

Chunk ID Min Max Shard

A x:0 x:15 Shard0

B x:15 x:30 Shard0

C x:30 x:45 Shard0

D x:45 x:60 Shard1

E x:60 x:75 Shard1

F x:75 x:90 Shard1

G x:90 x:105 Shard0

H x:105 x:120 Shard0

If you want to merge contiguous chunks on Shard0, execute

db.adminCommand({ mergeAllChunksOnShard: "sample_training.routes",
➥shard: "Shard0" })

Executing the merge command on Shard0 for the sample_training.routes collection
merges the contiguous chunks A, B, and C into one chunk and G and H into another,
reducing the total chunk count on Shard0.

On Shard1, execute

db.adminCommand({ mergeAllChunksOnShard: "sample_training.routes",
➥shard: "Shard1" })

Executing the merge command on Shard1 for the sample_training.routes collection
merges contiguous chunks D, E, and F into a single chunk, reducing the total chunk
count on Shard1.

AutoMerger automates the merging of data chunks, enhancing shard management
by intelligently combining eligible contiguous chunks based on predefined criteria:

sh.startAutoMerger()
sh.stopAutoMerger()
sh.enableAutoMerger()
sh.disableAutoMerger()

These methods control the AutoMerger behavior. This automation leads to improved
query performance, optimized resource use, and reduced operational complexity, ulti-
mately making database administration more efficient.

9.4	 MongoDB 8.0 sharded cluster features
MongoDB 8.0 introduces new features in sharded clusters. The following sections
describe the new features and improvements.

230 Chapter 9  Using replication and sharding

9.4.1	 Embedding config servers in sharded clusters

In version 8.0, MongoDB introduces the capability to embed sharding configura-
tion servers directly within sharded clusters. This enhancement simplifies the
overall architecture and reduces infrastructure costs while maintaining scale and
performance.

Separate replica sets dedicated to config servers are still supported and recom-
mended for setups with more than three shards. Also, new commands have been intro-
duced to facilitate transitions between embedded and dedicated config servers.

If you want to transition from a dedicated config server to an embedded config
server, run the following command in mongosh:

db.adminCommand({ transitionFromDedicatedConfigServer: 1})

If you want to transition from an embedded config server back to a dedicated config
server, run the command

db.adminCommand({ transitionToDedicatedConfigServer: 1})

You can switch configurations at any time for any reason. To switch to a dedicated
CSRS, run the command

transitionToDedicatedConfigServer

This command executes removeShard in the background to convert the config shard
to a config server and move your data from that shard to the other shards in the cluster.

To switch back to an embedded config server, run the command

transitionFromDedicatedConfigServer

TIP  Use dedicated config servers if you have more than three shards.

NOTE  Atlas uses embedded config servers for three or fewer shards. You can
opt into or out of letting Atlas manage that configuration.

9.4.2	 Moving unsharded collections seamlessly between shards

In MongoDB 8.0, you can relocate unsharded collections to different shards without
extra configuration, such as sharding the collections or choosing a shard key. This
simplifies horizontal scaling and allows geographic distribution of collections to meet
compliance requirements.

The command db.adminCommand({moveCollection:"database.collection", to
Shard: "shardName"}) is a new feature in MongoDB 8.0. Use it to move an unsharded
collection to a different shard without sharding the collection or selecting a shard key.

	 231MongoDB 8.0 sharded cluster features

Figure 9.4 illustrates the process of moving the unsharded collection sample_
training.zips from Shard0 to Shard1. Before the move, the sample_training.zips
and sample_training.routes collections are located on Shard0. After you execute
the command, the sample_training.zips collection is relocated to Shard1, and the
sample_training.routes collection remains on Shard0:

db.adminCommand({moveCollection: "sample_training.zips", toShard:"shard1"})

Routes

Zips

Shard0

Routes

Shard0

Zips

Shard1

Figure 9.4  MongoDB
8.0 allows you to move
unsharded collections to a
different shard seamlessly.
(Image © MongoDB 2024
CC BY-NC-SA 3.0)

In certain use cases, moving collections between shards could affect performance:

¡	Moving the collection that a view whose definition and collection are on differ-
ent shards uses away from the primary shard

¡	Moving the collection that a view with $lookup between collections on different
shards uses on a separate shard

¡	Moving the collection that an on-demand materialized view uses (with $out)

¡	Implicitly creating unsharded collections

9.4.3	 Fragmentation

If your data has been sharded in versions of MongoDB before 6.0, it may suffer from
a degree of fragmentation, with the data being spread across an unnecessarily large
number of small chunks. In MongoDB 6.0 and later, functionality was added to allow
defragmenting, which reduces the number of chunks merging smaller chunks into
larger chunks. This improves create, read, update, and delete (CRUD) operation
times. In MongoDB 6.0, you can perform this operation manually; in MongoDB 7.0
and later, it occurs automatically.

9.4.4	 Faster resharding

Resharding data across shards is four times faster now and includes time-series col-
lections, reducing the operational costs and complexity of managing the database
architecture. In MongoDB version 8.0, the limitation has been removed. Now you
can reshard to the same shard key using the reshardCollection command with

232 Chapter 9  Using replication and sharding

forceRedistribution: true. This command allows the operation to run even if the
new shard key is the same as the old one, and you can use it with the zones option to
move data to specific zones:

db.adminCommand({
 reshardCollection: "database.collection",
 key: { fieldName: "hashed" },
 forceRedistribution: true
})

Table 9.3 shows how MongoDB made resharding faster in version 8.0.

Table 9.3  Comparison of resharding: pre-8.0 vs. 8.0+

Pre-8.0 resharding 8.0+ resharding

The resharding process performs an _id
scan and fetch using random I/O reads
on the source collection.

The resharding process performs a
natural-order scan of the source
collection.

Build indexes on the new collection at
the beginning, and do incremental main-
tenance (random I/O writes).

Bulk-build the indexes on the new collec-
tion at the end.

_id scan and fetch reads sequentially
across all shards.

Each recipient shard reads from all donor
shards in parallel.

9.4.5	 Unsharding collections

MongoDB 8.0 allows you to unshard existing sharded collections using the unshard-
Collection command, which facilitates consolidating all the documents from a
sharded collection into a single shard. During the unsharding operation, MongoDB
transfers the data to a specific shard chosen by the user or automatically to the shard
with the smallest data footprint. This feature simplifies the management of sharded
data by enabling the migration of collections back to a single shard environment,
offering greater flexibility in how data is stored and managed.

You must execute the command on the admin database; you cannot run it on shared
MongoDB instances. The command structure is

db.adminCommand({
 unshardCollection: "<database>.<collection>",
 toShard: "<shard-id>"
})

In this context, <database>.<collection> indicates the collection to be unsharded,
and <shard-id> determines the shard where the collection’s data will be consolidated.
If <shard-id> is unspecified, the balancer selects the shard with the least data.

Before unsharding your collection, ensure that your application can tolerate a
2-second period during which writes to the affected collection are blocked, which may

	 233Managing data consistency and availability

temporarily increase latency. Also, confirm that the target shard has sufficient storage
space—at least twice the combined size of the collection and its indexes. It’s also import-
ant to verify that the system’s I/O capacity is below 50% and the CPU load is below 80%.

The unshardCollection operation can be performed on only one collection at a
time and has a minimum duration of 5 minutes. After unshardCollection runs, Atlas
Search indexes must be rebuilt. Further, you cannot make topology changes, such as
adding or removing shards or transitioning between embedded and dedicated config
servers, until the unshardCollection process is complete.

By implementing sharding, you can build highly scalable MongoDB clusters con-
sisting of many nodes that are capable of storing hundreds of terabytes of data. Each
shard contains a portion of the data and is a replica set for high availability. MongoDB
efficiently distributes queries and writes across all shards. This gives MongoDB a sig-
nificant advantage over traditional relational databases, which are constrained by ver-
tical scaling. But it is crucial to focus on key considerations, such as selecting the right
shard key to ensure even data distribution, prevent hotspots, and maintain optimal
performance.

TIP  For detailed information on MongoDB sharding, I recommend reviewing
the technical documentation at https://www.mongodb.com/docs/manual/
sharding.

9.5	 Managing data consistency and availability
In MongoDB, Read/Write Concern and Read Preference manage data consistency
and fault tolerance, providing configurable tradeoffs among durability, performance,
and availability based on application needs. You can configure these settings to ensure
that writes are fully replicated for strong consistency or enable reads from secondary
nodes to optimize performance and reduce the load on the primary.

Write Concern specifies how many replica set members must acknowledge a write
for durability. Read Concern defines whether reads should reflect the latest writes or a
more relaxed data view. Read Preference controls whether reads target the primary or
secondary nodes to balance performance. My general advice is that is if you read your
own writes on the primary, you should use the "majority" Read Concern and perform
writes with the { w: "majority" } Write Concern. The default Read Concern setting
is "local", and the default Write Concern setting is "majority". The following sec-
tions discuss how these settings work.

9.5.1	 Write Concern

Write Concern specifies how many members of a replica set must acknowledge a write
operation before it’s considered successful. This means that MongoDB waits for con-
firmation from a certain number of replica set members (nodes) before informing
the client that the write operation (such as inserting, updating, or deleting a docu-
ment) was successful. The more members that need to acknowledge the write, the

https://www.mongodb.com/docs/manual/sharding
https://www.mongodb.com/docs/manual/sharding

234 Chapter 9  Using replication and sharding

more durable and reliable the data is, but this involves a tradeoff: higher durability
can reduce performance because MongoDB waits for multiple nodes to confirm the
operation.

The settings for Write Concern are controlled using { w: <value>, j: <boolean>,
wtimeout: <number> } options. I discuss these components in the following sections.

w: <value>

The w option specifies how many replica set members must acknowledge the write
operation. The value can be

¡	w: 1—Only the primary node acknowledges the write. It’s fast but less durable
because the data may not have been replicated to secondaries. On a social media
platform that handles temporary actions such as counting likes, this level allows
faster response times to users but risks losing some likes if the primary node fails
before replication occurs.

¡	w: "majority" (default)—A majority of voting members must acknowledge the
write, which ensures stronger durability and data consistency. In an e-commerce
system, this level ensures that an order placed by a customer is written safely
across multiple nodes, so even if the primary node fails, the data is preserved and
recoverable.

¡	w: 0—No acknowledgment is required, so MongoDB does not wait for any con-
firmation. This option provides maximum speed but no durability guarantee.
You could use this option in scenarios such as logging systems in which losing
some log entries is acceptable and the priority is on collecting data as quickly as
possible.

¡	w: "all"—All members of the replica set must acknowledge the write. This
option provides the highest level of durability but may slow the operation signifi-
cantly. It is useful in critical applications such as banking systems in which every
transaction must be written securely to all replica set members, ensuring that no
data is lost even if several nodes fail.

j: <boolean>

The j option determines whether the write operation must be written to the on-disk
journal before acknowledgment. Journaling provides added durability by ensuring
that data is recoverable even if the server crashes after the write. The value can be

¡	j: true—The write is acknowledged only after being written to the on-disk jour-
nal. This option ensures that the data is durable and recoverable, making it suit-
able for systems in which data integrity is critical, such as health care systems, in
which patient data must not be lost.

¡	j: false—MongoDB does not wait for the write to be committed to the on-disk
journal before acknowledging it. This option can provide faster performance but
less durability in the event of a crash

	 235Managing data consistency and availability

wtimeout: <number>
The wtimeout option specifies (in milliseconds) how long MongoDB will wait for
the required number of members to acknowledge the write. If the specified acknowl-
edgment is not received within this time limit, the operation returns an error. The
wtimeout option is useful for preventing indefinite blocking if some nodes are slow
or unreachable. In a globally distributed system, if a replica in another region is
slow to respond, the wtimeout option ensures that the write operation doesn’t hang
indefinitely.

You can define Write Concern in several places in MongoDB. You can set it per
operation (e.g., during an insert, update, or delete operation), at the connection level
in mongosh or the MongoDB driver, or globally for a replica set using setDefault
RWConcern. These options allow you to adjust the acknowledgment requirements based
on the specific needs of the operation, client, or deployment. Here’s an example of
setting Write Concern for an insert operation in mongosh:

db.routes.insertOne(
 { src_airport: 'MUC'},
 { writeConcern: { w: "majority", j: true, wtimeout: 5000 } }
)

In this example, w: "majority" ensures that the write is acknowledged by the major-
ity of replica set members, providing stronger durability. The option j: true ensures
that the write is committed to the on-disk journal, adding durability in case of a sys-
tem crash. The wtimeout: 5000 setting specifies a 5-second time limit for receiving the
acknowledgment, preventing the operation from waiting indefinitely if the required
nodes do not respond within that time.

9.5.2	 Read Concern

Read Concern allows you to control the consistency and isolation properties of the
data returned by queries in MongoDB, whether from replica sets or sharded clusters.
It specifies how consistent the data should be, balancing performance and availability.
Supported levels are

¡	local (default)—Reads data from the instance without guaranteeing that the
data has been replicated to other replica set members. It is fast but may return
data that could be rolled back later.

¡	available—Provides the lowest latency by reading data from the instance with-
out waiting for confirmation that it has been replicated. This mode offers mini-
mal consistency and is useful when availability is more important than accuracy,
such as in a sharded cluster.

¡	majority—Ensures that the data returned has been acknowledged by most
replica set members, guaranteeing that the data is durable and can withstand
node failures. This level is typically used for applications that require strong con-
sistency, such as e-commerce systems.

236 Chapter 9  Using replication and sharding

¡	linearizable—Provides the strictest consistency. Reads return only the latest
version of the data after confirming that all previous majority-acknowledged
writes have been applied. This level can be used in critical systems in which con-
sistency is paramount, such as financial transactions, but it may introduce perfor-
mance overhead.

¡	snapshot—Reads data from a point-in-time snapshot of majority-committed
data across the entire cluster. This level is useful in multidocument transactions,
ensuring that all data read within a transaction reflects a consistent state.

You can specify the Read Concern in MongoDB for queries by using the .read
Concern() method on the cursor:

db.routes.find({ src_airport: 'MUC' }).readConcern('majority')

In this example, setting the Read Concern level to 'majority' ensures that the query
returns data that has been confirmed by a majority of the replica set members. This
guarantees stronger consistency and durability, as the data has been acknowledged by
most members of the replica set before being returned.

You can also set the Global Default Read and Write Concerns for all operations across
a replica set using the setDefaultRWConcern command. This setting ensures consistent
behavior for reads and writes without specifying concerns for each operation. Here’s an
example of setting the default Write Concern and Read Concern globally:

db.adminCommand({
 "setDefaultRWConcern": 1,
 "defaultWriteConcern": {
 "w": 2
 },
 "defaultReadConcern": {
 "level": "majority"
 }
})

The default Write Concern is set to w: 2, meaning that writes will be considered suc-
cessful only when they are acknowledged by two replica set members. The default Read
Concern is set to level: "majority", ensuring that reads return data that has been
confirmed by a majority of the replica set members. These global defaults, however,
can be overridden by concerns set at the driver or operation level. If a Read Concern
or Write Concern is explicitly specified in the application code or driver, for example,
it takes precedence over the global default.

If you want to check the current global default Read and Write Concerns, use the
following command:

db.adminCommand({
 "getDefaultRWConcern": 1
})

	 237Managing data consistency and availability

This command returns the configured global default Read Concern and Write
Concern.

9.5.3	 Read Preference

Read Preference determines which members of a replica set MongoDB should read
data from. By default, MongoDB reads from the primary node to ensure the most
up-to-date data. You can adjust Read Preference to allow reading from secondary
nodes, however, which can help distribute read load and improve performance in cer-
tain situations.

You control the settings for Read Preference with the { mode: <value> } option.
Let’s take a closer look at the components:

¡	primary (default)—All reads are directed to the primary node, ensuring that the
most up-to-date data is returned. This setting, however, can lead to performance
bottlenecks if the primary node is handling both read and write operations. This
setting is suitable for applications in which data consistency is critical, such as
financial applications, in which every transaction must be based on the latest data.

¡	primaryPreferred—Reads are directed to the primary if it is available. If the
primary is unavailable, MongoDB reads from a secondary node. This mode pro-
vides a balance between performance and availability, ensuring consistency while
allowing for continued reads during primary downtime.

¡	secondary—Reads are directed exclusively to secondary nodes. This setting
reduces the load on the primary node but may return slightly stale data because
it has not yet been replicated. This mode is useful when availability and read
performance are prioritized over strict consistency, such as in reporting systems
or analytics. Analytical aggregation pipelines are good candidates to be run on
secondary nodes to offload processing from the primary.

¡	secondaryPreferred—Reads are directed to secondary nodes if they are avail-
able. If no secondary is available, MongoDB reads from the primary. This setting
provides flexibility by prioritizing secondary reads while still allowing reads from
the primary in case of problems with the secondary nodes.

¡	nearest—MongoDB directs reads to the node with the lowest network latency,
whether it’s a primary or secondary. This setting is particularly useful in geo-
graphically distributed systems when you want to prioritize performance by read-
ing from the closest available node, even though the data may not be the most up
to date.

Here’s an example of setting Read Preference for a specific query in mongosh:

db.routes.find({ src_airport: 'MUC' }).readPref('secondaryPreferred')

In this query, the .readPref('secondaryPreferred') method is appended to the cur-
sor returned by find(). It directs the query to a secondary node if one is available but

238 Chapter 9  Using replication and sharding

falls back to the primary if no secondaries are accessible. This approach helps distrib-
ute the load across replica set members while ensuring data availability.

By configuring Read Preference, you can optimize read performance across your
application, distribute load efficiently, and adjust consistency guarantees based on the
specific requirements of your deployment.

Summary

¡	A replica set in MongoDB is a group of mongod processes that store identical data
sets, ensuring redundancy and high availability. Members can exist in various
states and perform different roles within the replica set.

¡	MongoDB uses PV1, based on the Raft algorithm, for replica set elections, ensur-
ing data consistency. It features a voting system to decide the primary member,
including the term concept. The oplog is a capped collection that logs ordered
write operations in MongoDB, enabling replication. Write operations that don’t
change data or fail don’t generate oplog entries.

¡	MongoDB change streams offer reliable, ordered, resumable change-event
notifications with RBAC, ensuring data durability across replica sets. They also
integrate with the aggregation pipeline for efficient server-side data processing,
unlike oplog tailing.

¡	MongoDB uses sharding to partition data across multiple servers, enabling hori-
zontal scaling and improved handling of large data volumes and high transaction
rates. A MongoDB sharded cluster can consist of any number of shards, each
holding a fragment of data, allowing the total database size to exceed 100 TB
without a clear upper limit.

¡	MongoDB shards data at the collection level, distributing the collection data
across the shards in the cluster using the shard key, which consists of one or more
fields within the documents.

¡	You can create a sharded cluster in MongoDB Atlas. Unlike the M0 cluster you set
up in chapter 1, these clusters are not free in Atlas, so you must set up a payment
method. Sharded clusters are supported starting from the M30 tier.

¡	Starting with MongoDB 8.0, config servers can be embedded in sharded clusters,
simplifying the architecture and reducing overall infrastructure costs.

¡	Choosing the right shard key is crucial in sharding clusters. A poor choice can
lead to inefficient data distribution, load imbalances, and poor query perfor-
mance. In some cases, an overloaded shard, known as a hot shard, can become a
bottleneck, negatively affecting the cluster’s overall performance.

¡	MongoDB simplifies shard-key selection with the analyzeShardKey command,
which provides metrics based on sampled queries for informed decision-making
in both unsharded and sharded collections.

¡	MongoDB organizes sharded data in chunks or ranges, each defaulting to 128
MB. A chunk is defined by a shard key’s lower bound (inclusive) and upper

	 239Summary

bound (exclusive), containing a continuous sequence of shard-key values within
a shard.

¡	Presplitting chunks in a sharded collection can improve throughput, particu-
larly when you’re dealing with large data volumes in an unbalanced cluster or
ingesting data that could lead to imbalance, such as with monotonically chang-
ing shard keys.

¡	AutoMerger, integrated into the balancer’s functionality, improves data shard
management by automatically merging eligible data chunks based on predefined
criteria, optimizing operations seamlessly in the background.

¡	In MongoDB 8.0, you can move unsharded collections between shards without
additional configuration such as sharding or selecting a shard key. This simpli-
fies scaling horizontally and supports geographical distribution for compliance
needs.

¡	In MongoDB 8.0, data resharding across shards is four times faster and includes
support for time-series collections, which reduces operational costs and simpli-
fies database architecture management.

¡	In MongoDB 8.0, you can use the unshardCollection command to move all doc-
uments from a sharded collection to a single shard—a specified one or the shard
with the least data.

¡	Write Concern defines how many replica set members must acknowledge a
write operation for it to be successful. The levels include w: 1 (only the primary
acknowledges), w: "majority (a majority of members acknowledge), w: 0 (no
acknowledgment is required), and w: "all" (all members must acknowledge).

¡	Read Concern defines the consistency level for read operations. The levels
include local (reads from the current node), majority (data confirmed by the
majority), linearizable (strict consistency), and snapshot (consistent view at a
specific point in time).

¡	Read Preference determines which replica set members handle read operations.
The options include primary (reads from the primary), primaryPreferred (pri-
mary if available; otherwise, secondary), secondary (reads from secondaries),
secondaryPreferred (secondary if available; otherwise, primary), and nearest
(reads from the node with the lowest latency).

Part 2

MongoDB Atlas
data platform

Imagine being able to build a production-ready backend in minutes, not
days—without configuring servers, setting up backups, worrying about patching,
or managing replica sets. You write the code, define your data, and deploy. The
rest? Handled automatically by the cloud.

That’s the idea behind MongoDB Atlas. It’s not just a managed MongoDB
cluster running in the cloud; it’s a full-featured data platform, designed to sim-
plify application development while giving you access to enterprise-grade perfor-
mance, availability, and security out of the box. Built on top of the core MongoDB
database, Atlas extends your capabilities with tools for search, AI integration, real-
time data processing, analytics, and event-driven architectures, all deeply inte-
grated and fully managed.

The days of stitching together ten tools to build a modern application stack
are fading. With Atlas, you can store your data, search it, analyze it, process it as it
streams in, and even build AI-powered applications, and do it all within a single
platform.

This part of the book walks you through the many services offered by Atlas and
shows how to use them in real-world applications. You’ll start in chapter 10 by
learning what it means to run MongoDB as a fully managed service and how Atlas
automates key operations such as scaling, backups, and high availability.

Chapter 11 introduces Atlas Search, which brings powerful full-text search
capabilities to your data using Apache Lucene under the hood. You’ll learn how

242 MongoDB Atlas data platform

to build custom search indexes and integrate search directly into your application
workflows using familiar MongoDB aggregation pipelines.

Chapter 12 takes things further with Atlas Vector Search, a next-generation tech-
nique for building applications that understand context and meaning—not just
keywords. You’ll see how to use embeddings to perform semantic search, power rec-
ommendation engines, and even build AI chatbots that retrieve facts from your data.

Speaking of AI, chapter 13 guides you through creating local AI-powered appli-
cations with the Atlas command-line interface (CLI), showing you how to spin up
local clusters and prototype features quickly. Then, in chapter 14, you’ll learn how
to build a retrieval-augmented generation (RAG) chatbot using MongoDB, Lang-
Chain, and vector search—an architecture that’s quickly becoming the standard in
generative AI systems.

In chapter 15, you’ll explore event-driven development with Atlas Stream Process-
ing, which allows your applications to react to data changes in real time. Whether
MongoDB is syncing updates to a dashboard, sending notifications, or triggering
downstream processes, you’ll see how it can power real-time pipelines from source
to action.

Chapter 16 introduces Atlas Data Federation, which lets you run queries across
multiple data sources, including Azure Blob Storage, Amazon S3 buckets, and
MongoDB collections without moving or duplicating data.

In chapter 17, you’ll learn how to optimize storage costs with Atlas Online Archive,
automatically tiering infrequently accessed data while keeping it queryable.

Chapter 18 explores SQL access to MongoDB, showing how you can connect
business intelligence (BI) tools, write SQL queries, and integrate MongoDB with
analytics platforms. Finally, in chapter 19, you’ll dive into charts, functions, and
triggers—tools that let you build visualizations, automate server-side logic, and react
to data changes in powerful ways.

Atlas gives developers a unified toolbox for building intelligent, scalable, real-
time apps without gluing together separate systems. By the end of this part, you’ll
know how to turn MongoDB Atlas into the heart of your modern application stack.

243

10Delving into Database
as a Service

This chapter covers

¡	Mastering MongoDB Atlas’s Database as a 		
	 Service
¡	Differentiating M0 and Flex Atlas clusters
¡	Comprehending dedicated M10+ Atlas clusters
¡	Scaling Atlas cluster and storage with 		
	 autoscaling
¡	Going multicloud with Atlas multicloud and region 	
	 clusters

In part 1 of this book, I intentionally avoided MongoDB server administration prob-
lems to focus on Atlas, a managed Database as a Service (DBaaS). Atlas handles most
MongoDB administrative tasks, simplifying database operations and allowing devel-
opers to concentrate on application development. It automates critical functions
such as deployment, scaling, upgrades, and backups to ensure optimal performance
and security. Its features include real-time analytics, comprehensive monitoring,
and performance optimization.

244 Chapter 10  Delving into Database as a Service

Atlas offers various cluster options: M0 for beginners, Flex for development and test-
ing, M10 and M20 for development, and M30+ for production, all with support for
replica sets and sharded deployments. It allows automatic adjustments of cluster tiers
and storage.

In Atlas, you can select your desired cluster tier, which determines the memory, stor-
age, virtual CPUs (vCPUs), and input/output operations per second (IOPS) specifica-
tions for each data-bearing server in the cluster. You can also automatically scale your
cluster tier, storage capacity, or both in response to cluster use.

Atlas offers several types of clusters to cater to different needs and use cases. The
types of clusters vary depending on the tier. The beginner-tier clusters have limited
functionalities, whereas the developer and higher-tier clusters offer a full range of fea-
tures that are necessary for production use cases.

Also, Atlas extends the functionalities of the core MongoDB server by adding Atlas
Search, Atlas Vector Search, Atlas SQL Interface, Atlas Stream Processing, Atlas Data
Federation, Atlas Online Archive, and more, making it a comprehensive developer data
platform.

10.1	 Shared M0 and Flex clusters
Atlas M0 (free tier) and Flex clusters are ideal for getting started with MongoDB and
for low-throughput applications:

¡	M0 (free tier)— Ideal for learning MongoDB and building small development
projects. It provides limited resources and storage.

–	 Deployment type—Replica set

¡	Flex—The base monthly plan includes 5 GB of storage, 100 operations per sec-
ond, and unlimited data transfer. Clusters scale with your use, and additional
operations may incur charges, though your monthly bill stays under control. This
cluster type is suitable for small applications and development environments.

–	 Deployment type—Replica set

These clusters run in a shared environment and provide limited access to Atlas fea-
tures. You can deploy one M0 cluster (a free sandbox replica set) per Atlas project,
and you have the option to upgrade an M0 free cluster to Flex or M10 at any time. To
change your cluster tier, select Edit Configuration from the drop-down menu in the
Atlas UI (figure 10.1).

In the Cluster Tier section, shown in figure 10.2, choose the tier you want to migrate to.

TIP  Scaling up or down a M0, Flex, or M10 cluster requires 7 to 10 minutes of
downtime.

In a shared environment, multiple clusters use the same underlying hardware
resources. This setup reduces costs but may limit performance and the range of avail-
able features compared with those of dedicated clusters. Table 10.1 shows the limits for
these clusters.

	 245Shared M0 and Flex clusters

Figure 10.1  Edit the configuration in the Atlas UI. (Image © MongoDB 2025)

Figure 10.2  Cluster Tier section of the Atlas UI with available M0, Flex, and M10 clusters (Image © MongoDB 2025)

Table 10.1  Configuration limits for Atlas M0 (free tier) and Flex

Configuration option Limit

Cloud service provider
and region

Deploy only in a subset of regions in Amazon Web Services
(AWS), Google Cloud Provider (GCP), and Microsoft Azure

MongoDB version
upgrade

Can’t upgrade manually. Atlas automatically upgrades after
several patch versions become available.

Cluster tier Only one M0 cluster per project

Cluster memory Can’t configure memory

Cluster storage Can’t configure storage size

Replication factor Set to three nodes and can’t be modified

246 Chapter 10  Delving into Database as a Service

Configuration option Limit

Replica set tags No predefined replica set tags

Sharded cluster Can’t deploy as a sharded cluster

Backup Can’t enable backups in M0. You can use mongodump for
backup and mongorestore for restore.

Test primary failovers Can’t perform primary failover testing

Simulate regional
outage

Can’t perform regional outage testing

Database auditing Can’t configure database auditing

Encryption at rest
using customer key
management

Can’t configure

Network peering
connections

Can’t configure

Private endpoints Not supported

Access tracking Can’t view database access history

It’s important to note that backups for the M0 cluster do not exist; you must use your
own logical backup tool, such as mongodump (chapter 21). The Flex cluster offers snap-
shots but does not allow you to restore to a specific point in time. These clusters also
lack advanced security features, so they are not recommended in production use cases
or for storing sensitive data.

The M0 and Flex clusters also have operational limits compared with the core
MongoDB server and Atlas clusters available in higher tiers. Table 10.2 summarizes
these limits.

Table 10.2  Operational limits for Atlas M0 (free tier) and Flex

Operation Limit

Aggregation and queries No allowDiskUse option; no $currentOp, $listLocal
Sessions, $listSessions, or $planCacheStats stages;
maximum 50 stages

API access Create M0 free cluster using the Clusters API resource, but can’t mod-
ify; subset of API endpoints supports Flex clusters

Atlas alerts Can trigger alerts only for connections, logical size, network, and
opscounter

Atlas monitoring Metrics view displays only connections, logical size, network, and
opscounter

Authentication Supports password (SCRAM-SHA1), X.509 certificates, and AWS iden-
tity and access management (IAM)

Autoexpand storage Not provided

BSON nested object depth Maximum 50 nested levels

Table 10.1  Configuration limits for Atlas M0 (free tier) and Flex (continued)

	 247Dedicated clusters

Operation Limit

Build index with rolling build Not supported

Change-stream filtering Only strings and regular expressions for database names; no com-
mands such as $in for database namespace filters

Cluster persistence Atlas may deactivate idle M0 free clusters

Command-line tools mongorestore options --restoreDbUsersAndRoles,
--oplogReplay, and --preserveUUID are not supported.

mongodump options --dumpDbUsersAndRoles and --oplog
are not supported.

Connections Maximum 500 connections

Cursors No noTimeout cursor option

Custom roles Changes might take up to 30 seconds to deploy

Database and collections Maximum 100 databases and 500 collections

Access to collections in local,
admin, and config databases

No read access to local except oplog; no write access to local and
config; no read/write access to admin

Database logs Can’t download logs

DatarRecovery No custom policies; single daily snapshot; can’t restore to sharded
cluster

Data storage M0, 0.5 GB; Flex, 5 GB

JavaScript Server-side JavaScript not supported (e.g., $where)

Namespaces and database
names

Namespaces are limited to 95 bytes; database names are limited to
38 bytes.

Number of free clusters One M0 free cluster per Atlas project

Performance advisor Not provided

Query use Must remain below 100% use over any 5-minute period

Real-time performance panel Not provided

Sort in memory Limit is 32 MB

Throughput M0:,100 operations/second; Flex, 500 operations/second. Throttling
and cooldown period apply if these limits are exceeded.

Automatic pause of idle clusters Paused after 60 days of inactivity; can resume unless version can’t be
restored

10.2	 Dedicated clusters
Atlas offers additional tiers:

¡	M10 to M40—Suitable for medium-size applications, providing more resources,
better performance, and additional features such as virtual private cloud (VPC)
peering

–	 Deployment type—Replica set or sharded cluster (from M30)

¡	M50 to M200—Designed for large-scale applications requiring high perfor-
mance, increased storage, and advanced configurations

Table 10.2  Operational limits for Atlas M0 (free tier) and Flex (continued)

248 Chapter 10  Delving into Database as a Service

–	 Deployment type—Replica set or sharded cluster

¡	M300 and higher—Tailored for enterprise-level deployments with very high per-
formance, large storage capacities, and extensive scalability options

–	 Deployment type—Replica set or sharded cluster

Table 10.3 compares the most important features of MongoDB Atlas across tiers. You
can find more information about dedicated cluster features in part 3 of this book.

Table 10.3  Key differences among M0 (free), Flex, and M10+ (dedicated) clusters

Feature M0 (free) Flex M10+ (dedicated)

Storage (data storage
size+index size)

512 MB 5 GB 10 GB to 4 TB

Metric and alerts Limited Limited Full metrics, the Real
Time Performance
tab, and full alert
configuration

VPC peering No No Yes

Global region selection M0 clusters in subset
of AWS, GCP, and Azure
regions

Flex clusters in subset
of AWS, GCP, and Azure
regions

Available in AWS, GCP,
and Azure

Cross-region
deployments

No No Yes

Backups No Yes; daily backup
snapshots

Yes, including query-
able backups

Sharding No No Yes, for M30+ tier

Dedicated cluster No No Yes. M10+ clusters
deploy each mongod
process to its own
instance.

Performance advisor No No Yes

10.2.1	 Atlas clusters for low-traffic applications

The M10 and M20 cluster tiers are ideal for development environments and low-traffic
applications. These tiers support only replica set deployments but offer full access to
Atlas features. M10 and M20 clusters operate on a burstable performance infrastruc-
ture, meaning that they can handle occasional increases in traffic but are optimized for
lower, steady workloads.

In addition, M10 and M20 clusters provide robust security, automated backups, and
monitoring (chapter 21), ensuring a reliable, secure environment for your applications.
They also allow seamless upgrades to higher tiers as your application’s demands grow.

TIP  For any M10+ cluster, you can use the Atlas command-line interface (CLI)
and the command atlas cluster update <your cluster> --tier <any tier
larger than M10> to change the cluster size.

	 249Dedicated clusters

10.2.2	 Atlas clusters for high-traffic applications

Clusters in the M30 tier and higher are ideal for production environments. These clus-
ters support replica set and sharded cluster deployments, providing full access to all
Atlas features.

Certain clusters have variants, marked by the ❯ character. When you choose one of
these clusters, Atlas displays the variants and tags each cluster to highlight their key
characteristics.

10.2.3	 Autoscaling clusters and storage

You can set the cluster tier ranges that Atlas uses to automatically adjust your cluster
tier, storage capacity, or both based on use. Cluster autoscaling handles most scaling
needs, but advanced use cases may require custom scripts or consulting services. To
manage costs, you can define a maximum and minimum range for cluster sizes and
adjust those ranges automatically. Autoscaling operates on a rolling basis, ensuring no
downtime during the process.

Autoscaling clusters

Atlas evaluates the following cluster metrics to decide when and how to scale a cluster
up or down:

¡	CPU use

¡	Memory use

Atlas calculates memory use with this formula:

(memoryTotal - (memoryFree + memoryBuffers +
➥memoryCached))/(memoryTotal) * 100

Here, memoryFree, memoryBuffers, and memoryCached represent the memory that can
be reclaimed for other uses. Atlas will not scale your cluster tier if

¡	The new cluster tier is outside your specified minimum and maximum cluster
size range (figure 10.3).

¡	Memory use would exceed available memory for the new cluster tier.

¡	Atlas scales only within the same cluster class. That is, General clusters scale to
other General cluster tiers but not to Low-CPU tiers.

¡	For replica sets, Atlas does not autoscale by adding more nodes or converting to
a sharded cluster.

¡	For sharded clusters, Atlas does not autoscale horizontally by adding shards.

In the Cluster Tier section of the Auto-Scale options section, you can specify the Max-
imum Cluster Size and Minimum Cluster Size values for automatic scaling. Atlas sets
these values as follows:

¡	Maximum Cluster Size is set to one tier above your current cluster tier.

¡	Minimum Cluster Size is set to the current cluster tier.

250 Chapter 10  Delving into Database as a Service

Figure 10.3 shows the configuration options for autoscaling in Atlas. If the Cluster Tier
Scaling option is enabled, you can set the Minimum and Maximum Cluster Size values.
For this configuration, Minimum Cluster Size is set to M30, and the Cluster Size is set
to M50. You also have an option to allow the cluster to scale down.

Figure 10.3  The Atlas UI’s Cluster Tier section, where you can configure cluster and storage autoscaling
(Image © MongoDB 2025)

TIP  When you create clusters using the Atlas UI, autoscaling for cluster tiers
is enabled by default. If you create clusters via the API or Atlas CLI, however,
autoscaling for cluster tiers is disabled by default.

NOTE  Atlas activates Cluster Auto-Scaling for all cluster tiers within the Gen-
eral and Low-CPU tiers, excluding only the highest cluster tier.

Autoscaling storage

Atlas enables cluster storage autoscaling by default. When any node in the cluster
reaches 90% disk space usage, Atlas automatically increases the storage. This process
requires time to prepare and copy data to new disks. Automatic scaling may not occur

	 251Dedicated clusters

during a sudden surge of high-speed write activity, such as a bulk insert. To avoid run-
ning out of disk storage, cluster managers should plan to scale up clusters before bulk
inserts and other high-speed write activity.

Autoscaling behavior differs by cloud provider:

¡	AWS and GCP clusters—Atlas increases cluster storage capacity to achieve 70%
disk space use. For more information on AWS storage change limitations and
how Atlas handles them, see the documentation on changing storage capacity or
IOPS in AWS at https://mng.bz/5vm1.

¡	Azure clusters—Atlas doubles the current amount of cluster storage.

NOTE  Atlas automatically scales cluster storage up but never down. You can
reduce your cluster storage manually if necessary.

Scaling cluster tier and cluster storage in parallel

When Atlas attempts to scale your cluster storage capacity automatically, it might
exceed the limits supported by your current cluster tier. To prevent downtime, Atlas
also scales your cluster tier to match the new storage capacity. If your maximum speci-
fied tier can’t support the new capacity, Atlas does the following:

¡	Raises your maximum cluster tier to the next suitable tier

¡	Scales your cluster to this new maximum tier

If Atlas tries to scale down, and the target tier can’t support the current disk capacity
or IOPS, it won’t scale down. Instead, it will adjust the autoscaling settings as follows:

¡	If the cluster is at the maximum tier, Atlas disables downward scaling.

¡	If not, it raises the minimum tier to the current tier.

This logic ensures minimal downtime due to mismatched storage settings. Atlas noti-
fies all project owners via email about any changes to the cluster tier and the adjusted
minimum or maximum tiers.

10.2.4	 Customizing Atlas cluster storage

Atlas offers flexible storage configuration options tailored to your needs, varying by
cloud provider and cluster tier. Each cluster tier has a predefined set of resources, and
M10+ clusters allow you to customize your storage capacity. For M40+ clusters, Atlas
provides three distinct cluster classes:

¡	Low CPU—This cost-effective option is ideal for applications that need more
memory but fewer CPUs. It includes half the vCPUs of the General class of the
same tier. A General M40 instance has four vCPUs, for example, whereas a Low
CPU M40 instance has two vCPUs. Depending on the tier, this option may also
offer fewer maximum connections.

¡	General—Suitable for all production environments, this balanced option pro-
vides a standard allocation of resources, ensuring robust performance.

https://mng.bz/5vm1

252 Chapter 10  Delving into Database as a Service

¡	Local NVMe solid-state drive (SSD)—This option offers high-speed, low-latency stor-
age and is ideal for demanding applications. Atlas offers NVMe SSD storage for
dedicated clusters on AWS and Azure, ensuring low-latency and high-throughput
I/O. Currently, NVMe clusters are not supported in GCP.

TIP  Choosing a different cluster class affects overall cost, allowing you to select
the configuration that best fits your performance and budget requirements.

Oplog collection size in Atlas

Atlas handles the cluster’s oplog size and entries differently depending on whether
storage autoscaling is enabled. By default, Atlas enables storage autoscaling for clus-
ters. When storage autoscaling is active, the oplog entries are managed based on the
minimum oplog retention window (oplogMinRetentionHours) setting. The oplog win-
dow represents the time difference between the newest and oldest timestamps in the
oplog.

The minimum oplog retention window is set to 24 hours by default, ensuring that
oplog entries are retained for at least 24 hours or until the oplog reaches the maximum
size allowed by MongoDB best practices. You can customize this retention window via
the Atlas UI. For successful autoscaling, the minimum oplog retention window should
be (60 seconds) * (GB of disk space configured.

Opt out of storage autoscaling by clearing the Storage Scaling check box in the Auto-
Scale section. Then Atlas manages the oplog size as follows:

¡	General and Low-CPU clusters—5% of disk size at cluster creation

¡	Clusters with NVMe storage—10% of disk size

If the storage size changes, Atlas does not adjust the oplog size automatically. You can
set the oplog size manually when creating a cluster, however, ensuring that it scales pro-
portionally with storage increases:

¡	General and Low-CPU clusters—The oplog size scales remain at 5% of storage
capacity, adhering to a maximum size determined by MongoDB best practices.

¡	NVMe storage clusters—The oplog size scales remain at 10% of storage capacity,
following the same best practice limits. Decreasing storage capacity does not
result in a change to the oplog size.

Changing storage capacity

Atlas handles changes in storage capacity and IOPS differently depending on the cloud
provider:

¡	AWS—In AWS, when storage or throughput increases, Atlas modifies data vol-
umes in place without downtime for the first change. For later changes, if the
volume is less than 1 TB and the last change occurred less than 5 hours and 30
minutes ago, Atlas provisions new volumes and syncs data. For volumes over 1 TB,
Atlas makes changes in place. Decreasing storage capacity involves provisioning

	 253Atlas Global Clusters

new volumes and syncing data because AWS doesn’t allow in-place reductions.
But AWS does allow in-place reduction of IOPS.

¡	Azure—You can change storage capacity in preset amounts. Increases are made
in place without downtime, but decreases require replacing nodes and perform-
ing initial syncs, causing temporary unavailability for modified nodes.

¡	GCP—Increasing storage capacity is done in place with zero downtime. For
decreases, new volumes are provisioned and data is synced, similar to Azure.

¡	Multicloud deployments—Atlas uses the lowest common denominator across pro-
viders to ensure consistency.

AWS IOPS

For AWS-backed M30+ clusters, Atlas allows you to provision IOPS. Provisioned IOPS
let you customize the maximum IOPS rate for your cluster; they deliver a more con-
sistent IOPS rate and lower the cluster’s p90 latency (the time within which 90% of
requests are completed), resulting in faster response times.

General-purpose SSD volumes are designed to deliver baseline performance 99% of
the time, whereas provisioned IOPS SSD volumes are designed to deliver their perfor-
mance 99.9% of the time. When you select the Provision IOPS option, the storage type
changes from general-purpose SSD volumes to provisioned IOPS SSD volumes, affect-
ing characteristics, performance, and cost.

If you do not select the Provision IOPS option when creating your M30+ tier cluster,
it defaults to standard IOPS:

¡	Minimum standard IOPS is 3,000 and stays at 3,000 unless storage reaches 1 TB
or more.

¡	For 1 TB+ storage, Atlas uses a 3:1 IOPS-to-storage ratio, up to 16,000 IOPS for
AWS network storage.

Local NVMe SSD clusters must use standard IOPS.

10.3	 Atlas Global Clusters
Atlas Global Clusters are sharded clusters designed to distribute data across multiple
geographic regions, optimizing for low latency and high availability. They are designed
for applications that require low latency and data locality. These clusters enable you to
deploy your MongoDB database across various regions worldwide, ensuring that your
application remains responsive and reliable regardless of user location.

Atlas Global Clusters, supported in M30 and higher tiers, offer several key features
that enhance performance and compliance:

¡	Global data distribution—You can distribute your data across various regions to
give users low-latency access by keeping data closer to them.

¡	Geopartitioning—You can control data residency at a detailed level to meet regula-
tory requirements, ensuring that specific data stays within designated geographic
areas.

254 Chapter 10  Delving into Database as a Service

¡	Read and write anywhere—You can configure your global cluster to support read
and write operations in any region, enhancing application resilience and user
experience with faster access times.

Fundamentally, you can establish zones globally, each containing at least one shard—
essentially, a replica set. This configuration enables you to read and write data specific
to each region from its local shard(s).

Atlas Global Clusters require defining single or multiregion zones that support
write and read operations from geographically local shards and can be configured for
low-latency global secondary reads. Each cluster supports up to nine distinct zones,
each including one Highest Priority region and one or more Electable, Read-only,
or Analytics regions. The available regions vary based on the selected cloud service
provider. Table 10.4 describes the available regions in Atlas.

Table 10.4  MongoDB Atlas region types

Region type Description

Highest Priority Region where Atlas deploys the primary replica set member. Clients can issue only
write operations to the primary. This region’s location helps you construct a map for
directing write operations to the correct zone.

Electable Region where Atlas deploys electable secondary replica set members, providing addi-
tional fault tolerance in case of a regional outage in the Highest Priority region.

Read-only Region where Atlas deploys nonelectable secondary replica set members to support
secondary read.

TIP  Add a Read-only node in the Highest Priority region of each zone for
low-latency local reads.

You can configure Atlas Global Cluster as a multicloud cluster, spanning major cloud
providers such as AWS, GCP, and Azure.

10.4	 Going multiregion with workload isolation
You can set up multiregion and multicloud MongoDB deployments in Atlas using any
combination of AWS, Azure, and GCP. You can configure the nodes in your MongoDB
deployment to use different cloud providers, geographic regions, workload priorities,
and replication configurations, enhancing the availability and workload balancing of
your cluster.

Figure 10.4 shows the configuration of a multicloud, multiregion MongoDB deploy-
ment in Atlas. The interface shows the selection of three major cloud providers: GCP,
AWS, and Azure. The cluster is configured to ensure high availability and resilience to
partial region outages, full region outages, and cloud provider outages.

In the Electable Nodes for High Availability section, set up the deployment with
nodes distributed across regions and cloud providers. The regions selected in figure
10.4 are USA (Iowa) for Google Cloud, Ireland for AWS, and Germany (Frankfurt) for

	 255Going multiregion with workload isolation

Figure 10.4  The Atlas UI’s Cloud Provider & Region section, where you can configure multicloud clusters
(Image © MongoDB 2025)

Azure. Each region is assigned a priority level, with GCP in Iowa having the highest pri-
ority and three nodes, whereas AWS in Ireland and Azure in Frankfurt have two nodes
each.

Spreading electable nodes across large distances can lead to longer election times,
indicating a tradeoff between geographic distribution and election latency. This setup
aims to enhance the overall availability and workload balancing of the cluster by using
different cloud providers, geographic regions, and prioritization settings.

TIP  A large number of regions or nodes spread across long distances can
cause long election times or replication lag.

In sharded clusters, Atlas distributes the three config server nodes based on the num-
ber of electable regions. If you have one electable region, all three nodes are deployed

256 Chapter 10  Delving into Database as a Service

there. If you have two electable regions, two nodes go to the highest-priority region,
and one goes to the second-highest-priority region. If you have three or more electable
regions, each of the three highest-priority regions receives one node. Sharded clusters
include additional nodes, and electable nodes on the config server replica set (CSRS)
count toward the total node limit. Each sharded cluster also has an additional electable
node per region as part of the CSRS.

Clusters can span regions and cloud service providers, with a node limit of 40 per
project. The number of availability zones or fault domains in a region has no effect on
the number of MongoDB nodes Atlas can deploy. MongoDB Atlas clusters are always
made of replica sets with a minimum of three MongoDB nodes.

TIP  Creating a multiregion cluster is not allowed in a project that already has
clusters with 40 or more nodes in other regions.

10.4.1	 Adding electable nodes for high availability

Adding regions with electable nodes increases data availability and reduces the effect
of data center outages. You can select different regions from one cloud provider or opt
for different cloud providers.

Atlas designates the node in the first row of the electable-nodes table as the highest-
priority region and prioritizes these nodes for primary eligibility. Other nodes are
ranked in the order in which they appear. Each electable node can participate in replica
set elections and become the primary as long as most nodes in the replica set remain
available.

10.4.2	 Adding read-only nodes for local reads

Deploy read-only nodes to enhance local read performance within their specific ser-
vice areas. Read-only nodes do not contribute to high availability because they don’t
participate in elections and cannot become the primary for their cluster; they are used
mainly to offload read traffic and optimize performance for read-heavy workloads.

10.4.3	 Using analytics nodes for workload isolation

Available for M10+ clusters, analytics nodes are specialized read-only nodes designed
to isolate queries that shouldn’t interfere with your operational workload. They are
particularly useful for handling analytic data, such as reporting queries executed by
business-intelligence tools.

Both analytics nodes and read-only nodes have distinct replica set tags (section 10.5),
enabling you to direct queries to specific node types and regions. For more information
on the predefined replica set tags used by Atlas, see section 10.5.

A multiregion cluster can have up to 50 nodes, with no limit on the number of ana-
lytics nodes within that total. Analytics nodes do not enhance a cluster’s availability
because they do not participate in elections and cannot become the primary node for
their cluster.

	 257Using predefined replica set tags for querying

10.5	 Using predefined replica set tags for querying
Atlas clusters come with built-in replica set tags for various member types within the
cluster. These tags route queries from specific applications to designated node types,
regions, or availability zones. By using these predefined tags, you can tailor read pref-
erences for a replica set, enhancing the overall performance and reliability of your
cluster. Table 10.5 describes the predefined replica set tags available in Atlas.

Table 10.5  Predefined replica set tags in Atlas

Tag name Description Example

Availability
Zone

Identifies the AWS avail-
ability zone ID, GCP fully
qualified name for a zone, or
Azure zone number

AWS—{"availabilityZone": "use1-az3"},

GCP—{"availabilityZone": "us-east1-c"}

Azure—{"availabilityZone": "2"}

Node Type Specifies the type of
node. Possible values are
ELECTABLE, READ_ONLY,
and ANALYTICS.

{"nodeType": "ANALYTICS"}

Provider Indicates the cloud provider
where the node is provi-
sioned. Possible values are
AWS, GCP, and AZURE.

{"provider": "GCP"}

Region Specifies the cloud region of
the node

{"region": "US_EAST_2"}

Workload
Type

Distributes your workload
evenly among nonanalytics
(electable or read-only)
nodes. Possible value is
OPERATIONAL.

{"workloadType": "OPERATIONAL"}

Disk State Indicates the state of your
disk. Possible value is
READY.

{"diskState": "READY"}

NOTE  This feature is unavailable for M0 and Flex clusters.

Table 10.6 describes possible nodeType values in your predefined replica set tags.

Table 10.6  Possible nodeType values in MongoDB Atlas

Node type Description

ELECTABLE Read from nodes eligible to be elected primary. ELECTABLE nodes correspond to elect-
able nodes for high availability in the cluster-creation UI.

READ_ONLY Read from read-only nodes. READ_ONLY nodes correspond to read-only nodes for opti-
mal local reads in the cluster-creation UI.

ANALYTICS Read from read-only analytics nodes. ANALYTICS nodes correspond to analytics nodes
for workload isolation in the cluster-creation UI.

258 Chapter 10  Delving into Database as a Service

To use predefined replica set tags in your connection string and direct queries to spe-
cific nodes, include the following options in your connection string: readPreference,
readPreferenceTags, and readConcernLevel.

TIP  These connection string options are unavailable for mongosh. Instead, use
cursor.readPref() and Mongo.setReadPref().

10.5.1	 Routing queries to analytics nodes

If your application performs complex or long-running tasks such as extract, transform,
load (ETL) or reporting, you can isolate these queries from your operational workload
by connecting exclusively to analytics nodes. This connection string shows how it works:

mongodb+srv://<USERNAME>:<PASSWORD>@mongodb-in-
➥action.mongodb.net/test?readPreference=secondary&
➥readPreferenceTags=nodeType:ANALYTICS&
readConcernLevel=local

The connection string options are as follows:

readPreference=secondary,
➥readPreferenceTags=nodeType:ANALYTICS,
➥readConcernLevel=local.

The readPreference set to secondary and the readPreferenceTags set to { nodeType:
ANALYTICS } restrict application connections to analytics nodes.

10.5.2	 Isolating normal application secondary reads from analytics nodes

If your application needs to isolate regular reads from the workload on analytics nodes,
you may want to separate these reads accordingly. This connection string shows how it
works:

mongodb+srv://<USERNAME>:<PASSWORD>@mongodb-in-
➥action.mongodb.net/test?readPreference=secondary&
➥readPreferenceTags=workloadType:OPERATIONAL&
readConcernLevel=local

The connection string options are as follows:

readPreference=secondary, readPreferenceTags=nodeType:OPERATIONAL,
readConcernLevel=local.

The readPreference set to secondary and the readPreferenceTags set to { nodeType:
OPERATIONAL } restrict application connections to operational, nonanalytics nodes.

10.5.3	 Routing local reads for geographically distributed applications

If your application requires local reads in specific regions for globally distributed data,
use predefined replica set tags. Previously, local reads depended on accurately calculat-
ing the nearest read preference. Now, with predefined replica set tags, you can achieve

	 259Understanding the Atlas custom Write Concerns

more consistent behavior by using geographic tags combined with the nearest read
preference mode. This connection string shows how it works:

mongodb+srv://<USERNAME>:<PASSWORD>@mongodb-in-action.mongodb.net
➥/test?readPreference=nearest&readPreferenceTags=provider:GCP,
region:us-east1&readPreferenceTags=provider:GCP,
region:us-east4&readPreferenceTags=&readConcernLevel=local

The connection string options appear in the following order:

readPreference=nearest
readPreferenceTags=provider:GCP,region:us-east1
readPreferenceTags=provider:GCP,region:us-east4
readPreferenceTags=
readConcernLevel=local

Atlas evaluates read preference tags in the order in which you list them. When Atlas
matches a node to a tag, it identifies all eligible nodes with that tag and disregards
any subsequent readPreferenceTags. In this example, the application first attempts
to connect to a node in the GCP region us-east1. If nodes in that region are unavail-
able, it tries to connect to a node in the GCP region us-east4. The final, empty
readPreferenceTags= acts as a fallback. This empty option allows the application to
connect to any available node, regardless of the provider or region. These settings
ensure that the application connects to the nearest geographic region, reducing
latency and improving performance.

10.6	 Understanding the Atlas custom Write Concerns
Atlas offers built-in custom Write Concerns designed for multiregion clusters. Write
Concern refers to the level of acknowledgment MongoDB requires for write operations
to a cluster (chapter 3).

These custom Write Concerns enhance data consistency by guaranteeing that your
operations are propagated to a specific number of regions before they are considered
successful. To use a custom Write Concern, include it in the write-concern document of
your operation. Table 10.7 describes the custom Write Concerns that Atlas provides for
multiregion clusters.

Table 10.7  Atlas custom Write Concerns for multiregion clusters

Write concern Tags Description

twoRegions { region: 2 } Write operations must receive acknowledgment from at
least two regions in your cluster.

threeRegions { region: 3 } Write operations must receive acknowledgment from at
least three regions in your cluster.

twoProviders { provider: 2 } Write operations must be acknowledged by at least two
different regions in your cluster, each hosted by a distinct
cloud provider.

260 Chapter 10  Delving into Database as a Service

If your application uses a multiregion cluster across the three regions (us-east-1,
us-east-2, and us-west-1), you want write operations to propagate to all three
regions in your cluster before Atlas accepts them.

The following operation inserts a document into the routes collection and requires
propagation to all three regions due to the { w: "threeRegions" } write-concern
object:

db.routes.insertOne(
 {
 airline: { id: 410, name: 'Lufthansa', alias: 'LH', iata: 'DLH' },
 src_airport: 'MUC',
 dst_airport: 'JFK'
 },
 { writeConcern: { w: "threeRegions" } }
)

Summary

¡	Atlas automates deployment, backups, and scaling, simplifying database adminis-
tration and ensuring optimal performance and security. It includes features such
as real-time analytics, comprehensive monitoring, automated performance opti-
mization, Atlas SQL Interface, Atlas Stream Processing, Atlas Data Federation,
and Atlas Online Archive.

¡	Atlas M0 (free tier) and Flex clusters are affordable options for beginners and
low-throughput applications, running in a shared environment with limited
Atlas features. Each project can have one M0 cluster, which can be upgraded to
Flex and an M10+ cluster at any time.

¡	Dedicated M10 and M20 clusters are ideal for development and low-traffic appli-
cations, supporting replica set deployments with full Atlas features. They operate
on burstable performance infrastructure, handling occasional traffic spikes but
optimized for steady workloads.

¡	Dedicated M30 and higher clusters are ideal for production, supporting replica
set and sharded deployments with full Atlas features. Variants, marked by ❯, dis-
play key characteristics when selected.

¡	Atlas allows automatic adjustment of cluster tier and storage capacity based on
use, eliminating the need for custom scripts. Autoscaling operates without down-
time and lets you set maximum and minimum ranges to control costs.

¡	Atlas Global Clusters distribute data across multiple geographic regions, opti-
mizing for low latency and high availability. This feature is supported in M30 and
higher tiers.

¡	In Atlas, you can deploy multicloud MongoDB clusters using any combination of
AWS, Azure, and GCP. This setup allows you to configure nodes across providers
and regions, optimizing availability and workload balancing.

	 261Summary

¡	Available for M10+ clusters, analytics nodes are specialized read-only nodes
that isolate queries from your operational workload. They are especially useful
for handling analytic data, such as reporting queries executed by business-
intelligence tools.

¡	Atlas clusters include built-in replica set tags for different member types. These
tags route queries to specific node types, regions, or availability zones, optimizing
read preferences and enhancing cluster performance and reliability.

¡	Atlas includes built-in custom Write Concerns tailored to multiregion clusters.
Write concern specifies the level of acknowledgment MongoDB requires for
write operations in a cluster.

262

11Carrying out full-text
search using Atlas Search

This chapter covers

¡	Enabling full-text search capabilities
¡	Understanding Apache Lucene’s inverted index
¡	Discovering the Atlas Search environment
¡	Creating an Atlas Search Index with the Atlas CLI
¡	Using $search and $searchMeta aggregation 	
	 stages
¡	Playing with Atlas Search Playground

Full-text search is invaluable across a variety of fields, including e-commerce plat-
forms, digital libraries, customer support systems, content management systems,
legal document analysis, academic research, human resources platforms, logs
searches, social media platforms, email search tools, and medical record man-
agement. This sophisticated technique surpasses traditional exact-word matching
by analyzing document content to identify matches based on relevance, specific
phrases, and text attributes. Its versatility makes it well suited to a wide range of
needs and formats.

	 263Implementing full-text search

The method enhances simple keyword searches, allowing you to find relevant doc-
uments quickly, narrowing search results, and providing rapid access to necessary
information. Boolean searches use operators such as AND, OR, and NOT to refine query
precision, effectively filtering results to precise criteria. Fuzzy and wildcard searches
address misspellings and different word forms, increasing search flexibility and accu-
racy by anticipating user input variations.

Also, phrase and proximity searches target exact word sequences and terms close in
text, which is ideal for detailed analysis. These approaches excel at uncovering specific
phrases and contextual relationships. Range and faceted searches identify items within
set parameters and categorize results by attributes, streamlining searches in areas like
online shopping, where users can sort data based on characteristics such as dates or
product features.

These methods boost the precision and efficiency of searches, making full-text
search essential in data-rich environments. Its capabilities are crucial for managing and
retrieving large data sets across various platforms, significantly improving user experi-
ence and operational effectiveness.

11.1	 Implementing full-text search
MongoDB provides basic support for full-text search through the $text index, but it
may not be sufficient for more complex queries, especially those involving multiple
nested fields. Consequently, to accommodate more sophisticated search requirements,
you often have to replicate data from MongoDB collections to a dedicated search
engine to give applications full-text search capabilities. Various search engines are
available, each designed to cater to different data handling needs and levels of query
complexity, and each offering unique advantages and constraints:

¡	Algolia—Known for its robustness and flexibility, Algolia is a search and discovery
platform that, although effective for many use cases, can become expensive. The
cost escalates with the increase in data volume and the number of API interac-
tions, making it less suitable for very large data sets.

¡	Elasticsearch—Operating as a distributed and RESTful search and analyt-
ics engine, Elasticsearch supports a broad range of use cases. It is built on
Apache Lucene, similar to Atlas Search, and provides comprehensive search
capabilities.

¡	Solr—Also based on Apache Lucene, Solr is a powerful search platform cele-
brated for its reliability and scalability. It excels in managing distributed index-
ing, replication, and load-balanced querying, making it a strong candidate for
complex search environments.

Using separate solutions for database management and full-text search, however, can
present several challenges. I encountered these challenges while working at a com-
pany that replicated certain collections from MongoDB to Elasticsearch by using a tool
called Monstache, a Go daemon that syncs MongoDB to Elasticsearch by using change

264 Chapter 11  Carrying out full-text search using Atlas Search

streams to monitor real-time changes and sending updates to Elasticsearch. Here are
some of the problems I faced:

¡	Integration complexity—Integrating a standalone full-text search engine with a
database system is complex and time-consuming, requiring additional setup,
configuration, and ongoing maintenance. Imagine having to copy all the data
for a multiterabyte database into Elasticsearch. It is also important to set up a
monitoring and alerting system that will detect anomalies in replication.

¡	Data synchronization—Ensuring that data remains synchronized between the
database and the search engine is hard. Any changes in the database need to
be reflected in the search engine, often requiring complex mechanisms to keep
both systems in sync. Figure 11.1 illustrates the relevant aspects. Also, you must
have a mechanism in place to enforce the replication of documents that for some
reason were not replicated initially.

¡	Query challenge—Maintaining and querying two separate systems means that the
application must use a different query language for each system.

¡	Operational overhead—Managing two separate systems enhances the sophisti-
cation of the overall architecture. This leads to difficulties in troubleshooting,
monitoring, and scaling both systems independently, adding to the operational
burden on the DevOps teams.

¡	Cost—Running and maintaining separate systems is more expensive. It involves
additional infrastructure costs, more complex licensing arrangements, and
potentially higher operational expenses due to the need for specialized knowl-
edge and tools to manage both systems effectively.

Database Data sync Search cluster

Application

Search driver and
query language

Database driver and
query language

Figure 11.1  High-level data
synchronization architecture. The
application uses separate drivers
and query languages to interact with
the database and search clusters.
Data is replicated from the database
cluster to the search cluster to keep
the index updated. This setup adds
complexity, increases resource
usage, and can lead to consistency
issues. (Image © MongoDB 2024
CC BY-NC-SA 3.0)

Overall, although using separate solutions for database management and full-text
search can provide powerful capabilities for applications, it also introduces significant
drawbacks that can affect development speed, system performance, and operational
efficiency.

	 265Understanding Apache Lucene

11.2	 Understanding Apache Lucene
Apache Lucene is an open source library developed by the Apache Software Founda-
tion, initially coded entirely in Java but now available in other programming languages
as well. It’s widely used as a base for more complex search platforms such as Solr and
Elasticsearch. Lucene specializes in full-text searching and is capable of indexing var-
ious document types (such as HTML, emails, and PDFs) across platforms, including
web applications, libraries, and personal desktops.

The key to Lucene’s search efficiency is its use of an inverted index, which is akin to a
book’s glossary but maps keywords to their document locations instead of pages to key-
words. This allows for fast, accurate data retrieval. Consider the following documents
from the sample_training.inspections namespace:

¡	Document 1:

{ _id: ObjectId('56d61033a378eccde8a8355f'),
 id: '10423-2015-CMPL',
 certificate_number: 9304139,
 business_name: 'LISANDRO CABRERA',
 date: 'Jul 17 2015',
 result: 'No Violation Issued',
 sector: 'Mobile Food Vendor - 881',
 address: { city: 'BRONX', zip: 10475,
 street: 'PALMER AVE', number: 2234 } }

¡	Document 2:

{ _id: ObjectId('56d61033a378eccde8a83560'),
 id: '1044-2016-ENFO',
 certificate_number: 9318079,
 business_name: 'AZMY KIROLES',
 date: 'Dec 23 2015',
 result: 'No Violation Issued',
 sector: 'Mobile Food Vendor - 881',
 address: { city: 'JERSEY CITY', zip: 7306,
 street: 'VROOM ST', number: 160 } }

An inverted index for these documents would be represented as shown in table 11.1 in
a simplified form.

Table 11.1  Apache Lucene inverted index

Token Document 1 Document 2

LISANDRO CABRERA +

AZMY KIROLES +

BRONX +

JERSEY CITY +

PALMER AVE +

266 Chapter 11  Carrying out full-text search using Atlas Search

Token Document 1 Document 2

VROOM ST +

10475 + +

7306

2234 +

160 +

NO VIOLATION ISSUED + +

MOBILE FOOD VENDOR - 881 + +

JUL 17 2015 +

DEC 23 2015 +

Lucene processes documents through tokenization, which involves breaking the text
into smaller searchable units known as tokens (see the “Handling data using analyzers”
section). This is typically done using simple delimiters such as spaces. Also, Lucene
can handle multiword terms by using extra dictionaries, expanding its capability to
index phrases and specific terminology. Normalization is another crucial step during
tokenization; Lucene converts all characters to lowercase to ensure uniform search
results.

Furthermore, each document within Lucene receives a relevance score, ranking the
query results from most to least relevant. The basic scoring mechanism enhances the
scores of documents in which the query term appears frequently while reducing the
scores for terms that are common across the entire collection, distinguishing the rel-
evance of documents more effectively. Lucene allows you to customize scoring to suit
specific search domains, employing techniques such as boosting or decaying scores,
which enables you to tailor search results to meet your needs. Here are a few examples
of search queries:

¡	The search query "No Violation Issued Mobile Food Vendor - 881" is divided
into two tokens: "No Violation Issued" and "Mobile Food Vendor - 881". Then
these tokens are matched with the inverted index, and both Document 1 and
Document 2 are returned because both documents contain these tokens. The
score for each document may vary depending on factors such as token frequency,
token proximity, and other indexing parameters defined in Lucene. Typically,
both documents have similar scores if no other content in the documents influ-
ences the scoring algorithm differently.

¡	The search query "No Violation Issued BRONX" is divided into two tokens:
"No Violation Issued" and "BRONX". Then these tokens are matched with the
inverted index, and only Document 1 is returned because it is the only document
containing both tokens. The score for Document 1 may be higher due to the
complete matching of both tokens.

Table 11.1  Apache Lucene inverted index (continued)

	 267Getting to know Atlas Search

¡	The search query "Mobile Food Vendor - 881 PALMER AVE" is divided into two
tokens: "Mobile Food Vendor - 881" and "PALMER AVE". Then these tokens are
matched with the inverted index, and only Document 1 is returned because it is
the only document containing both tokens. The score for Document 1 will likely
be high due to the precise match of both specified tokens.

You can interact with Lucene by submitting search queries that can incorporate logical
operators such as AND, OR, and NOT. Lucene’s QueryParser, a component that inter-
prets these queries and transforms them into executable search commands, facilitates
a range of search capabilities tailored to diverse needs:

¡	term—Searches for a specific word within a document, using Lucene’s inverted
index to quickly locate documents containing the term.

¡	phrase—Looks for an exact sequence of words or a specific phrase, using
Lucene’s ability to track term positions within the index to ensure that the words
not only exist but also appear in the specified sequence.

¡	wildcard—Allows searches with placeholders, such as * for multiple characters
and ? for a single character, which is particularly useful for matching partial
words. Lucene scans these patterns against the indexed terms to find matches.

¡	fuzzy—Finds words that are spelled similarly to the query term. It typically uses
the Levenshtein distance algorithm to identify terms within a specified edit dis-
tance from the search term. This search type is useful for catching typos.

¡	proximity—Identifies terms that occur near each other within a specified dis-
tance in a document. Lucene calculates the proximity of terms based on their
positions to satisfy this criterion.

¡	range—Filters documents containing terms that fall within a specified range.
This search type is useful for searching numbers, dates, and any ordered data.
Lucene handles these queries efficiently through range filtering.

¡	autocomplete—Enhances user interaction by providing real-time suggestions as
the user types their query. This feature is implemented using techniques such as
edge n-gram indexing; Lucene generates edge n-grams from the start of words to
suggest completions or prefix queries that match terms starting with the user’s
input.

Each search type is meticulously designed to enhance the flexibility and precision of
retrieving information, making Lucene an effective tool for full-text searching across
various applications and large data sets.

11.3	 Getting to know Atlas Search
Atlas Search, built on Apache Lucene, eliminates the need to run a separate search
system alongside your MongoDB database. As shown in figure 11.2, Atlas Search inte-
grates a Lucene search index with the database, ensuring automatic synchronization
of data between the two systems. Management is streamlined through a single API,

268 Chapter 11  Carrying out full-text search using Atlas Search

reducing the need for separate systems and lowering operational complexity. Full-text
search is accessible through a single MongoDB Query API, eliminating the need for
different query languages—one for MongoDB and another for the search engine. This
unified system architecture improves data indexing and retrieval speeds while simplify-
ing the maintenance of database and search engine components.

Atlas SearchAtlas Database

MongoDB Atlas

Application

Same driver and
Query API

Figure 11.2  High-level overview of
Atlas Search. The application uses
MongoDB Atlas with a unified driver and
query API to access both database and
search functionality. Within the Atlas
environment, data storage and search
are integrated, eliminating the need for
separate systems or synchronization.
This unified approach simplifies the
architecture and reduces operational
overhead. (Image © MongoDB 2024 CC
BY-NC-SA 3.0)

11.3.1	 Learning Atlas Search architecture

The Atlas Search architecture incorporates components that integrate Apache Lucene
with a MongoDB Atlas database, facilitated by a process commonly known as the
mongot, as illustrated in figure 11.3. The mongot process operates in parallel with the
MongoDB server process (mongod) on each node of the Atlas cluster.

The mongot process is responsible for the following tasks:

¡	Establishing Atlas Search indexes according to the specified rules in the index
definitions for each collection

¡	Tracking MongoDB database change streams to monitor the current status of
documents and updating the Atlas Search indexes for collections in which those
indexes are defined

¡	Handling Atlas Search queries and delivering documents that match the search
criteria

Atlas Search offers a variety of text analyzers, a robust query language that incorporates
Atlas Search aggregation pipeline stages such as $search and $searchMeta alongside
other MongoDB aggregation stages, and score-based results ranking.

	 269Getting to know Atlas Search

Matching
documents

Match query results.
Search index configuration.

Atlas, UII, API, CLI
$search

$searchMeta
$vectorSearch

$search
$searchMeta

$vectorSearch

MongoDB Atlas
automation

Java web process (mongot)

API API

Lucenemongod

User MongoDB Atlas

mongosh

Compass

Drivers

Contains only search indexes + objects

Initial sync and
change streams Configure

indexes.

ObjectID and
metadata

Figure 11.3  The Atlas Search architecture integrates MongoDB with the Lucene Search Index managed by
the mongot process. MongoDB (mongod) serves as the primary database, sending object IDs and metadata to
mongot via change streams for synchronization and monitoring. mongot uses APIs for index configuration and
search operations. The Lucene component handles search indexes and ObjectIDs, enabling efficient query
processing. Index configuration is managed through MongoDB Atlas Automation, interfacing with the Atlas UI,
API, and CLI. Search queries initiated via mongosh, Compass, or drivers are processed by the Atlas Search cluster.
(Image © MongoDB 2024 CC BY-NC-SA 3.0)

11.3.2	 Using Atlas Search Nodes

Atlas Search Nodes are specialized nodes within MongoDB Atlas dedicated to handling
the search functionality by running the mongot process. Figure 11.4 shows the Search
Nodes architecture. Search nodes provide workload isolation, ensuring that search
operations do not interfere with other database operations. In dedicated (M10 or
higher) sharded and unsharded Atlas clusters on any cloud provider, you can deploy
these Search Nodes with each cluster or with each shard in the cluster. Deploying two
Search Nodes for a cluster with three shards means that Atlas will deploy six Search
Nodes, with two dedicated to each shard.

When you deploy separate Search Nodes, Atlas automatically assigns a mongod for
each mongot. The mongot communicates with the mongod to listen for and sync index
changes for the indexes it stores.

270 Chapter 11  Carrying out full-text search using Atlas Search

mongod mongod mongod

mongot mongot

Initial sync and change streams

Search queries

Figure 11.4  Within the Atlas Search Nodes architecture, multiple MongoDB (mongod) instances
manage data storage and execute search queries, forwarding them to mongot processes. These
processes handle initial synchronization and continuous updates via change streams, ensuring that
search indexes are consistently updated with the latest data changes across all nodes.
(Image © MongoDB 2024 CC BY-NC-SA 3.0)

NOTE  Local solid-state drives (SSDs) for Search Nodes need a 20% storage
overhead to accommodate index operations.

11.3.3	 Atlas Search indexes

An Atlas Search index, powered by Apache Lucene, is a data structure that organizes
data in a format optimized for search. It maps terms to the documents containing those
terms, enabling faster document retrieval using specific identifiers. Similar to an index
in the back of a book that links terms to their locations, a search index creates associ-
ations between terms and the documents where those terms appear. Search indexes
also include important metadata, such as the positions of terms within the documents.

To query data in your Atlas cluster with Atlas Search, first configure an Atlas Search
index. You can create a search index on a single field or multiple fields. To improve
query performance, create indexes on fields that are frequently used for sorting or fil-
tering. This allows Atlas Search to retrieve relevant documents more efficiently. You can
use the following methods to index fields:

¡	Dynamic mappings—This method automatically indexes all fields of supported
types in each document. Although this method is convenient, it consumes disk
space and can negatively affect cluster performance.

¡	Static mappings—This method allows you to selectively identify the fields to index.
For fields containing polymorphic data, Atlas Search indexes only documents
that match the index definition, ignoring those with mismatched data types.

	 271Getting to know Atlas Search

NOTE  Static mappings are preferred for better performance and efficient use
of disk space. They are recommended for production use cases.

Listing 11.1 shows Atlas Search index definition syntax. In the config file, you can tell
Atlas to index specific fields while excluding others or dynamically index every field
in a collection. You can also use a specific analyzer (described in the next section) or
multiple analyzers to index particular fields.

Listing 11.1  Atlas Search index syntax

{
 "analyzer": "<analyzer-for-index>",
 "searchAnalyzer": "<analyzer-for-query>",
 "mappings": {
 "dynamic": <boolean>,
 "fields": { <field-definition> }
 },
 "analyzers": [<custom-analyzer>],
 "storedSource": <boolean> | {
 <stored-source-definition>
 },
 "synonyms": [
 {
 "name": "<synonym-mapping-name>",
 "source": {
 "collection": "<source-collection-name>"
 },
 "analyzer": "<synonym-mapping-analyzer>"
 }
]
}

Table 11.2 details the various options for configuring an Atlas Search index from the
template showed earlier in listing 11.1.

Table 11.2  Template options for configuring Atlas Search index

Field Type Necessity Description

analyzer String Optional Specifies the analyzer to apply to string
fields when indexing

analyzers Array of cus-
tom analyzers

Optional Specifies the custom analyzers to use in
this index

mappings Document
field definition

Required Specifies how to index fields at different
paths for this index

mappings.dynamic Boolean Optional Enables or disables dynamic mapping
of fields. true means all dynamically
indexable fields are indexed; false
means you must specify individual fields
to index. If the mappings.dynamic
option is omitted, it defaults to false.

272 Chapter 11  Carrying out full-text search using Atlas Search

Field Type Necessity Description

mappings.fields Document Conditional Required only if dynamic mapping is
disabled; specifies the fields you want
to index

searchAnalyzer String Optional Specifies the analyzer to apply to query
text before searching. It defaults to the
analyzer setting if omitted or to the stan-
dard analyzer if both are omitted.

storedSource Boolean or
stored source
definition

Optional Specifies fields to store for query-time
lookups. It can be true to store all fields,
false to store none, or an object to
specify fields to include or exclude. If the
storedSource option is omitted, it
defaults to false.

synonyms Array of syn-
onym mapping
definition

Optional Specifies synonym mappings to use in
your index. Only one synonym mapping
can be defined per index.

Although Atlas Search doesn’t create an exact copy of the data from your MongoDB
cluster collections, it builds search indexes directly on your data, which requires some
disk space and memory. These indexes enable fast, efficient searching without dupli-
cating your entire data set.

When you perform a search query, the search index quickly identifies relevant
document IDs. Then the actual documents are fetched directly from your original
MongoDB collection based on the information from the search index. This ensures
that you’re always working with the most up-to-date data and that the search process
remains optimized for performance.

Handling data using analyzers

To get your data ready for indexing, you must process it through tokenization. Tokeni-
zation involves dividing a stream of text into smaller elements known as tokens, such as
words, phrases, and symbols. This task is performed by components called analyzers,
which are integral to the search engine’s functionality. These analyzers not only gen-
erate tokens from the text but also apply parsing and language rules to ensure that the
text is searchable. Furthermore, when creating an index or executing a query, you can
specify which analyzer to use, giving you control of how text is converted from a string
field to searchable terms. These tokens are stored in the index for future search que-
ries. Table 11.3 summarizes the built-in analyzers provided by Atlas Search.

Table 11.3  Atlas Search built-in analyzers

Analyzer Description

Standard Uses the default analyzer for all Atlas Search indexes and queries

Simple Divides text into searchable terms wherever it finds a nonletter character

Table 11.2  Template options for configuring Atlas Search index (continued)

	 273Getting to know Atlas Search

Analyzer Description

Whitespace Divides text into searchable terms wherever it finds a whitespace character

Language Provides a set of language-specific text analyzers

Keyword Indexes text fields as single terms

Analyzers are made up of a tokenizer, which segments the text into tokens, and the
filters that you set. Atlas Search applies filters to the tokens to form terms that can be
indexed, helping you adjust for variations in things like punctuation, capitalization,
and unnecessary words.

NOTE  If you don’t specify an analyzer, MongoDB Atlas uses the default stan-
dard analyzer.

TIP  In Atlas, you have the option to create a custom analyzer using the built-in
character filters, tokenizers, and token filters. Check the MongoDB official
documentation at https://mng.bz/Z9pZ.

Reindexing in Atlas Search

If you want to modify the mapping of an existing index, reindexing is required. In this
process, Atlas Search initiates the construction of a new index based on the updated
mapping. It reads all the data relevant to the index and reorganizes it according to the
new mapping specifications. This reindexing occurs in the background, allowing the
old index to continue handling existing and new queries without downtime. When the
rebuild is complete, the system seamlessly transitions to the new index, and the old one
is removed.

TIP  Updating the Atlas Search index requires time and resources. Ensure that
you have free disk space equal to 125% of your current index’s size for a suc-
cessful update.

If you have deployed separate Search Nodes, Atlas Search rebuilds indexes during the
following events:

¡	Adding search nodes.

¡	Scaling search nodes.

¡	Internal mongot changes that require an index resync (such as updates needed
for some Atlas Search features). See the official MongoDB documentation to
check details at https://mng.bz/649D.

During an index rebuild, Atlas automatically deploys additional Search Nodes to
ensure that the old index remains up to date and available for queries while the new
index is being built.

Table 11.3  Atlas Search built-in analyzers (continued)

https://mng.bz/Z9pZ
https://mng.bz/649D

274 Chapter 11  Carrying out full-text search using Atlas Search

When changes are made to the collection with defined Atlas Search indexes, the
latest data may not be available for queries immediately. But mongot monitors change
streams, allowing it to update stored data copies and ensure that Atlas Search indexes
are eventually consistent.

NOTE  Atlas Search automatically rebuilds the index only when the index
definition changes, an Atlas Search update includes breaking changes, or
hardware-related problems such as index corruption occur.

TIP  When you use the $out aggregation stage to alter a collection that
includes an Atlas Search index, you must delete and then re-create the search
index. If feasible, you should use $merge instead of $out.

11.4	 Building an Atlas Search index
To understand how Atlas Search indexes work, create one by using the MongoDB M0
cluster (dedicated search nodes are not supported in this cluster tier), which is named
“MongoDB-in-Action" and which you built in part 1 of this book. The sample data is
already in the cluster.

WARNING  Creating an Atlas Search index is resource-intensive. The perfor-
mance of your Atlas cluster may be affected while the index builds.

It’s important to be aware of the specific limitations that apply to Atlas search on M0
(three indexes). Conversely, if you’re operating on M10 or higher clusters, there are
no restrictions on the number of indexes you can create. When the maximum number
of indexes for your cluster tier is reached, you can upgrade your cluster tier to create
more indexes.

NOTE  When you enable Atlas Search on your Atlas cluster, no extra fees or
charges apply. But you may notice increased resource use on the cluster, which
can vary based on factors such the size of the collections being indexed and the
complexity of the index definitions.

To refresh your knowledge of the "MongoDB-in-Action" cluster, use this Atlas
command-line interface (CLI) command:

atlas cluster list

The command displays the cluster created in chapter 2:

ID NAME MDB VER STATE
6658a85ba9e6a9047d15cf98 MongoDB-in-Action 8.0.4 IDLE

Using the command atlas clusters search indexes create, build a new Atlas Search
index using the sample_training database and the inspections collection as an

	 275Building an Atlas Search index

index source. As a prerequisite, you need to define static mapping in the file, setting a
predefined schema for the data. This method enhances search performance, prevents
schema conflicts, and ensures consistent handling of the indexed data. Following is an
example mapping file.

Listing 11.2  Atlas Search index config

{
 "name": "MongoDB-in-Action",
 "database": "sample_training",
 "collectionName": "inspections",
 "mappings": {
 "dynamic": false,
 "fields": {
 "business_name": {
 "type": "string",
 "analyzer": "lucene.standard"
 },
 "date": {
 "type": "date"
 },
 "result": {
 "type": "string",
 "analyzer": "lucene.standard"
 },
 "sector": {
 "type": "string",
 "analyzer": "lucene.standard"
 },
 "address": {
 "type": "document",
 "fields": {
 "city": {
 "type": "string",
 "analyzer": "lucene.standard"
 },
 "zip": {
 "type": "string",
 "analyzer": "lucene.standard"
 },
 "street": {
 "type": "string",
 "analyzer": "lucene.standard"
 },
 "number": {
 "type": "string",
 "analyzer": "lucene.standard"
 }
 }
 }
 }
 }
}

276 Chapter 11  Carrying out full-text search using Atlas Search

In the mapping file, the Atlas cluster is defined and named "MongoDB-in-Action".
This cluster hosts the MongoDB database sample_training and the inspections col-
lection for constructing the search index. The index uses a static mapping ("dynamic"
is set to false) to enhance search functionalities, meaning that only predefined
fields—business_name, date, result, sector, and address—are indexed. Within the
address field, subfields such as city, zip, street, and number are also indexed. Each
field employs the Lucene standard analyzer.

The standard analyzer is the default for all Atlas Search indexes and queries. It
splits text into terms using word boundaries, making it suitable for various languages.
It converts all terms to lowercase and eliminates punctuation. This analyzer supports
grammar-based tokenization, recognizing elements such as email addresses; acronyms;
Chinese, Japanese, and Korean characters; and alphanumerics.

Next, insert the contents of this configuration into the index-definition.json file,
and execute the following command.

Listing 11.3  Creating an Atlas Search Index

atlas clusters search indexes create \
--clusterName MongoDB-in-Action \
--file index-definition.json --output json

After executing this command, you see a summary of your index, which is currently
being created. In my example, it looks like this:

{
 "collectionName": "inspections",
 "database": "sample_training",
 "indexID": "6689a58d744a7d5ef40a37b5",
 "name": "MongoDB-in-Action",
 "status": "IN_PROGRESS",
 "type": "search",
 "mappings": {
 "dynamic": false,
 "fields": {
 "address": {
 "fields": {
 "city": {
 "analyzer": "lucene.standard",
 "type": "string"
 },
 "number": {
 "analyzer": "lucene.standard",
 "type": "string"
 },
 "street": {
 "analyzer": "lucene.standard",
 "type": "string"
 },
 "zip": {
 "analyzer": "lucene.standard",

	 277Building an Atlas Search index

 "type": "string"
 }
 },
 "type": "document"
 },
 "business_name": {
 "analyzer": "lucene.standard",
 "type": "string"
 },
 "date": {
 "type": "date"
 },
 "result": {
 "analyzer": "lucene.standard",
 "type": "string"
 },
 "sector": {
 "analyzer": "lucene.standard",
 "type": "string"
 }
 }
 },
 "synonyms": []
}

The command atlas clusters search indexes create triggers creation of the search
index and initiates initial synchronization of data from the inspections collection.
The process of indexing involves replicating the data in a Lucene-based index. Index-
ing in this context means transforming the data into a format optimized for efficient
search by Lucene, facilitating faster, more effective query execution.

After a few minutes, the initial synchronization process is complete, and the search
index is ready to use. You can verify this by using the following command:

atlas clusters search indexes list \
--clusterName MongoDB-in-Action \
--collection inspections \
--db sample_training

You can also view your Atlas Search index in the Atlas UI. To do this, navigate to the
Atlas Search section in the middle of the top menu below the Data Services tab within
your MongoDB-in-Action cluster. Figure 11.5 shows the Atlas UI displaying the details
of the current Atlas Search index configuration.

The namespace sample_training.inspections has one active search index, named
MongoDB-in-Action. The interface displays the status of the index (active), the indexed
fields, the size of the index, and the number of documents indexed. It also provides
options to query the index and view detailed status information.

TIP  You can create an Atlas Search index on M10 and higher clusters
using MongoDB Compass or mongosh. In mongosh, use the db.collection
.createSearchIndex() helper method.

278 Chapter 11  Carrying out full-text search using Atlas Search

Figure 11.5  Atlas Search index. On the left side of the screen is a collapsible navigation menu. To access Search
Index view, click the Search & Vector Search option in the Data section. When you do, the main panel displays
details on the search indexes. In this example, the sample_training database and its inspections collection
are shown, with an active search index named MongoDB-In-Action. The index is marked as Ready and is fully
queryable, indicated by the green check. (Image © MongoDB 2025)

NOTE  An index definition JSON object cannot exceed 3 KB.

11.5	 Running Atlas Search queries
Atlas Search queries are structured as aggregation pipeline stages. They include the
$search and $searchMeta stages, which must be positioned as the initial stage in the
query pipeline. These stages can be combined with additional stages of the aggregation
pipeline within your query pipeline. Atlas Search offers query operators that you can use
within the $search aggregation pipeline stages, described in table 11.4. The operators
enable you to find and retrieve relevant data from your collection in the Atlas cluster.

Table 11.4  The aggregation pipeline $search stage supported operators

Operator Description Supported Atlas search types

autocomplete Performs a search-as-you-type query
from an incomplete input string

autocomplete

compound Combines other operators into a sin-
gle query

Field types supported by the operators
used inside the compound operator

embeddedDocument Queries fields in embedded docu-
ments, which are documents that are
elements of an array

Embedded documents and field types
supported by the operators used inside
the embeddedDocument
operator

equals Checks whether the field contains the
specified value

boolean, date, objectId, number,
token, uuid

exists Tests for the presence of a specified
field, regardless of field type

Field type isn’t used by the exists
operator

geoShape Queries for values with specified geo-
graphical shapes

geo

geoWithin Queries for points within specified
geographical shapes

geo

in Queries single values and arrays of
values

boolean, date, objectId, number,
token, uuid

	 279Running Atlas Search queries

Operator Description Supported Atlas search types

moreLikeThis Queries for similar document string

near Queries for values near a specified
number, date, or geographical point

date, geo point, number

phrase Searches documents for terms in an
order similar to the query

string

queryString Supports querying a combination of
indexed fields and values

string

range Queries for values within a specific
numeric or date range

date, number

regex Interprets the query field as a regular
expression

string

text Performs textual analyzed search string

wildcard Supports special characters in the
query string that can match any
character

string

Search operators allow you to conduct queries for terms, phrases, geographical shapes
and points, numeric values, and similar documents, among others. Also, you can per-
form searches using regex and wildcard expressions.

Atlas Search also provides query collectors you can use inside the $search and
$searchMeta aggregation pipeline stages. Collectors return a document representing
the metadata results, typically an aggregation over the matching search results. The
facet operator groups query results by values or ranges in specified, faceted fields and
returns the count for each of those groups. It supports dateFacet, numberFacet, and
stringFacet field types.

11.5.1	 Using the $search aggregation pipeline stage

The $search stage conducts full-text searches by querying the Atlas Search index,
which uses Lucene technology. The field or fields involved in the query must be
included in this index. The process of indexing preprocesses and organizes your data
into a Lucene index to optimize and accelerate search queries, ensuring precise, effi-
cient search results across the indexed fields. The following listing shows the $search
pipeline stage structure.

Listing 11.4  The $search prototype form

{
 $search: {
 "index": "<index-name>",
 "<operator-name>"|"<collector-name>": {
 <operator-specification>|<collector-specification>
 },
 "highlight": {

Table 11.4  The aggregation pipeline $search stage supported operators (continued)

280 Chapter 11  Carrying out full-text search using Atlas Search

 <highlight-options>
 },
 "concurrent": true | false,
 "count": {
 <count-options>
 },
 "searchAfter"|"searchBefore": "<encoded-token>",
 "scoreDetails": true| false,
 "sort": {
 <fields-to-sort>: 1 | -1
 },
 "returnStoredSource": true | false,
 "tracking": {
 <tracking-option>
 }
 }
}

Let’s look at the options:

¡	index—Specifies the name of the Atlas Search index to be used for the query. If
omitted, the system defaults to an index named default.

¡	operator/collector—Essential for defining the search behavior. This can be
a search operator that specifies how data should be queried or a collector that
aggregates and processes data. Each comes with its own set of specifications.

¡	highlight—Provides options for highlighting search terms within the results,
enhancing the visibility of query matches.

¡	concurrent—A Boolean setting that, when enabled, allows the search process to
be parallelized across multiple segments on dedicated search nodes, improving
performance.

¡	count—Offers a way to include a count of the results within the search output;
useful for understanding the scope of the data returned.

¡	SearchAfter/SearchBefore—Facilitate pagination by specifying a reference
point (encoded token) from which to continue returning results after or before
the token.

¡	ScoreDetails—When set to true, returns a detailed breakdown of how each
result was scored during the search; can be useful for debugging and refining
search parameters.

¡	sort—Allows specifying which fields should be sorted and in what order (ascend-
ing or descending), helping you organize the output according to specific criteria.

¡	ReturnStoredSource—Determines whether to fetch the full document from the
backend database or only the fields that are stored directly in the Atlas Search
index.

¡	tracking—Enables tracking of search operations, which helps in collecting ana-
lytics and insights into how searches are being performed.

	 281Running Atlas Search queries

To test the aggregation pipeline $search stage, log in to your Atlas cluster, using
mongosh and the connection string. As a reminder, you can obtain the connection
string by running the command atlas clusters connectionStrings describe:

atlas clusters connectionStrings describe "MongoDB-in-Action"

This command returned my connection string, which looks like this:

STANDARD CONNECTION STRING
mongodb+srv://mongodb-in-action.a7niyd4.mongodb.net

Now connect to the MongoDB cluster using mongosh by executing the following
command:

mongosh "mongodb+srv://mongodb-in-action.a7niyd4.mongodb.net/" \
--apiVersion 1 --username manning

Next, use the use command to select the sample_training database:

use sample_training

You are redirected to the target database:

switched to db sample_training

Now you can start using Atlas Search with the $search stage.

Atlas text operator

The Atlas text operator conducts a full-text search using the analyzer designated in
the index settings. For reference, we are using lucene.standard.

Perform the first aggregation pipeline using the $search stage and text operator,
together with the compound and score operators. The compound operator combines
other operators into a single query. The score represents the relevance of each docu-
ment based on the search criteria. Here is the query:

db.inspections.aggregate([
 {
 $search: {
 index: "MongoDB-in-Action", // Specifying the search index
 compound: {
 // The must array specifies conditions that must be met
 must: [
 {
 text: {
 query: "food", // Searching for the word "food"
 path: "business_name" // in the business_name field
 }
 },
 {

282 Chapter 11  Carrying out full-text search using Atlas Search

 text: {
 query: "PASS", // Searching for the word "PASS"
 path: "result" // in the result field
 }
 },
 {
 text: {
 query: "127", // Searching for the number "127"
 path: "sector" // in the sector field
 }
 }
]
 }
 }
 },
 {
 $set: {
 score: {
 $meta: "searchScore" // Adding the search score,
 ➥ // indicating the relevance of each
 ➥ // document based on the search criteria
 }
 }
 }
])

This Atlas Search full-text search aggregation pipeline returns the following result:

[
 {
 _id: ObjectId('56d61034a378eccde8a910f4'),
 id: '20958-2015-ENFO',
 certificate_number: 9284194,
 business_name: 'MARTES FOOD CENTER CORP',
 date: 'Apr 16 2015',
 result: 'Pass',
 sector: 'Cigarette Retail Dealer - 127',
 address: { city: 'BRONX', zip: 10452,
 street: 'WALTON AVE', number: 1055 },
 score: 2.944375991821289
 }
]

The query performs a full-text search. It applies a compound condition that combines
multiple criteria and requires all three must clauses to be met:

¡	 The business_name must contain "food" (using the text search operator with
"food" as the query and business_name as the path).

¡	The result field must contain "PASS".

¡	The sector field must contain "127". The score is calculated by the $meta:
"searchScore" operator. This score is a numerical value that indicates how well
each document matches the search criteria.

	 283Running Atlas Search queries

In systems like Apache Lucene, scores are calculated dynamically to reflect how well
documents match a search query, with no fixed upper limit. A higher score indicates
a stronger alignment with the search criteria. The score of 2.944375991821289 for
'MARTES FOOD CENTER CORP' suggests a moderate relevance to the specified search terms.
Such scores are crucial for ranking documents in search results, as they help order the
documents by relevance. A higher score signifies a document that is more closely related
to your query, thereby guiding you more efficiently to the most relevant information.

NOTE  We are discussing full-text search in Atlas using the $text operator, not
the $text operator available in the self-hosted MongoDB. Despite having the
same name, the two operators have significant differences.

Fuzzy property

Perform another query using the text operator with the fuzzy property. The fuzzy
property allows searches that can match similar terms, accounting for possible typo-
graphical errors or variations in spelling:

db.inspections.aggregate([
 {
 $search: {
 index: "MongoDB-in-Action",
 text: {
 query: "BUILNG TO SERV INC", // Intentionally introduced
 ➥ // errors: "BUILDING" missing an "I",
 ➥ // "SERVE" missing an "E"
 path: "business_name",
 fuzzy: {
 maxEdits: 2, // Allows for up to two typographical errors
 prefixLength: 1 // The first letter must be exactly the same
 }
 }
 }
 },
 {
 $limit: 2 // Limits the number of results to 2 for easier verification
 },
 {
 $set: {
 // Dynamically copies the fields to be retained in the output
 business_name: "$business_name",
 date: "$date",
 result: "$result",
 sector: "$sector",
 address: "$address",
 score: { $meta: "searchScore" } // Adds the search score
 }
 },
 {
 $unset: ["_id"] // Removes the '_id' field from the output documents
 }
])

284 Chapter 11  Carrying out full-text search using Atlas Search

This aggregation pipeline returns the following result:

[
 {
 id: '1044-2015-CMPL',
 certificate_number: 5382334,
 business_name: 'BUILDING TO SERVE INC.',
 date: 'Jul 22 2015',
 result: 'Violation Issued',
 sector: 'Home Improvement Contractor - 100',
 address: {
 city: 'JAMAICA',
 zip: 11432,
 street: 'HILLSIDE AVE',
 number: 17939
 },
 score: 7.316098690032959
 },
 {
 id: '4290-2016-ENFO',
 certificate_number: 9324927,
 business_name: 'SEND TO PRINT LLC',
 date: 'Jan 12 2016',
 result: 'Out of Business',
 sector: 'Misc Non-Food Retail - 817',
 address: {
 city: 'JACKSON HEIGHTS',
 zip: 11372,
 street: '37TH AVE',
 number: 8821
 },
 score: 3.824653387069702
 }
]

This aggregation pipeline uses the text operator with a query for "BUILNG TO SERV
INC", incorporating intentional misspellings to demonstrate the fuzzy property
capability. The fuzzy property is configured to allow up to two typographical errors
(maxEdits: 2) and requires the first letter to match exactly (prefixLength: 1). The
search results are limited to two documents for simplicity, using the $limit operator.

The fuzzy property is ideal for searches in which data may have typographical errors,
enhancing the robustness of search functions and accommodating slight spelling mis-
takes in queries. This feature allows users to search effectively within applications or
databases directly from the search interface, even if their input is not perfectly accurate.

Proximity search

Next, perform a query using the phrase operator to execute a proximity search:

db.inspections.aggregate([
 {
 $search: {

	 285Running Atlas Search queries

 index: "MongoDB-in-Action",
 phrase: {
 query: ["food", "license"], // Words to search for
 path: "business_name", // Field to search in
 slop: 3 // Allows up to 3 intervening words
 ➥ // between "food" and "license"
 }
 }
 },
 {
 $limit: 1 // Limits the number of results to 1
 },
 {
 $set: {
 // Adds necessary fields to the output documents
 business_name: "$business_name",
 result: "$result",
 sector: "$sector"
 }
 },
 {
 $unset: ["_id", "address", "date"] // Removes the '_id',
 ➥ // 'address', and 'date' fields from
 ➥ // the output documents
 }
])

This aggregation pipeline returns the following result:

[
 {
 id: '9118-2015-CMPL',
 certificate_number: 9305560,
 business_name: 'FOOD CART VENDOR LICENSE# C4029',
 result: 'Unable to Locate',
 sector: 'Mobile Food Vendor - 881'
 }
]

Proximity search is useful when the exact order of words is not known but their relative
positioning is important. The slop property in such queries specifies how many words
can appear between the searched terms, allowing flexibility in how closely the terms
need to be positioned. In a legal document search, for example, it helps to find legal
clauses or terms that are near each other within a specified distance. In customer-
review analysis, it identifies phrases in which certain keywords are close together,
aiding in sentiment analysis. It enhances search capabilities in content management
systems by finding relevant documents or articles based on the proximity of keywords.
In academic research, it locates references or quotes in which specific terms are used
near each other, which is useful for literature reviews and research papers. Finally, it
improves user search experience on websites by accommodating queries that may not

286 Chapter 11  Carrying out full-text search using Atlas Search

have the exact keyword order, allowing a more natural input of search terms while
delivering relevant results.

Wildcard search

Special characters can stand in for unknown characters in a text value and are handy
for locating multiple items with similar but not identical data using the wildcard
operator:

db.inspections.aggregate([
 {
 $search: {
 index: "MongoDB-in-Action",
 wildcard: {
 path: "business_name",
 query: "*L?CE*", // Searches for phrases containing
 ➥ // "L?CE", where "?" represents any single
 ➥ // character and "*" represents zero
 ➥ // or more characters
 allowAnalyzedField: true // Allows searching on an analyzed field
 }
 }
 },
 {
 $set: {
 score: { $meta: "searchScore" } // Adds the search
 ➥ // score to each document
 }
 },
 {
 $sort: {
 score: -1 // Sorts by search score in descending order
 }
 },
 {
 $limit: 2 // Limits the number of results to 2
 },
 {
 $unset: ["_id", "address", "date"] // Removes the '_id',
 ➥ // 'address', and 'date' fields
 ➥ // from the output documents
 }
])

This Atlas Search aggregation pipeline returns the following result:

[
 {
 id: '10172-2015-CMPL',
 certificate_number: 9304489,
 business_name: 'UNNAMED HOT DOG VENDOR LICENSE NUMBER TA01158',
 result: 'No Violation Issued',
 sector: 'Mobile Food Vendor - 881',
 score: 1

	 287Running Atlas Search queries

 },
 {
 id: '10268-2015-CMPL',
 certificate_number: 9304816,
 business_name: 'UNNAMED HOT DOG VENDOR NO LICENSE NUMBER PROVIDED',
 result: 'No Violation Issued',
 sector: 'Mobile Food Vendor - 881',
 score: 1
 }
]

The query searches for businesses with names matching a specific pattern using the
wildcard operator. It looks for names containing any variant of "L?CE", where "?" can
be any single character and "*" any sequence of characters. After identifying matches,
the pipeline uses the $set stage to append a search relevance score to each document.
Then this score is used in the $sort stage to order the documents by relevance in
descending order. The pipeline limits the results to the top two entries by using the
$limit stage. Finally, certain fields such as _id, address, and date are removed from
the output with the $unset stage, streamlining the data for presentation or further
processing.

Use this type of query when you need to find records with field values that match a
specific pattern, which is useful for filtering data with partial or uncertain information.

The facet operator

The facet operator in Atlas Search creates faceted search results. Faceted search allows
you to categorize search results in multiple groups (facets) based on specified fields,
such as price ranges, categories, and tags. This enables you to filter and refine search
results by selecting specific facets, improving the search experience by making it easier
to navigate large sets of results. The facet operator aggregates data based on the speci-
fied fields and provides counts of documents in each category, allowing quick, efficient
filtering.

The following query employs faceted search in a practical context. It initiates with
a fuzzy text search for businesses with "HOT DOG" in their names, allowing for minor
spelling discrepancies. Following the search, the data is processed through three facets.
ResultsByStatus groups inspection outcomes, ResultsByYear organizes the data by
the year of inspection, and SectorSummary categorizes businesses by their sector, pro-
viding a count for each:

db.inspections.aggregate([
 {
 $search: {
 index: "MongoDB-in-Action",
 text: {
 query: "HOT DOG",
 path: "business_name",
 fuzzy: {
 maxEdits: 1, // Allows for one typo
 prefixLength: 3 // The first 3 letters must be exactly the same

288 Chapter 11  Carrying out full-text search using Atlas Search

 }
 }
 }
 },
 {
 $facet: {
 "ResultsByStatus": [
 { $group: { _id: "$result", count: { $sum: 1 } } }
],
 "ResultsByYear": [
 {
 $group: {
 _id: { $year: { $dateFromString: { dateString: "$date" } } },
 count: { $sum: 1 }
 }
 }
],
 "SectorSummary": [
 { $sortByCount: "$sector" }
]
 }
 },
 { $limit: 1 } // This is only for illustration;
 ➥ // typically, limit wouldn't be
 ➥ // used after a facet.
])

Here’s example output of the query:

[
 {
 ResultsByStatus: [
 { _id: 'No Violation Issued', count: 30 },
 { _id: 'No Evidence of Activity', count: 5 },
 { _id: 'Unable to Locate', count: 3 },
 { _id: 'Out of Business', count: 5 },
 { _id: 'Posting Order Served', count: 1 },
 { _id: 'Violation Issued', count: 19 },
 { _id: 'Pass', count: 19 }
],
 ResultsByYear: [{ _id: 2015, count: 74 }, { _id: 2016, count: 8 }],
 SectorSummary: [
 { _id: 'Cigarette Retail Dealer - 127', count: 32 },
 { _id: 'Grocery-Retail - 808', count: 20 },
 { _id: 'Misc Non-Food Retail - 817', count: 12 },
 { _id: 'Mobile Food Vendor - 881', count: 6 },
 { _id: 'Wearing Apparel - 450', count: 5 },
 { _id: 'Salons And Barbershop - 841', count: 3 },
 { _id: 'Tow Truck Company - 124', count: 2 },
 { _id: 'Restaurant - 818', count: 1 },
 { _id: 'Tax Preparers - 891', count: 1 }
]
 }
]

	 289Running Atlas Search queries

This output exemplifies how faceted search can reveal insights into data distribution
across various categories, helping businesses and analysts make informed decisions
based on specific aspects of the data.

Let’s look at another example. In the next Atlas Search query, the facet operator
analyzes the results after searching for business names containing "BUILDING". The
query organizes the data in different groups to make it easier to understand. First, it
counts how many businesses match the search. Then it groups the results by the out-
come of their inspections (such as whether they passed or had violations) and by the zip
codes of their addresses:

db.inspections.aggregate([
 {
 // Searches documents using the specified
 ➥ // index and text search on
 ➥ // the business_name field
 $search: {
 index: "MongoDB-in-Action", // Uses the "MongoDB-in-Action"
 ➥ // index for search
 text: {
 query: "BUILDING", // The search query,
 ➥ // looking for "BUILDING" in the business names
 path: "business_name" // Specifies that the search
 ➥ // should focus on the 'business_name' field
 }
 }
 },
 {
 // Facets the results into multiple categories for detailed analysis
 $facet: {
 "TotalResults": [
 { $count: "totalCount" } // Counts the total
 ➥ // number of matching documents
],
 "ResultsByStatus": [
 // Groups documents by the 'result' field and counts the occurrences
 { $group: { _id: "$result", count: { $sum: 1 } } },
 // Sorts the grouped results by count in descending order
 { $sort: { count: -1 } }
],
 "ResultsByZip": [
 // Groups documents by the zip code field
 ➥ // in the address and counts the occurrences
 { $group: { _id: "$address.zip", count: { $sum: 1 } } },
 // Sorts the results by count in descending order
 { $sort: { count: -1 } }
]
 }
 }
])

This aggregation pipeline with facet returned the following result:

290 Chapter 11  Carrying out full-text search using Atlas Search

[
 {
 TotalResults: [{ totalCount: 29 }],
 ResultsByStatus: [
 { _id: 'No Violation Issued', count: 14 },
 { _id: 'Violation Issued', count: 5 },
 { _id: 'Out of Business', count: 5 },
 { _id: 'Pass', count: 5 }
],
 ResultsByZip: [
 { _id: 11214, count: 3 },
 { _id: 11101, count: 2 },
 { _id: 11216, count: 2 },
 { _id: 11220, count: 2 },
 { _id: 11232, count: 1 },
 { _id: 10469, count: 1 },
 { _id: 11436, count: 1 },
 { _id: 10457, count: 1 },
 { _id: 11205, count: 1 },
 { _id: 10312, count: 1 },
 { _id: 11236, count: 1 },
 { _id: 11411, count: 1 },
 { _id: 11357, count: 1 },
 { _id: 10459, count: 1 },
 { _id: 11418, count: 1 },
 { _id: 10002, count: 1 },
 { _id: 11235, count: 1 },
 { _id: 11249, count: 1 },
 { _id: 11432, count: 1 },
 { _id: 11361, count: 1 },
 { _id: 10455, count: 1 },
 { _id: 11416, count: 1 },
 { _id: 11417, count: 1 },
 { _id: 11354, count: 1 }
]
 }
]

The result reveals that 29 businesses were involved in this query. When the result was
broken down by inspection results, 14 businesses had no violations, 5 had violations
issued, 5 were out of business, and the remaining 5 passed their inspections. Also, the
data is organized by zip code to show geographical trends, with the highest occur-
rences in the 11214 area. This structured output is essential for understanding the
distribution and common problems of building-related businesses, aiding in targeted
regulatory and business planning strategies.

The facet operator with $$SEARCH META

You can employ the SEARCH_META variable to access the metadata results of your
$search query. The SEARCH_META aggregation variable is applicable in any pipeline fol-
lowing a $search stage.

	 291Running Atlas Search queries

In the following aggregation pipeline, a fuzzy search is conducted on the business_
name field using the query "smok skop", intended to capture variations like "smoke
shop". This approach allows one typographical error and requires the first three letters
to be exactly the same, enhancing the search’s tolerance for input discrepancies. Next,
the pipeline employs a facet stage to organize the results, which includes limiting the
display to the first five relevant documents while maintaining essential information
such as business name, date, result, and sector. Simultaneously, it categorizes results
in automatically generated buckets based on the result field and gathers metadata
such as total document counts through the $$SEARCH_META variable, providing valuable
insights into the search’s effectiveness and reach:

db.inspections.aggregate([
 {
 $search: {
 index: "MongoDB-in-Action",
 text: {
 query: "smok skop", // Intentionally misspelled,
 ➥ // likely meant to be "smoke shop"
 path: "business_name",
 fuzzy: {
 maxEdits: 1, // Allows for one typo in the search query
 prefixLength: 3 // The first 3 letters must match exactly
 }
 }
 }
 },
 {
 $facet: {
 docs: [
 { $limit: 5 }, // Limits the number of documents to 5
 {
 $set: {
 // Dynamically retains the necessary fields
 ➥ // in the output documents
 business_name: "$business_name",
 date: "$date",
 result: "$result",
 sector: "$sector",
 address: "$address"
 }
 },
 { $unset: ["_id"] } // Removes the '_id' field
 ➥ // from the output documents
],
 resultFacets: [
 {
 $bucketAuto: {
 groupBy: "$result", // Groups documents by the 'result' field
 buckets: 5 // Automatically determines range
 ➥ // and creates 5 buckets based
 ➥ // on result distribution
 }

292 Chapter 11  Carrying out full-text search using Atlas Search

 }
],
 meta: [
 { $replaceWith: "$$SEARCH_META" }, // Replaces the
 ➥ // document with search metadata
 { $limit: 1 } // Limits the metadata results to 1
]
 }
 }
])

This aggregation pipeline with the $$SEARCH_META variable returned the following
result:

[
 {
 docs: [
 {
 id: '70695-2015-ENFO',
 certificate_number: 50065977,
 business_name: 'SMOKE SHOP',
 date: 'Dec 31 2015',
 result: 'No Evidence of Activity',
 sector: 'Cigarette Retail Dealer - 127',
 address: {
 city: 'NEW YORK',
 zip: 10075,
 street: 'YORK AVE',
 number: 1485
 }
 },
 {
 id: '13076-2015-ENFO',
 certificate_number: 50057527,
 business_name: 'SMOKE SHOPE',
 date: 'Mar 28 2015',
 result: 'No Evidence of Activity',
 sector: 'Cigarette Retail Dealer - 127',
 address: {
 city: 'OZONE PARK',
 zip: 11416,
 street: '101ST AVE',
 number: 10506
 }
 },
 {
 id: '30922-2015-ENFO',
 certificate_number: 9259353,
 business_name: 'SMOKE SCENE, INC.',
 date: 'May 18 2015',
 result: 'No Violation Issued',
 sector: 'Cigarette Retail Dealer - 127',
 address: {
 city: 'NEW YORK',

	 293Running Atlas Search queries

 zip: 10022,
 street: '1ST AVE',
 number: 901
 }
 },
 {
 id: '43869-2015-ENFO',
 certificate_number: 50061178,
 business_name: 'DELI SMOKE SHOP',
 date: 'Aug 12 2015',
 result: 'Out of Business',
 sector: 'Cigarette Retail Dealer - 127',
 address: {
 city: 'BROOKLYN',
 zip: 11207,
 street: 'FULTON ST',
 number: 2859
 }
 },
 {
 id: '35088-2015-ENFO',
 certificate_number: 50060202,
 business_name: 'SMOKE SCENE, INC.',
 date: 'Jun 19 2015',
 result: 'No Violation Issued',
 sector: 'Cigarette Retail Dealer - 127',
 address: {
 city: 'NEW YORK',
 zip: 10022,
 street: '1ST AVE',
 number: 901
 }
 }
],
 resultFacets: [
 { _id: { min: 'Closed', max: 'Out of Business' }, count: 145 },
 {
 _id: { min: 'Out of Business', max: 'Violation Issued' },
 count: 118
 }
],
 meta: [{ count: { lowerBound: Long('263') } }]
 }
]

When you run a query using the $search stage in Atlas Search, the system stores meta-
data results in the $$SEARCH_META variable while returning the actual search results to
you. You can use the $$SEARCH_META variable in any supported aggregation pipeline
stage to view and analyze the metadata associated with your $search query.

The $$SEARCH_META variable is useful when you need to analyze additional infor-
mation about the search operation itself, such as search scores and other diagnostics
that help you understand the relevance and performance of your search results. It

294 Chapter 11  Carrying out full-text search using Atlas Search

can be useful for optimizing your search queries based on performance metrics or
for debugging to ensure that the search results align accurately with the expected
criteria.

11.5.2	 Executing the $searchMeta aggregation pipeline stage

The $searchMeta aggregation pipeline stage accesses metadata about the search oper-
ation itself. This stage allows you to retrieve and use search-related metadata such as
total number of hits or pagination data, which can be critical for understanding the
context and scale of the search results. You can use this information for logging, debug-
ging, or enhancing user interfaces with details on the number of results returned and
the relevance of the search performed. The following listing shows the $searchMeta
pipeline stage structure.

Listing 11.5  The $searchMeta prototype form

{
 $searchMeta: {
 "index": "<index-name>",
 "<collector-name>"|"<operator-name>": {
 <collector-specification>|<operator-specification>
 },
 "count": {
 <count-options>
 }
 }
}

Let’s look at the available options:

¡	<collector-name> (conditional)—Selects a collector for the query, such as "facet"
for grouping results. You must specify either this option or <operator-name>

¡	count (optional)—Provides options for counting the number of search results
and is useful for understanding the scale of results without retrieving all data.

¡	index—Specifies the name of the Atlas Search index to be used for the query. If
this option is omitted, the system defaults to an index named "default".

¡	<operator-name> (conditional)—Determines the search operator to use. If
<collector-name> is not used, this option must be specified and will return only
default count metadata.

The following query employs the $searchMeta stage to search for businesses named
"Deli". It focuses on "business_name". $searchMeta returns only metadata about the
search results, such as the count of matching documents:

db.inspections.aggregate([
 {
 $searchMeta: {
 index: "MongoDB-in-Action",

	 295Running Atlas Search queries

 text: {
 query: "Deli", // Searches for the term "Deli"
 ➥ // within the business names.
 path: "business_name" // Specifies that the search
 ➥ // should be conducted on
 ➥ //the 'business_name' field.
 }
 }
 }
])

The pipeline returns the following result:

[{ count: { lowerBound: Long('2447') } }]

The output from this search operation is expressed as metadata, specifically showing a
count with a lower bound. This indicates the minimum number of records that match
the query criteria, providing a lower estimate of 2,447 businesses named "Deli".

In the next example, the $searchMeta operation within the aggregation pipeline
gathers metadata about businesses with "Hot Dog" in their names and "No Violation
Issued" in the inspection results. The query is designed to favor documents related
to the “Grocery-Retail" sector, although these are preferred but not essential for a
match. It strictly includes only businesses located in "Brooklyn", as indicated by the
city field in their addresses. The pipeline uses a compound query that combines con-
ditions to match and prioritize results based on business name, inspection outcome,
and sector while specifically filtering for locations in Brooklyn:

db.inspections.aggregate([
 {
 $search: {
 index: "MongoDB-in-Action", // Utilizes the MongoDB Atlas
 ➥ // Search index for optimized
 ➥ // text search.
 compound: {
 // Requires matching both business
 ➥ // name and inspection result,
 ➥ // prefers matching the sector,
 ➥ // and filters by city.
 must: [
 {
 text: { // Must match 'Hot Dog' in the business name.
 query: "Hot Dog",
 path: "business_name"
 }
 },
 {
 text: { // Must match 'No Violation Issued'
 ➥ // in the inspection results.
 query: "No Violation Issued",
 path: "result"
 }

296 Chapter 11  Carrying out full-text search using Atlas Search

 }
],
 should: [
 {
 text: { // Prefers businesses in the
 ➥ // 'Grocery-Retail' sector but it's
 ➥ // not mandatory.
 query: "Grocery-Retail",
 path: "sector"
 }
 }
],
 filter: [
 {
 text: { // Strictly includes only businesses
 ➥ // located in Brooklyn.
 query: "BROOKLYN",
 path: "address.city"
 }
 }
]
 }
 }
 },
 {
 $addFields: {
 score: { $meta: "searchScore" } // Adds a search relevance
 ➥ // score to each matched document.
 }
 },
 {
 $facet: { // Summarizes the total documents and score statistics.
 totalDocuments: [{ $count: "totalCount" }], // Counts
 ➥ // total matching documents.
 scoreStats: [
 {
 $group: { // Aggregates maximum, minimum, and average scores.
 _id: null,
 maxScore: { $max: "$score" },
 minScore: { $min: "$score" },
 averageScore: { $avg: "$score" }
 }
 }
]
 }
 }
])

The metadata provided in the output of the pipeline offers insights into the search
results for businesses related to the query:

[
 {
 totalDocuments: [{ totalCount: 13 }],
 scoreStats: [

	 297Learning Atlas Search commands

 {
 _id: null,
 maxScore: 7.446932792663574,
 minScore: 3.273611068725586,
 averageScore: 4.741124574954693
 }
]
 }
]

The metadata shows that the query returned 13 documents matching the criteria
with businesses named "Hot Dog" and inspection results of "No Violation Issued"
in Brooklyn. The score statistics reveal the search relevance scores; the highest is
7.446932792663574, indicating a close match to the search criteria, and the lowest is
3.273611068725586, suggesting a document that barely meets the threshold. The aver-
age relevance score across all documents is 4.741124574954693, reflecting the general
relevance of the results to the specified parameters.

This approach is useful for obtaining quick statistics about the data without retriev-
ing the actual documents. It can be efficient for large data sets or preliminary data
analysis.

11.6	 Learning Atlas Search commands
MongoDB includes four commands that enhance search index management. These
commands can be run only on a deployment hosted on MongoDB Atlas and require an
Atlas cluster tier of at least M10:

¡	db.collection.createSearchIndex()—Use this command to create a new
Atlas Search index. It requires the index name and a document specifying the
index configuration as arguments. Executing db.collection.createSearch
Index("mySearchIndex", {"mappings": {"dynamic": true}}) will create an
index named "mySearchIndex" with dynamic mappings.

¡	db.collection.updateSearchIndex()—This command updates an exist-
ing Atlas Search index. It takes the index name and a new configuration doc-
ument as arguments. db.collection.updateSearchIndex("mySearchIndex",
{"mappings": {"dynamic": false, "fields": {"description": {"type":

"string"}}}}) modifies the "mySearchIndex" to use static mappings and adds a
string field named "description".

¡	db.collection.dropSearchIndex()—Use this command to delete an
Atlas Search index. You need to provide the index name as the argument.
db.collection.dropSearchIndex("mySearchIndex”) deletes the "mySearch
Index" index.

¡	db.collection.getSearchIndex()—This command retrieves the configuration
of an existing Atlas Search index. When called with an index name, it returns
that specific index’s configuration; without an argument, it returns configura-
tions for all indexes in the collection.

298 Chapter 11  Carrying out full-text search using Atlas Search

11.7	 Using Atlas Search Playground
You can also try Atlas Search on the Playground. The MongoDB Atlas Search Play-
ground is an intuitive, interactive platform designed to showcase the robust capabilities
of Atlas Search. Without the need for a MongoDB Atlas account, cluster, or data col-
lection, it allows you to engage directly with the technology by creating search indexes
and executing queries in a controlled environment. Figure 11.6 shows the interface
of the Atlas Search Playground, which you can find at https://mng.bz/RwvP without
logging in.

Figure 11.6  The Atlas Search Playground, where users can configure and test search queries in MongoDB Atlas. It
includes sections for writing queries, configuring the search index, viewing the data source, and displaying results.
This interface allows users to experiment with search features and see how their queries perform on sample data
before applying them in a live environment. (Image © MongoDB 2025)

You can choose among three distinct preconfigured environments to explore specific
functionalities of Atlas Search, as shown in figure 11.7.

The Basic environment enables searching all document fields and is ideal for broad
queries. The Catalog Search environment is designed for detailed searches within
Airbnb listings, using tools such as EQUALS, RANGE, SORT, SYNONYMS, and TEXT to refine
results. If you’re interested in identifying individual accounts, the Customer Lookup
environment offers features such as AUTOCOMPLETE, COMPOUND, CUSTOM ANALYZER,
SORT, and TEXT, enhancing the precision and efficiency of searches by name or email.

This setup is beneficial for quick testing, experimentation, and educational purposes,
providing a risk-free way to learn and understand the various search functionalities

https://mng.bz/RwvP

	 299Using Atlas Search Playground

Select a Pre-Configured Enviornment
Choose an enviornment below to see how Atlas Search works

Basic

Search all document fields

TEXT
EQUALS

EQUALS
RANGE SORT

AUTOCOMPLETE

CUSTOM ANALYZER

COMPOUND

SYNONYMS TEXT
SORT

Cancel Select

TEXT

Catalog Search

Find Airbnb listings using filters and
synonyms

Customer Lookup

Find accounts by name or email

Figure 11.7  Atlas Search Playground preconfigured environments (Image © MongoDB 2024 CC BY-NC-SA 3.0)

and their applications. Whether you’re a developer looking to integrate search capa-
bilities into your applications or are simply curious about the potential of MongoDB
Atlas Search, the Playground offers a convenient, accessible way to explore these fea-
tures in depth. Also, it gives you the option to share snapshots of your Playground ses-
sions, making it easy to collaborate with colleagues or demonstrate your work.

The Atlas Search Playground is a useful tool for experimenting with MongoDB’s
search capabilities, but it has several limitations:

¡	 It does not support Atlas Vector Search (described in chapter 12), restricting the
range of functionalities you can explore. The environment is designed to work
with only a single collection; hence, you cannot use operations such as $lookup
and $unionWith to search across multiple collections.

¡	Another significant limitation is that the Atlas Search Playground environment
does not persist. If you want to save your setup, you must click the Share button to
create a snapshot URL, which remains valid for 30 days.

¡	The Playground imposes data restrictions as well. You cannot add more than 500
documents or import files larger than 100 KB, and the total data in your Play-
ground environment (which includes the collection, search index, synonyms,
and queries) cannot exceed 300 KB. These constraints may affect the extent to
which you can realistically test and demonstrate larger or more complex search
functionalities.

300 Chapter 11  Carrying out full-text search using Atlas Search

TIP  To stay up to date with the Atlas Search architecture, visit the official
MongoDB documentation at https://www.mongodb.com/docs/atlas/atlas
-search.

Summary

¡	Full-text search surpasses traditional methods by analyzing document content
for relevance, phrases, citations, and attributes. It supports various types, such as
simple keyword, Boolean, fuzzy, wildcard, phrase, proximity, range, and faceted
searches. This versatility makes it ideal for applications ranging from quick
queries to complex filtering tasks.

¡	Using separate solutions for database management and full-text search intro-
duces complexity in data synchronization and query handling. This setup
requires extra maintenance and monitoring, leading to potential consistency
problems, increased costs, and additional operational overhead for DevOps
teams.

¡	Apache Lucene is a high-performance Java library that offers advanced search
features including indexing, spell-checking, and text analysis. It’s part of an open
source project that includes PyLucene, providing Python bindings to extend
Lucene Core’s capabilities.

¡	Lucene uses inverted indexing to map terms to document locations, significantly
speeding search queries and enhancing performance.

¡	Atlas Search, embedded in MongoDB Atlas, delivers a scalable full-text search
feature using Apache Lucene, allowing seamless integration of search capabili-
ties without an additional system.

¡	The mongot process is crucial for creating, managing, and updating Atlas Search
indexes using Apache Lucene technology, ensuring that they stay synchronized
with MongoDB’s current state by monitoring change streams and applying
updates promptly. It also handles Atlas Search queries directly, providing accu-
rate real-time search results.

¡	Atlas Search Nodes in MongoDB Atlas are specialized, separated nodes focused
solely on search functions via the mongot process. They provide workload isola-
tion in dedicated (M10 or higher) sharded and unsharded clusters across various
cloud providers.

¡	An Atlas Search index can be on a single field or multiple fields, preferably those
used for sorting or filtering to speed queries. Use dynamic mappings to index all
supported fields automatically, though this approach may affect performance,
or use static mappings to index specified fields selectively, ignoring mismatched
data types.

¡	Atlas Search index limits vary by cluster tier. M0 clusters allow up to three indexes.
M10 and higher clusters place no restrictions on the number of indexes you can
create.

https://www.mongodb.com/docs/atlas/atlas-search
https://www.mongodb.com/docs/atlas/atlas-search

	 301Summary

¡	There are no additional fees or charges when you enable Atlas Search on your
Atlas cluster. But you may observe an increase in resource use on the cluster,
depending on factors such as the size of the indexed collections and index
definitions.

¡	Atlas Search queries are formatted as stages within an aggregation pipeline. They
incorporate the $search and $searchMeta stages, which are required to be the
first stage in any query pipeline. These stages can be integrated with other aggre-
gation pipeline stages to enhance your query pipeline.

¡	You can use the text operator with the fuzzy operator. The fuzzy operator
allows for searches that can match similar terms, accounting for possible typo-
graphical errors or variations in spelling. This enhances search functionality by
accommodating minor mistakes in the search query.

¡	In systems such as Apache Lucene, which supports Atlas Search, scores are cal-
culated dynamically based on document relevance, with no upper limit. Higher
scores indicate a closer match to the search criteria, effectively helping users find
the most relevant information quickly.

¡	The facet operator in Atlas Search structures search results in distinct categories
based on criteria such as price ranges, categories, and tags, facilitating easier nav-
igation and organization of data.

¡	You can explore Atlas Search using the MongoDB Atlas Search Playground. This
user-friendly platform demonstrates the powerful features of Atlas Search with-
out requiring a MongoDB Atlas account, cluster, or data collection. It lets you
create search indexes and run queries in a simplified environment.

302

12Learning semantic
techniques and Atlas

Vector Search

This chapter covers

¡	Working with embeddings and vector databases
¡	Creating an Atlas Vector Search
¡	Exploring the $vectorSearch aggregation 		
	 pipeline stage
¡	Using Atlas Triggers to generate embeddings

Chapter 11 introduced Atlas Search, which is built with Apache Lucene. This pow-
erful open source search engine enhances database functionality by providing full-
text search capabilities integrated directly into MongoDB.

In this chapter, we explore Atlas Vector Search. This feature, also built on the
foundation of Apache Lucene, extends MongoDB’s core server capabilities further
by enabling vector-based search functionalities.

Unlike traditional full-text search that primarily matches exact text, vector search
identifies vectors that are near your query within a multidimensional space. The
closer these vectors are to your query, the greater their semantic similarity is. By
incorporating vector search, Atlas uses Lucene’s capabilities to index and navigate

	 303Starting with embeddings

high-dimensional vectors, yielding more nuanced, contextually appropriate search
results. If you search “renewable energy” using vector search, for example, you might
get results related to solar power, wind energy, and sustainable resources, capturing the
broader concept of renewable energy rather than exact matches of the phrase renewable
energy. This approach is particularly beneficial in applications involving image, video,
and audio searches, as well as scenarios requiring semantic text search.

Vector search also helps applications like chatbots find and use the most rele-
vant data from large data sets, searching this data based on the theme of the request
and using it to provide context for queries sent to advanced language models. This
approach is called the retriever-augmented generation (RAG) model. One of the major
challenges in advanced language models is hallucinations, in which the AI generates
plausible-sounding but incorrect or nonsensical information. RAG was developed to
address this problem. RAG uses vector search to quickly identify and retrieve import-
ant information from these data sets based on the user’s input. Then this real data
is sent to advanced language models like Generative Pretrained Transformer (GPT),
which process it to generate accurate, contextually relevant responses. By grounding
responses in factual information, RAG enhances the performance of chatbots and
other AI applications, allowing them to provide more precise and detailed answers to
user queries.

12.1	 Starting with embeddings
Vector search relies on embeddings. Vector embeddings convert various data types—
such as text, voice, and sentences—to numerical values that reflect their meaning
and relationships. These data types are represented as points in a multidimensional
space, with similar data points located closer together. This numerical approach helps
machines understand and process the data more efficiently.

Word and sentence embeddings are common types of vector embeddings, but this
category also includes document embeddings, image vectors, user profile vectors, and
product vectors, among others. These embeddings help machine learning algorithms
identify patterns in data and perform tasks such as sentiment analysis, language trans-
lation, and recommendation systems. Figure 12.1 shows how different data types are
represented as points in a 3D space, clustered based on similarities.

The categories Renewable Energy, Wind Energy, and Solar Power are grouped, with
the query Renewable Energy falling within this cluster, illustrating how closely related
terms are positioned near one another. The MongoDB and Apache Lucene symbols
are distinctly represented, indicating their separate vector embeddings, which are used
for different types of data storage and search functionalities. Similarly, unique clusters
such as Apache Lucene and MongoDB are distinctly grouped away from the Renew-
able Energy categories. This spatial arrangement helps illustrate how embeddings allow
machines to understand and process related data efficiently, supporting tasks like pat-
tern recognition in sentiment analysis, language translation, and recommendation
systems.

304 Chapter 12  Learning semantic techniques and Atlas Vector Search

Solar Power

Apache Lucene

Wind Energy

Query Renewable Energy

Figure 12.1  A visual representation of vector embeddings shows how the query Renewable Energy is
mapped in semantic space. Clusters such as Wind Energy and Solar Power appear close to the query,
indicating high semantic similarity. By contrast, unrelated clusters like MongoDB and Apache Lucene are
positioned farther away. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

Various vector embeddings serve different purposes across multiple applications. Here
are some common types:

¡	Text embeddings—Transform text strings into vectors, capturing semantic rela-
tionships and contextual nuances from large text data sets. They are used for
tasks such as search, clustering, recommendations, anomaly detection, diversity
measurement, and classification.

¡	Sentence embeddings—Convert entire sentences to vector form. Specific mod-
els are designed to encapsulate the overall meaning and contextual essence of
sentences.

¡	Document embeddings—Turn entire documents, ranging from newspaper articles
to books, into vectors. These embeddings aim to grasp the semantic depth and
contextual breadth of the documents through specialized techniques.

¡	Image embeddings—Translate visual content into vector representations by iden-
tifying various visual attributes. Methods employing convolutional neural net-
works and certain pretrained models are commonly used for tasks such as image
classification and similarity assessments.

¡	Audio embeddings—Convert audio signals to vector representations by capturing
features such as pitch, tone, and rhythm. They are used for tasks like speech rec-
ognition and music classification by analyzing various acoustic properties of the
audio.

	 305Starting with embeddings

¡	User embeddings—Create vector representations of users within a system, captur-
ing preferences, behaviors, and traits. These embeddings are useful in applica-
tions such as recommendation systems and personalized marketing.

¡	Product embeddings—Encode the characteristics and attributes of products in vec-
tors, which can be used to analyze, compare, and recommend products in sys-
tems such as e-commerce platforms.

Embeddings and vectors are essentially the same, representing data as numerical points
in high-dimensional space, but embeddings specifically apply techniques to capture
meaningful information and relationships. The term vector describes an array of num-
bers that indicates a specific dimensionality, whereas embeddings refers to representing
data as vectors to encapsulate semantic relationships or contextual details. Although
you can use these terms interchangeably when discussing vector embeddings, embed-
dings emphasize a structured and meaningful representation of data, whereas vectors
are more about the numerical format itself.

12.1.1	 Converting text to embeddings

Let’s explore various methods for converting text to embeddings. MongoDB Atlas
does not support embedding creation; you need to use an external system. One option
is the OpenAI Embeddings API, available at https://mng.bz/YZ1B, which provides
high-quality text embeddings.

Another alternative is Google’s Universal Sentence Encoder, which offers embed-
dings for sentences and paragraphs and is available via TensorFlow Hub at https://www
.tensorflow.org/hub. BERT, also developed by Google, provides context-aware embed-
dings, with Sentence-BERT (https://www.sbert.net) being a variant designed for more
effective sentence embeddings.

Hugging Face offers a wide range of pretrained models and embeddings for various
NLP tasks, accessible at https://mng.bz/Gwyv.

Additionally, Large Language Model Meta AI (LLaMA), developed by Meta, is
designed for scalable text embeddings and various natural language processing (NLP)
applications. LLaMA is an open source large language model (LLM) that can be run
locally, offering flexibility for those who prefer or require on-premises solutions. To run
LLaMA locally, you need a machine with sufficient computational power. For details,
check the LLaMA GitHub repository (https://github.com/meta-llama/llama).

I decided to use the OpenAI Embeddings API in this book because it provides highly
accurate, context-aware text embeddings based on state-of-the-art machine learning
models. I believe it is the most mature and reliable solution available. When I wrote
this chapter, text-embedding-3-small and text-embedding-3-large were the newest,
most performant embedding models available.

text-embedding-3-small and text-embedding-3-large are advanced models
that generate dense vector representations of text, capturing semantic meanings and
relationships. The large model has more parameters and provides higher accuracy
than the small model. Both models perform well in multilingual contexts and are

https://mng.bz/YZ1B
https://www.tensorflow.org/hub
https://www.tensorflow.org/hub
https://www.sbert.net
https://mng.bz/Gwyv
https://github.com/meta-llama/llama

306 Chapter 12  Learning semantic techniques and Atlas Vector Search

cost-effective. The model size balances efficiency and accuracy for specific needs.
These embeddings enhance tasks such as text classification, clustering, and search
by providing precise, context-aware text analysis. The small model is faster and more
resource-efficient, whereas the large model offers more detailed and nuanced text
analysis. Both models support multiple languages and are optimized for applications
requiring deep understanding and manipulation of text data.

To communicate with the OpenAI Embeddings API, start by obtaining your API key
from the OpenAI platform. Store this key securely. Set up your environment to include
the API key, typically through environment variables or secure secret management.
After you create an account, you can also generate an OpenAI API key at https://
platform.openai.com/api-keys.

Using curl (a command-line tool for transferring data with URLs), you can send
a request to the OpenAI Embeddings API to transform the text "MongoDB in Action
8.0" into an embedding, as shown in the following listing. First, ensure that you have
curl installed on your system. Next, set your OpenAI API key as an environment
variable.

Listing 12.1  Creating text embeddings with the OpenAI Embeddings API

export OPENAI_API_KEY=your-api-key
curl https://api.openai.com/v1/embeddings \
 -H "Content-Type: application/json" \
 -H "Authorization: Bearer $OPENAI_API_KEY" \
 -d '{
 "input": "MongoDB in Action 8.0",
 "model": "text-embedding-3-small"
 }'

This command returns a response including the embedding vector in JSON format.
The shortened response looks something like this:

{
 "object": "list",
 "data": [
 {
 "object": "embedding", // Embedding object
 "index": 0, // Index of the embedding
 "embedding": [
 // Example embedding values
 0.0022989365, -0.06971052, 0.012823246, 0.05579968,
 -0.013507065, -0.049443416, 0.005815723, 0.010315907,
 -0.006538618, 0.023809947, 0.022989364, 0.009593013,
 0.0030478816, 0.035089716, 0.005172153, 0.017217182,
 -0.01868694, -0.02883528, -0.0021947355, -0.01346799,
 -0.0057636225, 0.015096132, 0.008896167, -0.02650615,
 0.0017714185, -0.016711248, -0.017154103,
 0.014470926,-0.025060361, -0.0010965536, -0.019576779,
 0.005216567, -0.008088609, 0.010875988, -0.012849296,
 -0.0005344376, 0.020514589,-0.005760366, 0.040924978,

https://platform.openai.com/api-keys
https://platform.openai.com/api-keys

	 307Starting with embeddings

 -0.03386535, 0.024383053, -0.016567972, -0.0072224378,
 -0.030478816, 0.015044032, -0.0011852874, -0.007339664,
 0.020918367, 0.019615855,-0.04470868, 0.015103527,
 0.013199839, 0.0069814725, -0.0049756016, 0.021869203,
 -0.036965333, 0.03076537, 0.022507435, 0.0014889358,
 0.034099806, -0.02985361, 0.024343979, 0.053246755,
 0.0054086875, 0.0065223365, 0.012360854, 0.01742763,
 0.005092828, 0.011664009, 0.040951025, 0.02614772,
 -0.019582793, -0.009371466, -0.019904742, 0.0034031929,
 0.019246848, 0.012331981, -0.06114199, -0.05027977,
 -0.04470868, 0.035089716,-0.0028573892, -0.025255738,
 0.038137596, 0.09221796, -0.02257256,0.014470926,
 -0.025060361, -0.0010965536, -0.019576779, 0.005216567,
 -0.008088609, 0.010875988, -0.012849296, -0.0005344376,
 0.020514589, -0.049391314, 0.016346546, -0.01772721,
 -0.0018902728, 0.0048714005, 0.014796554, 0.0014954484,
 -0.021361222, 0.023067515, 0.04126363, -0.02690993,
 0.02602422, -0.015734363, -0.0052002855, -0.03563677,
 0.024409104, -0.026532201, -0.029228404, 0.003360485,
 0.018469643, 0.016620073, -0.020123834, -0.003936847,
 0.0033230376, 0.007489453, 0.0032041834, 0.0016672174,
 0.0069814725, 0.0049756016, 0.021869203, 0.036965333,
 0.03076537, 0.022507435, 0.0014889358, 0.034099806,
 0.02985361, 0.024343979, 0.053246755, 0.0054086875,
 0.0065223365, 0.012360854, 0.01742763, 0.005092828,
 0.011664009, 0.040951025, 0.00892873, 0.051266935,
 0.005219823, 0.038137596, 0.0028997208, -0.03266704,
 0.09221796, 0.0026896906,-0.0030918415, 0.01542176,
 0.01978518, -0.06220805, 0.022767937, 0.009488812,
 -0.0028573892, -0.005760366, 0.040924978, 0.03386535,
 0.024383053, -0.016567972, -0.0072224378, 0.030478816
 // List continues...
]
 }
],
 "model": "text-embedding-3-small", // Model used for embedding
 "usage": {
 "prompt_tokens": 5, // Number of prompt tokens used
 "total_tokens": 5 // Total tokens used
 }
}

The curl command retrieves a JSON response containing the embedding vector for
the text "MongoDB in Action 8.0". The response shows the embedding as a list of
numerical values that represent the input text in a high-dimensional space. It also
includes details about the model used ("text-embedding-3-small") and token use.
For text-embedding-3-small, the embedding vector has 1,536 dimensions, whereas
text-embedding-3-large has 3,072 dimensions. Having 1,536 dimensions means that
each text is represented as a vector in a 1,536-dimensional space; having 3,072 dimen-
sions means that each text is represented in a 3,072-dimensional space. More dimen-
sions provide a more detailed text representation, improving model performance.

308 Chapter 12  Learning semantic techniques and Atlas Vector Search

To create embeddings, you can use programming languages such as Python or Java
Script instead of curl. In Python and in JavaScript (Node.js), you can use the openai
library.

12.1.2	 Understanding vector databases

A vector embedding is generally depicted as a series of numerical values. Each value
in this sequence correlates to a distinct feature or dimension, collectively forming
the data point’s representation. The individual numbers in the vector do not have
intrinsic meaning; instead, the comparative values and their interrelationships encap-
sulate the semantic information, enabling algorithms to process and analyze the data
efficiently.

A vector database (also known as a vector search database or vector similarity search engine)
manages the storage, retrieval, and search of these vectors. Unlike traditional rela-
tional databases that store data in rows and columns, vector databases organize data
as points within a multidimensional space, each point represented by vectors like [0.3,
0.8, -0.8, 0.6, 0.4, 0.1, -0.5, 0.2, ...]. This method of organization is particularly advan-
tageous for applications that require fast, accurate data matching based on similarity
rather than exact matches, making them ideal for semantic searches and recommen-
dation systems.

Figure 12.2 provides an overview of the workflow within a vector database. Content is
initially processed through an embedding model. These models generate embeddings
by transforming text or other data types into numerical vectors.

[1.45, ..., 1.01,
0.89, 0.06]

Application

Data

Vector
database

Embedding

Embedding model

Query result

Figure 12.2  Vector database operations. Data is processed by an embedding model, transforming it
into vector embeddings such as [1.45, ..., 1.01, 0.89, 0.06]. These embeddings are stored in a vector
database. Queries from the application are also transformed into embeddings before the database is
searched. The most relevant results based on these query embeddings are then retrieved and returned as
query results. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

	 309Using embeddings with Atlas Vector Search

After the data is converted to vectors, it is stored in the vector database. The data-
base organizes these vectors within a high-dimensional space in which each vector
represents a point. When a query is made, it is also transformed into a vector using
the same or a similar embedding model. Then the vector database performs a simi-
larity search to find vectors that are closest to the query vector. This search is typically
done using algorithms such as cosine similarity, which measures the cosine of the angle
between two vectors, or Euclidean distance, which calculates the straight-line distance
between vectors in the space.

These algorithms help determine the degree of similarity between the query vec-
tor and the stored vectors. The closest vectors are retrieved and returned as the query
results. This process ensures that the data retrieved is semantically similar to the query,
enabling applications to provide relevant, precise results. The efficiency and accuracy of
vector databases make them essential for various applications, including context-aware
search, fraud detection, and question answering systems.

12.2	 Using embeddings with Atlas Vector Search
Atlas Vector Search, similar to Atlas Search, uses the mongot process, a Java wrapper
for Apache Lucene. It monitors the MongoDB operation log (oplog) using change
streams to keep a set of Lucene indexes up to date. Also, it provides an API for
MongoDB to perform queries on these indexes. Recent versions of Apache Lucene
have been enhanced to support vector search capabilities by using algorithms such
as Hierarchical Navigable Small Worlds (HNSW) for approximate nearest neighbor
(ANN) searches and exact nearest neighbor (ENN) search.

The HNSW algorithm constructs a hierarchical graph in which nodes represent
data points and edges connect nodes that are similar based on a distance metric like
Euclidean distance. This graph is organized in multiple layers, with the upper layers
containing fewer data points and providing a broad overview of the data set, acting as
entry points for the search. These upper layers are faster but less precise. As the search
descends to the lower layers, it encounters more nodes, offering finer granularity and
increased precision. Each lower layer refines the search results from the upper layers,
enhancing accuracy.

The search process in HNSW begins at an entry point in the topmost layer, perform-
ing a greedy search by navigating the graph and moving to the nearest neighbor nodes
based on the distance metric. The search continues to move down to lower layers,
progressively refining the results until it reaches the bottom layer, providing a highly
accurate result. This layered approach significantly reduces search time compared with
brute-force methods, making HNSW suitable for large-scale, real-time applications.

By contrast, ENN search involves comparing the query vector with every vector in
the data set to find the exact closest match. This method guarantees precise results but
is computationally expensive (especially for large data sets) due to its linear complex-
ity. The key differences between HNSW (ANN) and ENN lie in computational com-
plexity, speed versus precision, and scalability. HNSW offers logarithmic to sublinear

310 Chapter 12  Learning semantic techniques and Atlas Vector Search

complexity, balancing speed and accuracy for real-time applications. ENN provides
exact matches but at higher computational costs and is less scalable for large data sets.

Overall, HNSW is favored for applications requiring fast, approximate results with
high accuracy, such as recommendation systems, image retrieval, and NLP, whereas
ENN is used when exact precision is crucial, albeit with greater computational demands.

Atlas Vector Search supports both ANN search, which avoids scanning every vector
embedding, and ENN search, which exhaustively examines all indexed vector embed-
dings to find the most similar vectors.

12.2.1	 Building an Atlas Vector Search index

To use vector search on your data in Atlas, you need to create an Atlas Vector Search
index. This index, which is separate from your MongoDB database, helps you quickly
find documents with vector embeddings during queries. In your index definition,
specify the fields with embeddings in your collection to enable vector searches on
those fields. Atlas Vector Search supports embeddings up to 4,096 dimensions—with
4,096 dimensions referring to the size or length of a vector, which can have up to 4,096
elements or components. Each element of the vector represents a feature or character-
istic of the data.

In NLP, for example, a word embedding with 4,096 dimensions represents a word
with a vector containing 4,096 numerical values, each capturing different aspects of the
word’s meaning.

Recommended dimensions typically depend on the specific use case and the com-
plexity of the data. Commonly used dimensions are 128, 256, 512, and 1,024 because
they balance performance and accuracy. Higher dimensions, such as 4,096, may pro-
vide more detailed representations but can be computationally expensive.

12.2.2	 Selecting a Vector Search source

To build an Atlas Vector Search index, first you need a MongoDB collection with doc-
uments containing embeddings. You can create this collection yourself by using an
external embedding model and inserting the documents with their corresponding
embeddings into a MongoDB collection. (Details on how to do this are in chapter
14.) Alternatively, for learning purposes, you can employ a ready-to-use collection with
embeddings created during the loading of the sample data set in chapter 2. The ready-
to-use documents, along with their embeddings, are located in the sample_mflix data-
base within the embedded_movies collection, shown in the next listing. After logging
into Atlas, use MongoDB Shell (mongosh) to switch to the sample_mflix database with
the use command; then display a sample document using findOne.

Listing 12.2  Using findOne to find one document

use sample_mflix //
switched to db sample_mflix //
Atlas shard-0 [primary] sample_mflix> //

Command switches to the
sample_mflix database.

	 311Using embeddings with Atlas Vector Search

db.embedded_movies.findOne() //
{
 _id: ObjectId('573a1390f29313caabcd5293'), //
 plot: "Young Pauline is left a lot of money when her
 ➥ wealthy uncle dies. However, her uncle's secretary has
 ➥ been named as her guardian until she marries,
 ➥ at which time she will officially take ...",
 genres: ['Action'],
 runtime: 199,
 cast: ['Pearl White', 'Crane Wilbur', 'Paul Panzer', 'Edward Josè'],
 num_mflix_comments: 0,
 poster: 'https://m.media-amazon.com/images/M/
➥MV5BMzgxODk1Mzk2Ml5BMl5BanBnXkFtZTgwMDg0NzkwMjE@
➥._V1_SY1000_SX677_AL_.jpg',
 title: 'The Perils of Pauline',
 fullplot: `Young Pauline is left a lot of money when her
 ➥ wealthy uncle dies. However, her uncle's secretary has
 ➥ been named as her guardian until she marries, at which
 ➥ time she will officially take possession of her inheritance.
 ➥ Meanwhile, her "guardian" and his confederates constantly
 ➥ come up with schemes to get rid of
➥ Pauline so that he can get
➥ his hands on the money himself.`,
 languages: ['English'],
 released: ISODate('1914-03-23T00:00:00.000Z'),
 directors: ['Louis J. Gasnier', 'Donald MacKenzie'],
 writers: [
 'Charles W. Goddard (screenplay)',
 'Basil Dickey (screenplay)',
 'Charles W. Goddard (novel)',
 'George B. Seitz',
 'Bertram Millhauser'
],
 awards: { wins: 1, nominations: 0, text: '1 win.' },
 lastupdated: '2015-09-12 00:01:18.647000000',
 year: 1914,
 imdb: { rating: 7.6, votes: 744, id: 4465 },
 countries: ['USA'],
 type: 'movie',
 tomatoes: {
 viewer: { rating: 2.8, numReviews: 9 },
 production: 'Pathè Frères',
 lastUpdated: ISODate('2015-09-11T17:46:19.000Z')
 },
 plot_embedding: [//
 0.00072939653, -0.026834568, 0.013515796, -0.033257525,
 -0.001295428, 0.022092875, -0.015958885, 0.018283758,
 -0.030315313, -0.019479034, 0.019400224, 0.0106917955,
 -0.005001107, 0.017981656, 0.0036416466, -0.012918158,
 0.029816188, -0.00018706948, 0.013193991, -0.024483424,
 -0.016011424, 0.0019275442, -0.007467182, -0.011768856,
 0.012859052, -0.011722884, -0.002154121, -0.022539461,
 0.0010910163, -0.017351182, -0.005122605, -0.010035052,
 0.0073161307, -0.04103338, -0.021068355, 0.009877433,
 0.023918625, -0.0037828467, 0.0067776004, 0.02159375,
 0.018993042, 0.0034905956, 0.0053557493, 0.001825749,

Command finds one document.

Start of movie
record found

Dense vector
representation of the
movie plot; the data
and embedding are
stored together

312 Chapter 12  Learning semantic techniques and Atlas Vector Search

 -0.026493061, 0.021580614, 0.0004851698, -0.02837135,
 -0.00970668, 0.009279796, 0.021751368, 0.007834959,
 -0.0130495075, -0.02049042, -0.0009054861, -0.0011345256,
 0.00089563493, 0.02842389, -0.012957564, 0.014133136,
 0.035831966, -0.015538569, -0.0022296465, -0.0038419536,
 0.005523219, -0.009240391, -0.012215442, 0.011447052,
 -0.032574512, 0.017232968, 0.03985124, 0.009719814,
 0.01255695, 0.0013964024, 0.014592856, -0.020319667,
 -0.022119146, 0.013922977, -0.021948392, 0.0051423074,
 0.024930011, -0.037014104, 0.0042688376, 0.0041407724,
 0.009752652, 0.0025235396, -0.02721548, 0.004038977,
 -0.02274962, -0.0015835745, 0.035884503, 0.029317062,
 -0.012727703, 0.0074080746, -0.0012510978, 0.009844596,
 -0.003332977, 0.023432633, 0.00880694, -0.0066364002,
 ... 1436 more items
]
}

The document is a movie record from the embedded_movies collection in the sample_
mflix database. It includes fields such as _id, which is a unique identifier for the doc-
ument, and plot, which provides a summary of the movie’s storyline. The document
includes other fields, such as genres, runtime, cast, num_mflix_comments, poster,
title, fullplot, languages, released, directors, writers, awards, lastupdated,
year, imdb, countries, type, and tomatoes. It’s important to notice that it includes
a plot_embedding field, which is a dense vector representation of the plot. The data
and embedding are stored together in the document, designed for use in vector search
operations to efficiently retrieve similar documents based on their plot content.

12.2.3	 Defining your Vector Search index
Next, you define your Atlas Vector Search index. You can use the Atlas UI for this pur-
pose, but this book focuses on the Atlas command-line interface (CLI). Therefore, use
the Atlas CLI to create the index, and place the index configuration in a file for use
with the Atlas CLI.

Create the Vector Search index definition. In the definition, specify the name of the
database and collection that are the sources for the index, the path in the document
where the embedding is located, and numDimensions and similarity.

Similarity refers to the metric used to measure how close or similar two vectors are.
This metric determines how the system calculates the similarity between the vector
embeddings of different documents. Common similarity metrics include cosine simi-
larity, Euclidean distance, and dot product, which help efficiently retrieve documents
that are most similar to the query vector based on their embeddings:

¡	Cosine similarity—Calculates the cosine of the angle between two vectors, indicat-
ing how aligned they are. This metric is ideal for text analysis and NLP tasks, such
as identifying similar sentences or documents.

¡	Euclidean distance—Measures the straight-line distance between two points in the
vector space. This metric is commonly used in image recognition and clustering
tasks in which the spatial distance between data points is significant.

	 313Using embeddings with Atlas Vector Search

¡	Dot product—Calculates the sum of the products of corresponding elements
of the two vectors. This metric is often used in recommendation systems to
find items that have a high degree of similarity based on user preferences or
behavior.

Create a file named vector-definition.json, and place the following content inside it:

{
 "name": "MongoDB-in-Action-VectorSearchIndex",
 "type": "vectorSearch",
 "collectionName": "embedded_movies",
 "database": "sample_mflix",
 "fields": [
 {
 "type": "vector",
 "path": "plot_embedding",
 "numDimensions": 1536,
 "similarity": "cosine"
 },
 {
 "type": "filter",
 "path": "genres"
 },
 {
 "type": "filter",
 "path": "languages"
 },
 {
 "type": "filter",
 "path": "year"
 }
]
}

The vector-definition.json file defines a vector search index for MongoDB Atlas.
It specifies the index name as "MongoDB-in-Action-VectorSearchIndex" and sets the
index type to vectorSearch. The index targets the embedded_movies collection within
the sample_mflix database. The index configuration includes a field of type "vector"
located at the plot_embedding path (a path to the embedding in the MongoDB docu-
ment from the embedded_movies collection), with 1,536 dimensions. This means that
each plot embedding is represented by a vector with 1,536 numerical values, capturing
various aspects of the plot’s content. The index uses cosine similarity to measure the
similarity between vectors. The index definition includes several filter fields:

¡	genres—Filters the results based on movie genres

¡	languages—Filters the results based on the languages of the movies

¡	year—Filters the results based on the release year of the movies

These filters refine the search results by applying criteria beyond the vector similarity.

314 Chapter 12  Learning semantic techniques and Atlas Vector Search

12.2.4	 Creating an Atlas Vector Search index

For this task, you’ll use an M0 cluster, which supports vector search and which you cre-
ated in chapter 11. Use the atlas cluster list command to display its details:

atlas cluster list
ID NAME MDB VER STATE
6658a85ba9e6a9047d15cf98 MongoDB-in-Action 8.0.4 IDLE

Next, as you did when creating a full-text search index, use the Atlas CLI command
atlas cluster search index to build the Atlas Vector Search index:

atlas cluster search index create \
--clusterName MongoDB-in-Action \
--file vector-definition.json

This command initiates the creation of the vector search index. You can check the sta-
tus using the atlas clusters search indexes list command:

atlas clusters search indexes list \
--clusterName MongoDB-in-Action \
--db sample_mflix --collection embedded_movies

The vector search index has been created and is ready to use:

ID NAME DATABASE COLLECTION TYPE
66ade3f42fbc060637eb60f4 MongoDB-in-ActionVectorSearchIndex
➥ sample_mflix embedded_movies vectorSearch

The vector search index is also visible in the Atlas Search section of the Atlas UI, as
shown in figure 12.3.

Figure 12.3  Atlas Vector Search index panel. On the left side of the screen is a collapsible navigation menu. To
view vector search indexes, click the Search & Vector Search option in the Data section. The main panel displays
existing search index configurations. In this case, the sample_mflix database and the embedded_movies
collection are shown with an active vector search index named "MongoDB-In-Action-Vector-Search
-Index". The index is marked as Ready and is fully queryable, as indicated by the check. The Type is listed as
vectorSearch, and Index Fields includes "plot_embedding", which indicates the field being used for vector
similarity searches. (Image © MongoDB 2025)

	 315Running Atlas Vector Search queries

12.3	 Running Atlas Vector Search queries

The $vectorSearch stage of MongoDB’s aggregation pipeline is designed to perform
vector-based search operations on your data. It uses vector embeddings to find and
retrieve documents that are semantically similar to a given query vector.

To use the $vectorSearch stage, you need a vector search index created on the rel-
evant fields in your collection. The pipeline stage typically includes parameters such
as the index name, the query vector, the path to the vector field in the documents, and
the similarity metric to use. The following listing shows the $vectorSearch aggregation
pipeline stage prototype.

Listing 12.3  The $vectorSearch aggregation pipeline stage

{
 "$vectorSearch": {
 "exact": true | false,
 "filter": {<filter-specification>},
 "index": "<index-name>",
 "limit": <number-of-results>,
 "numCandidates": <number-of-candidates>,
 "path": "<field-to-search>",
 "queryVector": [<array-of-numbers>]
 }
}

This prototype includes several key parameters:

¡	exact—A Boolean value (true or false) that specifies whether to perform an
exact search (ENN) or an approximate one (ANN). Exact searches are more pre-
cise but can be slower, whereas approximate searches are faster but may return
less precise results. The default is ANN.

¡	filter—An optional filter specification that allows you to restrict the search to
documents that match certain criteria. This parameter is useful for narrowing
the search results to a more relevant subset of documents.

¡	index—The name of the vector search index to use. This index must be created
beforehand on the field containing the vector embeddings.

¡	limit—The maximum number of search results to return. This parameter con-
trols the number of documents retrieved, which can be useful for paginating or
limiting the scope of the results.

¡	numCandidates—The number of candidate vectors to consider during the
search. This parameter can affect the performance and accuracy of the search
because a higher number may increase processing time as well as precision.

¡	path—The field in the documents where the vector embeddings are stored. This
parameter specifies which field the search should be conducted on.

316 Chapter 12  Learning semantic techniques and Atlas Vector Search

¡	queryVector—An array of numbers representing the query vector. This vector
finds similar documents based on the similarity metric defined in the vector
search index.

12.3.1	 Querying with embeddings

To execute a query using the $vectorSearch aggregation pipeline stage, you must have
the embedding of your query ready because Vector Search relies on the mathematical
representation of the query to find semantically similar documents. It cannot use text
alone because text needs to be transformed into a numerical format that captures its
meaning. Atlas Vector Search operates as a vector database, which stores these embed-
dings, and queries must compare the embeddings from the query with those stored in
the database.

NOTE  When I wrote this book, MongoDB Atlas did not offer models that
enabled text-to-embedding conversion. You may need to use external systems for
this purpose, such as OpenAI, Hugging Face, Google’s TensorFlow, and LLaMA.

TIP  You need to embed your query using the same model that you used to
embed your data. If you used OpenAI’s GPT-4o model to embed your data set,
for example, you must use the same GPT-4o model to embed your query. This
ensures that the embeddings are compatible and the vector search can accu-
rately retrieve similar documents.

In chapter 14, I demonstrate a quick, efficient way to generate embeddings for queries
using an external framework called LangChain. In this chapter, I don’t include a
working example of a query with embeddings because it would span several pages of
the book. For now, it is important to understand that an embedding is required for
the query to function properly. The general outline of a query designed to search the
"MongoDB-in-Action-VectorSearchIndex" index looks like this example:

db.embedded_movies.aggregate([
 {
 "$vectorSearch": {
 "index": "MongoDB-in-Action-VectorSearchIndex",
➥//
 "path": "plot_embedding", //
 "queryVector": [<array-of-numbers>], //
 "numCandidates": <number-of-candidates>, //
 "exact": false, //
 "limit": <number-of-results> //
 }
 }
])

Pay attention to the following:

¡	Ensure that the correct name of the vector search index is used (index).

The name of the
vector search index

The field in the
documents where
the embeddings
are stored

The embedding array
representing your
query; must be created
outside Atlas

The number of candidate
vectors to consider

ANN

Maximum number
of results to return

	 317Running Atlas Vector Search queries

¡	Specify the correct field in the documents where the embeddings are stored
(path).

¡	Provide the embedding array representing your query (queryVector).

¡	Set the number of candidate vectors to consider for the search (numCandidates).

¡	Define the maximum number of results to return (limit).

Listing 12.4 shows an example of the aggregation pipeline with the $vectorSearch
stage, along with a portion of the embedding for the search phrase “village life,” which
will be searched for in the plot_embedding field. The full embedding definition for
“village life” has already been created but has been shortened here due to its length,
which could span several pages. This embedding replaces the text phrase “village life,”
is placed in queryVector, and is used to search for documents with similar vector
embeddings within the plot_embedding field. If you run the query without the com-
plete embedding definition, it will not work.

Listing 12.4  Atlas Vector Search $vectorSearch stage with embedding

db.embedded_movies.aggregate([
 {
 // The $vectorSearch stage performs a search based on vector similarity
 "$vectorSearch": {
 "index": " MongoDB-in-ActionVectorSearchIndex",
➥//
 "path": "plot_embedding", //
 "queryVector": [-0.0016261312,-0.028070757,
 0.012775794,-0.0027440966,0.008683807,-0.02575152,
 0.010283281,-0.0041719596,0.021392956,0.028657231,
 0.006634482,0.007490867,0.01859878,0.0038187427,
 0.01451522,0.01661379,0.000528442,0.00843722,0.01627464,
 0.024311995,-0.025911469, 0.008863748,0.008823762,
 -0.034921836,0.007910728,-0.01515501,0.035801545,
 -0.0035688248,-0.020299982,0.032256044,-0.028763862,-0.0071576433,
 -0.012769129,0.012322609,-0.006621153,0.010583182,0.024085402,
 -0.001623632,0.007864078,-0.021406285,0.002554159,
 0.012229307,0.011762793,0.0051682983,0.0048484034,0.01808737,
 0.024325324,-0.037694257,0.026537929,0.008803768,0.017767,
 0.012642504,0.005218282,0.00584807,0.020153364,0.0032805866,
 0.004248601,0.0051449724,0.006791097,0.007650814,
 0.003458861,-0.0031223053,-0.01932697, 0.012769129,
 -0.033615597,0.00745088,0.006321252,0.0038154104,
 0.014555207,0.027697546,0.02828402,0.0066711367,0.0077,
 0.01794076,0.011349596,-0.0052715978,0.014755142,-0.01975,
 -0.011156326,0.011202978,0.0222,0.00846388,0.030549942,
 0.0041386373,0.018847128,0.00033655585,0.024925126,
 0.003555496,0.019300312,0.010749794,0.0075308536,
 0.016567878,-0.012869096,-0.015528221,0.0078107617,
 0.011156326,0.013522214,0.020646535,0.01211601,0.055928253,
 0.011596181,-0.017247654,0.0005939711,-0.026977783,
 0.003942035,0.009583511,0.0055248477,0.028737204,0.023179034,
 0.003995351,0.0219661,0.008470545,0.023392297,0.010469886,
 0.015874773,0.007890735,0.009690142,0.00024970944,0.012775794,

Name of the vector
search index

Field in the
documents where
the embeddings
are stored

318 Chapter 12  Learning semantic techniques and Atlas Vector Search

 0.03686786,0.00671778,0.027484283,0.011556195,0.036068123,
 0.013915418,0.0016327957,0.0151016945,7438237429348,
 0.004671795,0.012555866,0.0209531,0.01982014,0.02448,
 0.0105431955,0.005178295,0.033162415,0.013795458,0.007150979,
 0.010243294,0.0045618312,0.0024725192,0.004305249,0.008197301,
 0.0014203656,0.0018460588,0.005015015,0.011142998,0.01439526,
 0.022965772,0.02552493,0.007757446,0.0019726837,0.009503538,
 0.032042783,0.008403899,0.04609149,0.013808787,0.011749465,
 0.036388017,0.016314628,0.021939443,-0.0250051,-0.017354285,
 -0.012962398,0.00006107364,0.019113706,0.03081652,-0.018114036,
 0.0084572155,0.009643491,0.0034721901,0.0072642746,0.0090636825,
 0.01642126,0.013428912,0.027724205,0.0071243206,
 0.6858542,0.031029783,0.014595194,0.011449563,0.017514233,
 0.01743426,0.009950057,0.0029706885,-0.015714826,
 -0.001806072,0.011856096,0.026444625,-0.0010663156,
 -0.006474535,0.0016161345,-0.020313311,0.0148351155,
 0.001839943,0.005737785,0.01830641,0.018647194,0.03345565,
 0.008070676,0.007143142,0.01430958,0.0044818576,0.003838736,
 0.007350913,0.018620536,0.017247654,0.007037683,0.010236629,
 0.012122675,0.037694257,0.0055081863,0.042492677,0.00021784494,
 010276617,0.022325981,0.005984696,0.009496873,0.013382261,
 0.0010563189,0.0026507939,0.041639622,0.008637156,0.026471283,
 0.00803899,0.024858482,0.006686375,0.0016252982,0.027590916,
 0.015381602,0.0043718936,0.002159289,0.0359077,0.008243952,
 0.0119360695,0.027590916,0.046971202,0.0015194997,0.022405956,
 0.0016677842,0.00018535563,0.015421589,0.031802863,
 0.03814744,0.0065411795,0.016567878,-0.015621523,
 0.022899127,-0.002679118,, ...],
 "numCandidates": 150,
 "exact": false,
 "limit": 5
 }
 },
 {
 // The $project stage specifies which fields to include in the output
 "$project": {
 "_id": 0,
 "plot": 1,
 "title": 1,
 "score": { $meta: "vectorSearchScore" }
 }
 }
])

The $vectorSearch stage finds the top five documents based on similarity to the
given query vector. The queryVector is a very long array of numbers representing the
embedding, and only part of it is shown here for brevity. The numCandidates parame-
ter specifies how many candidate vectors to consider during the search.

The exact parameter is set to false, indicating the use of ANN for faster search
results. This means that instead of finding the precise nearest neighbors, the search
finds approximate neighbors that are close enough, which significantly speeds the
search process while maintaining a high level of accuracy.

Query embedding
(extremely long)

Number of candidate
vectors to consider

ANN

Maximum number
of results to return

Excludes the _id field Includes the
plot field

Includes the title fieldIncludes the
vector search score

	 319Running Atlas Vector Search queries

The $project stage includes the plot, title, and search score in the output while
excluding the _id field. To obtain the score of your Atlas Vector Search query results,
use vectorSearchScore within the $meta expression. The score field uses the $meta
expression with the vectorSearchScore value. This setup ensures that the score of the
documents returned from the vector search is included in the results. The score indi-
cates the similarity between the query vector and the document’s vector embedding.

A document returned by the $vectorSearch aggregation pipeline might look like
this:

[
 {
 plot: 'A young woman moves to a small village
 ➥ and discovers the simple joys and hidden
 ➥ secrets of rural life.',
 title: 'Village Secrets',
 score: 0.9523144960403442
 },
 {
 plot: 'A documentary exploring the daily lives
 ➥ and traditions of villagers in a remote
 ➥ mountain community.',
 title: 'Mountain Village',
 score: 0.9487524032592773
 },
 {
 plot: 'An architect travels to a rural village
 ➥ to design a community center and finds
 ➥ himself enchanted by the local way of life.',
 title: 'Building Dreams',
 score: 0.9468201398849487
 },
 {
 plot: 'A retired couple moves to the countryside
 ➥ and becomes involved in village affairs,
 ➥rediscovering their passion for life.',
 title: 'New Beginnings',
 score: 0.9453170895576477
 },
 {
 plot: 'A city boy spends a summer with his
 ➥ grandparents in their village, learning valuable
 ➥ lessons about family and nature.',
 title: 'Summer in the Village',
 score: 0.9438151121139526
 }
]

In this example, the plot provides a summary of the movie’s storyline, which is closely
related to village life. The title gives the name of the movie. The score indicates the
similarity between the query vector for “village life” and the document’s vector embed-
ding. Higher scores reflect a closer match to the query, showcasing how vector search

320 Chapter 12  Learning semantic techniques and Atlas Vector Search

captures the semantic meaning and context of the query. (0 indicates low similarity,
and 1 indicates high similarity.) The score assigned to a returned document is part of
the document’s metadata.

TIP  If you want to use ENN, change the value of “exact": false to "exact":
true in the $vectorSearch stage definition. ENN ensures that the search
retrieves the most precise matches for the query vector by exhaustively compar-
ing the query vector against all stored vectors. This method guarantees high-
est accuracy in finding similar documents, but it can be more computationally
intensive and slower than ANN, which uses heuristics to speed the search at the
cost of some accuracy.

12.3.2	 Using prefiltering with Atlas Vector Search

Prefiltering allows you to apply additional criteria to your search, narrowing the data
set before the vector similarity search is performed. This can significantly reduce the
search space and improve the performance of your queries.

The $vectorSearch filter option can match only Binary JSON (BSON) boolean,
date, objectId, string, and numeric values. To filter your data, you must index
the desired fields by specifying them as the filter type in your vectorSearch index
definition.

Atlas Vector Search supports the $vectorSearch filter option for the following
MongoDB Query API match expressions, though certain limitations apply:

¡	$gt (greater than)

¡	$lt (less than)

¡	$gte (greater than or equal to)

¡	$lte (less than or equal to)

¡	$eq (equal to)

¡	$ne (not equal to)

¡	$in (in a set)

¡	$nin (not in a set)

¡	$nor (none of the conditions is met)

¡	$and (all conditions must be met)

¡	$or (any of the conditions must be met)

The $vectorSearch filter option supports only the following operators in aggregation
pipelines:

¡	$and (all conditions must be met)

¡	or (any of the conditions must be met)

Also, the $vectorSearch filter option on fields with the objectId type does not sup-
port the following MQL match expressions:

¡	$gt (greater than)

	 321Running Atlas Vector Search queries

¡	$lt (less than)

¡	$gte (greater than or equal to)

¡	$lte (less than or equal to)

$vectorSearch can’t be used in view definitions and the following pipeline stages:

¡	$lookup subpipeline

¡	$unionWith subpipeline

¡	$facet pipeline stage

For more information, see the MongoDB documentation at https://mng.bz/26rX.
Listing 12.5 demonstrates prefiltering using $vectorSearch stage with filters, which

are the classic filters known from the MongoDB query language. Note that queryVector
has been shortened due to its length, which would otherwise span several pages. If you
run the query without the complete embedding definition, it will not work.

Listing 12.5  Prefiltering data with the $vectorSearch pipeline stage

db.embedded_movies.aggregate([
 {
 // The $vectorSearch stage performs a search based on vector similarity
 "$vectorSearch": {
 "index": "MongoDB-in-ActionVectorSearchIndex",
 //
 "path": "plot_embedding", //
 "queryVector": [
 -0.0016261312, -0.028070757, -0.011342932, -0.012775794,
 -0.0027440966,0.008683807, -0.02575152, -0.02020668, 0.010283281,
 -0.0041719596,0.021392956, 0.028657231, -0.006634482,
 0.01853878, 0.0038187427,0.02959257, 0.01451522, 0.016061379,
 0.000028442,0.008943722, 0.01627464, 0.024311995,
 -0.025911469, 0.00022596726,-0.008863748, 0.008823762,
 -0.034921836, 0.007910728,0.01515501,0.019300312,0.010749794,
 0.0075308536,0.018287312,0.016567878,0.012869096,0.015528221,
 0.0078107617,0.003415542,0.025911469,0.00022596726,
 0.0088637480.011156326,0.013522214,0.020646530.0121601,
 0.011596181,0.017247654,0.0005939711,-0.026977783,-0.003942035,
 0.007890735,0.009690142,0.02020668,0.0012962399,0.025911469,
 0.00022596726,0.0088637480.003415542,0.00024970944,0.012775794,
 0.0114762215,0.013422247,0.010429899,0.03686786,0.006717788,
 0.027484283,0.011556195,0.036068123,0.013915418,0.02020668,
 0.001292399,0.02020668,0.001292399,0.003415542,0.003415542,
 0.0016327957,0.0151016945,0.020473259,0.004671795,0.012555866,
 0.0209531,0.01982014,0.024485271,0.0105431955,0.005178295,
 0.033162415,0.013795458,0.007150979,0.010243294,0.005644808,
 0.0045618312,0.0024725192,0.004305249,0.008197301,0.0014203656,
 0.0018460588,0.005015015, 0.02020668,-0.0012962399,-0.003415542
], // The shortened query embedding
 "filter": {
 "$or": [

Name of the vector search index

Field in the documents
where the embeddings
are stored

https://mng.bz/26rX

322 Chapter 12  Learning semantic techniques and Atlas Vector Search

 { genres: "Action" },//
 { runtime: { "$lt": 120 } } //
]
 },
 "numCandidates": 150,//
 "exact": false, //
 "limit": 5 //
 }
 },
 {
 // The $project stage specifies which fields to include in the output
 "$project": {
 "_id": 0, //
 "plot": 1, //
 "title": 1, //
 "score": { $meta: "vectorSearchScore" } //
 }
 }
])

In this query, the filter option in the $vectorSearch stage uses $or to match docu-
ments that have the genre "Action" or a runtime of less than 120 minutes. The query
Vector contains a shortened version of the query embedding.

The numCandidates and limit parameters control the number of candidates consid-
ered and the number of results returned, respectively. The $project stage specifies the
fields to include in the output: plot, title, and score.

12.4	 Executing vector search with programming languages
mongosh is not the only way to perform vector searches on your data, of course. You
can also execute vector search queries using various programming languages. Many
MongoDB drivers for languages such as Python, JavaScript, Ruby, and others support
the $vectorSearch filter option, enabling you to integrate vector search capabilities
directly into your applications.

12.4.1	 Using vector search with JavaScript

To use vector search in JavaScript, you need a MongoDB library such as mongodb for
Node.js. Here’s an example:

const { MongoClient } = require('mongodb');

async function vectorSearch() {
 // MongoDB connection string
 const uri = 'your_mongodb_connection_string';
 // Create a new MongoClient
 const client = new MongoClient(uri,
➥{ useNewUrlParser: true, useUnifiedTopology: true });

 try {

Matches documents with
the genre “Action”

Matches documents with
runtime less than 120 minutes

Number of candidate
vectors to considerANN

Maximum number
of results to return

Excludes the _id field

Includes the plot field

Includes the
title field

Includes the
vector search score

	 323Executing vector search with programming languages

 // Connect to the MongoDB server
 await client.connect();
 // Select the database and collection
 const database = client.db('your_database_name');
 const collection = database.collection('your_collection_name');

 // Define the vector search query
 const query = {
 $vectorSearch: {
 queryVector: [/* your query vector here */],
 numResults: 10,
 path: 'your_vector_field_name'
 }
 };

 try {
 // Execute the vector search query const results = await
 collection.find(query).toArray();
 // Log the results to the console
 console.log(results);
 } catch (queryError) {
 // Handle errors that occur during the query execution
 console.error('Error executing vector search query:', queryError);
 }
 } catch (connectionError) {
 // Handle errors that occur while connecting to MongoDB
 console.error('Error connecting to MongoDB:', connectionError);
 } finally {
 try {
 // Ensure the MongoDB client is closed
 await client.close();
 } catch (closeError) {
 // Handle errors that occur while closing the MongoDB connection
 console.error('Error closing MongoDB connection:', closeError);
 }
 }
}

// Call the vectorSearch function and handle any unhandled errors
vectorSearch().catch(console.error);

In this example, the $vectorSearch operator is part of the MongoDB library for
Node.js. It allows you to perform vector-based similarity searches within your database
by specifying a query vector, the number of desired results, and the path to the vector
field in your documents. This operator is essential for tasks that involve finding similar
items based on their vector representations, such as in machine learning and recom-
mendation systems.

12.4.2	 Using vector search and prefiltering with Python

To use vector search in Python, you can use the pymongo library. Here’s an example
that performs a vector search with prefilters:

324 Chapter 12  Learning semantic techniques and Atlas Vector Search

from pymongo import MongoClient

def vector_search():
 # MongoDB connection string
 uri = 'your_mongodb_connection_string'
 # Create a new MongoClient
 client = MongoClient(uri)

 try:
 # Connect to the MongoDB server
 client = MongoClient(uri)
 # Select the database and collection
 database = client['your_database_name']
 collection = database['your_collection_name']

 # Define the pre-filters and vector search query
 query = {
 "$and": [
 {"category": "electronics"}, # Example pre-filter
 {"price": {"$lt": 500}}, # Another example pre-filter
 {
 "$vectorSearch": {
 "queryVector": [/* your query vector here */],
 "numResults": 10,
 "path": "your_vector_field_name"
 }
 }
]
 }

 try:
 # Execute the vector search query
 ➥ # and convert the results to a list
 results = list(collection.find(query))
 # Print the results
 for result in results:
 print(result)
 except Exception as query_error:
 # Handle errors that occur during the query execution
 print('Error executing vector search query:', query_error)
 except Exception as connection_error:
 # Handle errors that occur while connecting to MongoDB
 print('Error connecting to MongoDB:', connection_error)
 finally:
 try:
 # Ensure the MongoDB client is closed
 client.close()
 except Exception as close_error:
 # Handle errors that occur while closing the MongoDB connection
 print('Error closing MongoDB connection:', close_error)

Call the vector_search function
vector_search()

	 325Executing vector search with programming languages

The code connects to a MongoDB instance and selects the appropriate database and
collection. The query is constructed with a combination of prefilters and the $vector-
Search operator. Prefilters are applied to narrow the search to specific categories and
price ranges before performing the vector search. The $vectorSearch operator spec-
ifies the query vector, the number of desired results, and the path to the vector field
in the documents. Then the query is executed, and the results are converted to a list
and printed. Error handling is included to manage any problems that arise during the
connection, query execution, and connection closure processes. This approach allows
for efficient similarity searches in MongoDB with additional filtering criteria applied
before the vector search.

12.4.3	 Using vector search with prefilters in Ruby

To perform a vector search in Ruby, you can use the mongo gem. Here’s an example that
performs a vector search with prefilters:

require 'mongo'

def vector_search
 # MongoDB connection string
 uri = 'your_mongodb_connection_string'
 # Create a new MongoClient
 client = Mongo::Client.new(uri)

 begin
 # Select the database and collection
 database = client.database
 collection = database['your_collection_name']

 # Define the pre-filters and vector search query
 query = {
 "$and" => [
 {"category" => "electronics"}, # Example pre-filter
 {"price" => {"$lt" => 500}}, # Another example pre-filter
 {
 "$vectorSearch" => {
 "queryVector" => [/* your query vector here */],
 ➥ # Replace with your query vector
 "numResults" => 10, # Number of results to retrieve
 "path" => 'your_vector_field_name'
 ➥ # Field containing the vectors in your documents
 }
 }
]
 }

 begin
 # Execute the vector search query and convert the results to an array
 results = collection.find(query).to_a
 # Print the results
 results.each { |result| puts result }
 rescue => query_error

326 Chapter 12  Learning semantic techniques and Atlas Vector Search

 # Handle errors that occur during the query execution
 puts "Error executing vector search query: #{query_error}"
 end
 rescue => connection_error
 # Handle errors that occur while connecting to MongoDB
 puts "Error connecting to MongoDB: #{connection_error}"
 ensure
 # Ensure the MongoDB client is closed
 client.close
 end
end

Call the vector_search function
vector_search

The code connects to the MongoDB server using the provided connection string and
selects the appropriate database and collection. The query is constructed with a com-
bination of prefilters and the $vectorSearch operator. Prefilters are applied to narrow
the search to specific categories and price ranges before performing the vector search.
The $vectorSearch operator specifies the query vector, the number of desired results,
and the path to the vector field in the documents. Then the query is executed, and the
results are converted to an array and printed. Error handling is included to manage
any problems that arise during the connection, query execution, and connection clo-
sure processes.

12.5	 Using Atlas Triggers for automated embeddings creation
Atlas Triggers is a feature in MongoDB Atlas that allows you to execute server-side logic
in response to database events or on a scheduled basis. These triggers enable you to
automate workflows, enforce business logic, and respond to changes in your data in
real time without managing a separate application server.

You can find more information about Atlas Triggers in chapter 19. For now, it is
important to know that you can use this feature to create embeddings automatically by
using an external model, such as the OpenAI embeddings API, for documents newly
added to a MongoDB collection. It is also important to understand that Atlas Triggers
are not available in the core MongoDB server; they are available exclusively in the Atlas
developer data platform. To create your first Atlas Trigger, use the Atlas UI as shown in
figure 12.4.

The following steps guide you through the process of creating a trigger in your
MongoDB Atlas cluster. Triggers allow you to run functions automatically in response to
specific database events:

1	 In your "MongoDB-in-Action" cluster, go to the Triggers tab located in the Ser-
vices section in the left panel.

2	 Click the Get Started button.

3	 Enter a name for your new Atlas Trigger. I used the name "MongoDB-in-Action
-Trigger".

	 327Using Atlas Triggers for automated embeddings creation

Figure 12.4  Creating an Atlas Trigger within a data platform (Image © MongoDB 2025)

4	 Provide the cluster name. I used the cluster name M0, as shown in figure 12.5,
where I previously configured the vector search index "MongoDB-in-Action".

5	 For the Database Name, enter sample_mflix, and for the collection, enter
embedded_movies.

6	 Select the operations that will activate the trigger: Insert Document, Update Doc-
ument, and Replace Document.

7	 Check the Full Document option.

Figure 12.5  The configuration screen for setting up an Atlas Trigger in the MongoDB Atlas UI. The Watch
Against section allows you to specify whether the trigger will monitor collections, databases, or deployments,
with Collection selected in this example. The Cluster Name field is set to "MongoDB-in-Action", indicating
the cluster where the trigger will be applied. The Database Name field is set to "sample_mflix , specifying the
database that the trigger will monitor. The Collection Name field is set to "embedded_movies", indicating the
collection within the database to watch for changes. In the Operation Type section, the trigger is configured to
activate on Insert, Update, and Replace Document operations. The Full Document option is enabled, meaning that
the entire document will be retrieved when a change event occurs. (Image © MongoDB 2025)

328 Chapter 12  Learning semantic techniques and Atlas Vector Search

8	 Scroll down to the Function section, and create your custom Java Script function.
This function will generate or update embeddings in the documents within the
embedded_movies collection each time a new document is inserted or an existing
one is updated. This helps automate the embedding generation process, ensuring
that your data remains up to date without manual intervention.

9	 Define the logic for embedding creation or update based on the document
changes.

The following example shows what this function might look like. Remember to update
the code by adding your OpenAI API key.

Listing 12.6  Atlas Trigger function for generating automated embeddings

exports = async function(changeEvent) {
 console.log("Change Event: ", JSON.stringify(changeEvent));

 // Check if documentKey is available
 if (!changeEvent.documentKey || !changeEvent.documentKey._id) {
 console.log("documentKey or _id is not available.");
 return;
 }

 // Access the _id of the changed document:
 const docId = changeEvent.documentKey._id;

 // Get the MongoDB service you want to use
 const serviceName = "MongoDB-in-Action";
 const database = "sample_mflix";
 const collection = context.services.get(serviceName)
➥.db(database).collection(changeEvent.ns.coll);

 try {
 // For insert, update, or replace events, process the document
 const fullDocument = changeEvent.fullDocument;
 if (!fullDocument) {
 console.log("Full document is not available.");
 return;
 }

 // Check if the document has the 'plot' field
 if (!fullDocument.plot) {
 console.log("Document does not contain 'plot' field.");
 return;
 }

 const url = 'https://api.openai.com/v1/embeddings';

 // Add your OpenAI API key here
 const openai_key = "<Your OpenAI API key>";

 // HTTP call to OpenAI API to get embedding for the plot
 let response = await context.http.post({

	 329Using Atlas Triggers for automated embeddings creation

 url: url,
 headers: {
 'Authorization': [`Bearer ${openai_key}`],
 'Content-Type': ['application/json']
 },
 body: JSON.stringify({
 input: fullDocument.plot,
 model: "text-embedding-3-small"
 })
 });

 // Parse the JSON response from the API
 let responseData = EJSON.parse(response.body.text());

 if (response.statusCode === 200) {
 console.log("Successfully received embedding.");
 const responseEmbedding = responseData.data[0].embedding;

 // Update the document in MongoDB with the new embedding
 const result = await collection.updateOne(
 { _id: docId },
 { $set: { plot_embedding: responseEmbedding }}
);

 if (result.modifiedCount === 1) {
 console.log("Document successfully updated.");
 } else {
 console.log("Failed to modify document.");
 }
 } else {
 console.log(`Failed embedding with code:
 ➥${response.statusCode}, response: ${response.body.text()}`);
 }

 } catch (err) {
 console.log("Error performing MongoDB write
 ➥or API call: ", err.message);
 }
};

This function handles change events in a MongoDB collection. It logs the change
event and checks whether the documentKey and _id are present. It accesses the _id
of the changed document and retrieves the relevant MongoDB service, database, and
collection.

For insert, update, or replace operations, the function processes the full document
and ensures that the document contains a plot field. If the plot field is present, the
function makes an HTTP POST request to the OpenAI API to generate an embedding
for the plot, using the specified model.

Upon successfully receiving the embedding from the API, the function updates the
document in MongoDB with the new embedding. The function includes comprehen-
sive error handling for both the API call and MongoDB operations, logging any prob-
lems that occur.

330 Chapter 12  Learning semantic techniques and Atlas Vector Search

After copying this function and pasting it into the Atlas UI Triggers section below
Function, click the Save button. Your trigger is ready to use. You can log in to mongosh
to test its functionality:

use sample_mflix
db.embedded_movies.insertOne({plot:"The text will be
➥converted into an embedding using Atlas Triggers
➥and the OpenAI Embedding API"})
{
 acknowledged: true,
 insertedId: ObjectId('66af497f4873bfed1b091550')
}

This command inserts a document into the embedded_movies collection. The
document contains the plot field with the text “The text will be converted into an
embedding using Atlas Triggers and the OpenAI Embedding API". Via Atlas Triggers,
this document is sent to the OpenAI Embedding API, which generates an embedding
from the plot field. Then the embedding is added to this document in the plot_
embedding field, using the $set operator as declared in the function. Using find,
display this document now:

use sample_mflix
db.embedded_movies.find({ _id: ObjectId('66af497f4873bfed1b091550') })
[
 {
 _id: ObjectId('66af497f4873bfed1b091550'),
 plot: 'The text will be converted into an
 ➥embedding using Atlas Triggers and
 ➥the OpenAI Embedding API',
 plot_embedding: [
 -0.026205065, 0.012598104, 0.022182247, -0.04040473, -0.026734715,
 0.0091301575, 0.018272925, 0.029786507, -0.031879887, 0.022875836,
 -0.010574084, -0.013102532, -0.0019262866, -0.000014433357,
 -0.024414344, 0.048299037, -0.0062423036, 0.010593, 0.009754388,
 -0.029408187, -0.033115737, 0.001923134, -0.011255062,0.00028216472,
 0.019748379, 0.003698092, 0.068753615, 0.005387928, 0.029130751,
 0.017453229, -0.011368559, 0.0045524677, 0.008770752, 0.014161833,
 -0.026205065, 0.012598104, 0.022182247, -0.04040473, -0.026734715,
 -0.021602154, 0.0091301575, 0.018272925, 0.029786507, -0.031879887,
 0.022875836, -0.00068452535, -0.010574084, -0.013102532,0.0019262866,
 -0.000014433357, 0.023052385, 0.0063211205, -0.034275923,
 -0.023518983, -0.018474696, 0.03215732, 0.020164533, -0.013165586,
 -0.008587897, -0.012081064, 0.025486253, 0.029811729, 0.0029051933,
 0.015687728, -0.03641974, -0.0031873581, -0.008291544, 0.00013743708,
 0.07561384, 0.04171464, 0.025183598, 0.017390175, 0.027340028,
 0.020063646, 0.005096065, 0.0018269772, 0.0036823286, 0.02582711,
 0.02102206, -0.012320668, 0.033872377, 0.004316017, 0.04746673,
 0.0229515, 0.063709326, 0.028727207,0.024830496, 0.036495406,
 0.0048898044, 0.016204769, 0.018260315, 0.008140217, 0.027062593,
 0.017743275, 0.066483684, 0.040757827, 0.008014109, -0.008133911,
 0.024061244, 0.0367224, 0.0144771, 0.0117279645, 0.007534902,
 0.0011042256, 0.019042179, 0.06537394, 0.019748379, 0.030618815,

	 331Improving Atlas Vector Search performance

 0.0005710289, 0.0043317806, 0.017137961, 0.031274572, 0.046407428,
 0.03266175, 0.00415502, 0.006513434, 0.0133295255, 0.030755,
 0.021665208, 0.00158621, 0.02082029, 0.012062148, 0.03515867,
 0.014174443, 0.054074742, 0.02272507, 0.054579172, 0.04232156,
 0.0035499162, 0.01230057, 0.0013595927, 0.06476863, 0.0724037,
 0.05996115, 0.042119786, 0.017881993, 0.005952257, 0.00128956,
 0.0020397832,0.020971619,0.045121137,0.058009285,
-0.04711363, 0.028903758, 0.01675964, -0.051249944,
 "The array plot_embedding has been shortened due to its length."
]
 }
]

Using Atlas Triggers, you can automate the process of generating embeddings for
newly added documents in your MongoDB collection. When a document is inserted
or updated, Atlas Triggers can send the relevant data to an external API, such as the
OpenAI Embedding API, to generate embeddings. Then these embeddings are added
back to the document in the specified field, streamlining the workflow and ensuring
that your data is enriched with embeddings without manual intervention.

12.6	 Workload isolation with vector search dedicated nodes
As in Atlas full-text search, you can enhance query performance by using dedicated
search nodes for Atlas Vector Search. The mongod process and mongot will run on sep-
arate machines, so the MongoDB database will be separated from Apache Lucene.
When Atlas Vector Search operates on these nodes, it parallelizes query execution
across different segments of data, which improves response times, especially for large
data sets. This intraquery parallelism uses more resources but significantly reduces
latency for individual queries.

Search nodes offer workload isolation, ensuring that search operations do not affect
other database activities. In dedicated (M10 or higher) sharded and unsharded Atlas
clusters on any cloud provider, you can deploy these search nodes with each cluster or
with each shard within the cluster.

Parallelizing query processing is particularly effective for large data sets, as it can
dramatically improve response times. By employing intraquery parallelism in Atlas
Vector Search, you use more system resources, but the result is a notable reduction in
the latency of each query. This approach ensures that even complex searches are han-
dled more efficiently, providing quicker results. Chapter 11 describes more search
nodes.

12.7	 Improving Atlas Vector Search performance
Several proven recommendations improve the performance of Atlas Vector Search.
Implementing these strategies can lead to faster and more efficient query processing.

Primarily, aim to perform ANN queries that search for results similar to a selected
product, images, and so on. Use ENN only when necessary because it is more computa-
tionally intensive and slower than ANN. ANN provides a good balance between speed

332 Chapter 12  Learning semantic techniques and Atlas Vector Search

and accuracy in most use cases, but other best practices can ensure optimal perfor-
mance for your queries. Here are some of them:

¡	Reduce vector dimensions. Atlas Vector Search supports up to 4,096 vector dimen-
sions. Larger vectors, however, require more computational resources due to
the increased number of floating-point comparisons. To optimize performance,
reduce the number of dimensions whenever possible, but first ensure that chang-
ing the embedding models does not significantly affect the accuracy of your vec-
tor queries.

¡	Avoid indexing vectors during queries. Indexing vector embeddings consumes signif-
icant computational resources. To maintain optimal query performance, avoid
indexing and reindexing vectors while running vector searches. If you need to
update the embedding model, create a new index for the new vectors instead of
updating the existing index.

¡	Exclude vector fields from results. In the $project stage, request only the necessary
fields from the documents in the results. Exclude the vector fields; they can be
large and increase query latency. This selective approach improves query perfor-
mance by reducing the amount of data returned.

¡	Ensure sufficient memory. Efficient vector search relies on having vector data and
indexes held in memory. Ensure that data nodes have enough RAM to accom-
modate this. Deploy separate search nodes for workload isolation to maximize
memory efficiency for vector search operations.

¡	Warm up the filesystem cache. Without dedicated search modes, initial vector search
queries may experience high latency due to random disk seeks during HNSW
graph traversal. Performance improves as the indexed vectors are read into
memory. Warm up the filesystem cache to reduce latency for subsequent que-
ries, allowing faster access to vector data. To warm up the filesystem cache, per-
form a full index scan or run targeted queries that load frequently accessed data
into memory. This process ensures that the necessary data is readily available for
faster query responses.

Summary

¡	Vector embeddings transform different data types, such as words and sentences,
into numerical values, representing them as points in a multidimensional space.
Similar items are positioned closer together, helping machines understand and
process the data more effectively.

¡	A vector database (or vector similarity search engine) stores, retrieves, and
searches data organized as points in a multidimensional space, each represented
by vectors such as [0.3, 0.8, -0.8, 0.6, 0.4, 0.1, -0.5, 0.2, ...], unlike traditional data-
bases, which use rows and columns.

	 333Summary

¡	In a vector database, content is first processed by an embedding model (such as
OpenAI’s GPT-4 or Hugging Face’s Transformers), which converts the data to
numbers. Then these vectors are stored in the database for efficient similarity-
based retrieval.

¡	A vector index is a specialized data structure designed to store and manage vec-
tor embeddings from large data sets. It enables efficient similarity searches by
organizing vectors for quick retrieval, using algorithms such as ANN. ANN algo-
rithms, such as HNSW, ensure fast, scalable searches. This structure is essential
for applications such as recommendation systems, semantic search, and machine
learning.

¡	Atlas Vector Search, similar to Atlas Search, uses the mongot process to replicate
and sync data from the target MongoDB collection to an Apache Lucene index
optimized for vector search. Recent versions of Apache Lucene support vector
search using algorithms such as HNSW for ANN searches and ENN search.

¡	To perform vector search in Atlas, create an Atlas Vector Search index. These
indexes, separate from other database indexes, efficiently retrieve documents
with vector embeddings. Atlas Vector Search supports embeddings up to 4,096
dimensions.

¡	The $vectorSearch stage in MongoDB’s aggregation pipeline is designed to per-
form vector-based search operations on your data. It uses vector embeddings to
find and retrieve documents that are semantically similar to a given query vector.
To use the $vectorSearch stage, you need a vector search index created on the
relevant fields in your collection.

¡	You must embed your query with the same model used for your data. This ensures
compatibility and accurate vector search results.

¡	When I wrote this chapter, MongoDB Atlas did not provide models for converting
text to embeddings, so you may need to use an external system such as OpenAI,
Hugging Face, TensorFlow, or LLaMA.

¡	To use ENN, change "exact": false to "exact": true in the $vectorSearch
stage definition. ENN ensures the most precise matches for the query vector by
exhaustively comparing it against all stored vectors. Although this method guar-
antees the highest accuracy, it is more computationally intensive and slower than
ANN, which speeds the search using heuristics but sacrifices some accuracy.

¡	Prefiltering enables you to add specific criteria to your search, which narrows the
data set before the vector similarity search. This approach can greatly reduce the
search space and enhance the performance of your queries.

¡	You can enhance query performance by using dedicated search nodes for vec-
tor search processing. High-CPU systems may offer even greater performance
benefits. When Atlas Vector Search operates on these nodes, it parallelizes query
execution across different data segments, resulting in more efficient processing.

334 Chapter 12  Learning semantic techniques and Atlas Vector Search

¡	mongosh is not the only way to perform vector searches. You can also use pro-
gramming languages like Python, JavaScript, and Java; their MongoDB drivers
support the $vectorSearch filter option.

¡	Atlas Triggers is a MongoDB Atlas feature that enables you to execute server-side
logic in response to database events or on a schedule. These triggers help auto-
mate workflows, enforce business logic, and respond to data changes in real time
without a separate application server.

335

13Developing AI
applications locally
with the Atlas CLI

This chapter covers

¡	Deploying locally with the Atlas CLI
¡	Creating an Atlas cluster on your local host
¡	Using mongorestore to load data into a local 	
	 cluster
¡	Diving into a local Atlas cluster
¡	Using the createSearchIndex() wrapper

The Atlas command-line interface (CLI) simplifies working with MongoDB Atlas
in the cloud and locally by managing setup, connections, and tasks across environ-
ments. It allows you to handle deployments efficiently, ensuring a seamless workflow
from development to production.

You can use the Atlas CLI to develop locally with MongoDB Atlas deployments,
including Atlas Search and Atlas Vector Search. This interface allows you to create
full-text search or AI-powered applications in your preferred development environ-
ment. You can use the Atlas CLI to handle setup, connections, and management
tasks from development to production. For full-text search, the Atlas CLI allows you

336 Chapter 13  Developing AI applications locally with the Atlas CLI

to create and manage Atlas Search indexes, whether you’re working locally or in the
cloud. For applications using semantic search and AI, the Atlas CLI supports creating
and managing local instances with Atlas Vector Search indexes.

13.1	 Introducing local Atlas clusters
To create a local Atlas deployment with default settings in interactive mode, you can use
the command atlas deployments. The following listing shows what this command offers.

Listing 13.1  Atlas CLI local deployment option

atlas deployments --help
Manage cloud and local deployments.

Usage:
 atlas deployments [command]

Aliases:
 deployments, deployment

Cloud and local deployments commands:
 setup Create a local deployment.
 delete Delete a deployment.
 list Return all deployments.
 connect Connect to a deployment that is running
 ➥locally or in Atlas. If the deployment is paused,
 ➥make sure to run atlas deployments start first.
 logs Get deployment logs.
 start Start a deployment.
 pause Pause a deployment.
 search Manage search for cloud and local deployments.

Flags:
 -h, --help help for deployments

Global Flags:
 -P, --profile string Name of the profile to use from
 ➥your configuration file. To learn about profiles f
 ➥or the Atlas CLI, see https://dochub.mongodb.org/core/
 ➥atlas-cli-save-connection-settings.

Use "atlas deployments [command] --help" for more
➥information about a command.

The atlas deployments command in the Atlas CLI allows you to manage cloud and
local deployments. You can use it to create a local deployment with the setup com-
mand, delete a deployment with the delete command, and list all deployments with
the list command. The connect command lets you connect to a deployment that
is running locally or in Atlas, and if the deployment is paused, you can start it with
the start command. You can also retrieve deployment logs using the logs command,
pause a deployment with the pause command, and manage search for both cloud and

	 337Creating an Atlas cluster locally with Atlas CLI

local deployments using the search command. The --help flag provides additional
information for the deployments command and its subcommands.

An Atlas local cluster creates a local environment that mimics a cloud-based MongoDB
Atlas cluster. The process starts in the Atlas CLI, where you download and configure the
necessary Docker images that contain MongoDB binaries and dependencies on your
local machine. You deploy the local cluster using Docker or deploy it directly on the host
machine, which includes mongod, a single-node replica set instance of MongoDB and
configuration files used to simulate an environment. MongoDB configures a mongod
instances running locally on port 27017. The local cluster uses the local network for
connectivity, enabling applications to connect and interact with the cluster as though it
were deployed in the cloud.

Also, the mongot process runs as a separate component alongside mongod, handling
indexing and search operations. It provides full-text search and vector search capabili-
ties within your local cluster as it does in a cloud-based deployment (figure 13.1).

mongot
process

Apache Lucene

mongod
process

MongoDB

Query Lucene

Change streams

Figure 13.1  The mongod process alongside mongot for local deployments running in Docker
(Image © MongoDB 2025)

The mongot process is a Java wrapper for Apache Lucene. It uses MongoDB change
streams to monitor changes in MongoDB collections and automatically update the
corresponding Lucene indexes in real time, ensuring that the indexes are always in
sync with the data. Also, it provides an API for querying these indexes directly from
MongoDB.

13.2	 Creating an Atlas cluster locally with Atlas CLI
You should use local deployments only for testing and development. The supported
operating systems for local Atlas deployments include the following:

¡	macOS—The supported versions are 13.2 and later, with architectures x86-64 and
ARM. The minimum requirements are two CPU cores and 2 GB of free RAM.

¡	Red Hat Enterprise Linux/CentOS—The supported versions are 8 and 9, also with
architectures x86-64 and ARM. The minimum requirements are the same, with
two CPU cores and 2 GB of free RAM.

338 Chapter 13  Developing AI applications locally with the Atlas CLI

¡	Ubuntu—The supported versions are 22.04 and 24.04, with architectures x86-64
and ARM. The minimum requirements are two CPU cores and 2 GB of free RAM.

¡	Debian—The supported versions are 11 and 12, with architectures x86-64 and
ARM. The minimum requirements are two CPU cores and 2 GB of free RAM.

¡	Amazon Linux—The supported version is 2023, with architectures x86-64 and
ARM. The minimum requirements are two CPU cores and 2 GB of free RAM.

¡	Windows—The supported versions are 10 and 11, with architecture x86. The
minimum requirements are two CPU cores and 2 GB of free RAM.

13.2.1	 Configuring Docker

Running a local Atlas cluster requires Docker to be installed. Docker is an open source
platform that automates the deployment, scaling, and management of applications
using containerization. Containers package an application and its dependencies into a
single lightweight unit that can run consistently across environments.

Using Docker with Atlas locally provides several benefits. It ensures that the appli-
cation runs consistently across environments and isolates the MongoDB environment,
preventing conflicts with other applications. Docker also makes it easy to scale your
local Atlas cluster for testing and development, simplifies the setup process with pre-
configured containers, and allows you to move and replicate the local setup easily
across systems.

For macOS, install Docker Desktop v4.31 or later (https://mng.bz/z2XB). For
Linux, install Docker Engine v27.0+ or later (https://mng.bz/0zKN). For Windows,
install Docker Desktop v4.31 or later (https://mng.bz/z2XB).

Docker requires a network connection for pulling and caching MongoDB images.
Additionally, Podman is supported only for Linux RHEL versions (https://podman.io/
getting-started/installation). I focus on Docker in this book.

After installing Docker successfully, ensure that it is running by executing the docker
info command:

docker info
Client:
 Version: 27.0.3
 Context: desktop-linux
 Debug Mode: false
 Plugins:
 buildx: Docker Buildx (Docker Inc.)
 Version: v0.15.1-desktop.1
 compose: Docker Compose (Docker Inc.)
 Version: v2.28.1-desktop.1
 debug: Get a shell into any image or container (Docker Inc.)
 Version: 0.0.32
 desktop: Docker Desktop commands (Alpha) (Docker Inc.)
 Version: v0.0.14
 dev: Docker Dev Environments (Docker Inc.)
 Version: v0.1.2
 extension: Manages Docker extensions (Docker Inc.)

https://mng.bz/z2XB
https://mng.bz/0zKN
https://mng.bz/z2XB
https://podman.io/getting-started/installation
https://podman.io/getting-started/installation

	 339Creating an Atlas cluster locally with Atlas CLI

 Version: v0.2.25
 feedback: Provide feedback, right in your terminal! (Docker Inc.)
 Version: v1.0.5
 init: Creates Docker-related starter files for your project (Docker Inc.)
 Version: v1.3.0
 sbom: View the packaged-based Software Bill Of
 ➥Materials (SBOM) for an image (Anchore Inc.)
 Version: 0.6.0
 scout: Docker Scout (Docker Inc.)
 Version: v1.10.0
Server:
 Containers: 1
 Running: 1
 Paused: 0
 Stopped: 0
 Images: 1
 Server Version: 27.0.3
 Storage Driver: overlay2
 Backing Filesystem: extfs
 Supports d_type: true
 Using metacopy: false
 Native Overlay Diff: true
 userxattr: false
 Logging Driver: json-file
 Cgroup Driver: cgroupfs
 Cgroup Version: 2
 Plugins:
 Volume: local
 Network: bridge host ipvlan macvlan null overlay
 Log: awslogs fluentd gcplogs gelf journald json-file local splunk syslog
 Swarm: inactive
 Runtimes: io.containerd.runc.v2 runc
 Default Runtime: runc
 Init Binary: docker-init
 containerd version: ae71819c4f5e67bb4d5ae76a6b735f29cc25774e
 runc version: v1.1.13-0-g58aa920
 init version: de40ad0
 Security Options:
 seccomp
 Profile: unconfined
 cgroupns
 Kernel Version: 6.6.32-linuxkit
 Operating System: Docker Desktop
 OSType: linux
 Architecture: aarch64
 CPUs: 10
 Total Memory: 7.657GiB
 Name: docker-desktop
 ID: cd9721bf-e6af-40df-9033-7ae08eb21b7a
 Docker Root Dir: /var/lib/docker
 Debug Mode: false
 HTTP Proxy: http.docker.internal:3128
 HTTPS Proxy: http.docker.internal:3128
 No Proxy: hubproxy.docker.internal
 Labels:

340 Chapter 13  Developing AI applications locally with the Atlas CLI

13.2.2	 Building your first local Atlas cluster

After installing Docker and ensuring that it’s working, you can create your local Atlas
cluster:

1	 Run the atlas deployments setup --type local command. You see default
settings such as Deployment Name, MongoDB Version, and Port:

atlas deployments setup --type local

Please note that your session expires periodically.
If you use Atlas CLI for automation,
➥see https://www.mongodb.com/docs/atlas/cli/stable/
➥atlas-cli-automate/ for best practices.
To login, run: atlas auth login

[Default Settings]
Deployment Name local9619
MongoDB Version 8.0
Port 27017

2	 When asked how you want to set up your local Atlas deployment, choose the
default option. The process of creating the cluster begins; it might take several
minutes. The steps include starting the local environment, downloading the
latest MongoDB image, and creating the deployment. When the deployment is
created, a connection string is provided:

? How do you want to set up your local Atlas deployment? default
Creating your cluster local9619 [this might take several minutes]
1/3: Starting your local environment...
2/3: Downloading the latest MongoDB image to your local environment...
\
3/3: Creating your deployment local9619...
Deployment created!
Connection string: mongodb://localhost:27017/?directConnection=true

3	 When asked how you want to connect to the deployment, choose mongosh. After
connecting, you see confirmation messages, information about the MongoDB
and mongosh versions, and any server startup warnings. Your local Atlas cluster is
ready for use:

? How would you like to connect to local9619? mongosh
Current Mongosh Log ID: 66af77b202b82525cbf9e5bd
Connecting to:
mongodb://localhost:27017/?directConnection=true&
➥serverSelectionTimeoutMS=2000&appName=mongosh+2.2.15
Using MongoDB: 8.0.4
Using Mongosh: 2.2.15

For mongosh info see: https://docs.mongodb.com/mongodb-shell/

	 341Managing your local Atlas cluster

 The server generated these startup warnings when booting
 2024-08-04T12:44:27.729+00:00: Using the XFS
 ➥filesystem is strongly recommended with the WiredTiger
 ➥storage engine. See http://dochub.mongodb.org/core
 ➥/prodnotes-filesystem
 2024-08-04T12:44:28.520+00:00:
/sys/kernel/mm/transparent_hugepage/enabled
➥is 'always'.
➥We suggest setting it to 'never' in this binary version

AtlasLocalDev rs-localdev [direct: primary] test>

4	 Use the use dbs command to display the available databases in your local Atlas
cluster:

test> show dbs
admin 120.00 KiB
config 228.00 KiB
local 436.00 KiB
AtlasLocalDev rs-localdev [direct: primary] test>

5	 Use docker ps to display the running Docker containers associated with your
local Atlas cluster:

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b32351f3a7c7 mongodb/mongodb-atlas-local:8.0
➥"/usr/local/bin/runn…" 20 minutes ago
➥Up 20 minutes (healthy) 127.0.0.1:27017->27017/tcp
➥local9619

When you run docker ps, you see details such as the container ID, image, command,
creation time, status, ports, and names of the running containers. The output shows
a container with ID b32351f3a7c7 running the image mongodb/mongodb-atlas
-local:8.0. This container was created 20 minutes ago and has been up for 20 minutes
with a status of healthy. The ports show that the container is mapping port 27017 to
127.0.0.1:27017, and the container name is local9619.

13.3	 Managing your local Atlas cluster
You can manage your local Atlas cluster using the Atlas CLI—specifically, atlas
deployments. You can stop, start, connect to the database, delete, and view logs of your
cluster, as well as monitor cluster health by reviewing the logs.

13.3.1	 Stopping, starting, checking, and deleting your local cluster

Let’s break down how this works in practice. The following sequence of commands
gives you an idea of how to manage your local cluster:

342 Chapter 13  Developing AI applications locally with the Atlas CLI

1	 Check the cluster. If you want to display and ensure that the cluster is still available
on your machine, run atlas deployments list --type LOCAL:

atlas deployments list --type LOCAL

You see a console message similar to this one:

NAME TYPE MDB VER STATE
local9619 LOCAL 8.0.4 IDLE

The output of the command shows that one local Atlas cluster is running,
local9619, and currently has the status IDLE.

2	 Temporarily stop the cluster. Using atlas deployments, you can temporarily stop
your cluster by using the command atlas deployments pause <cluster name>
--type LOCAL, where <cluster name> (in this case) is local9619. Your cluster will
have a different name:

atlas deployments pause local9619 --type LOCAL

You see a console message similar to this one:

To login, run: atlas auth login
Pausing deployment 'local9619'.

Now you can validate the status of your cluster by running atlas deployments
again:

atlas deployments list --type LOCAL

The cluster is stopped, as indicated by the state STOPPED:

NAME TYPE MDB VER STATE
local9619 LOCAL 8.0.4 STOPPED

3	 Restart the cluster. Using the command atlas deployments start, you can restart
your local cluster:

atlas deployments start local9619 --type LOCAL

Based on this message, you see that the cluster is starting:

Starting deployment 'local9619'.

Now, using the command atlas deployments connect, connect to your started
local Atlas cluster.

	 343Managing your local Atlas cluster

atlas deployments connect --type LOCAL

You will be prompted to choose between mongosh and MongoDB Compass. I
chose mongosh and then connected to the database:

Please note that your session expires periodically.
If you use Atlas CLI for automation,
➥see https://www.mongodb.com/docs/atlas/cli/stable/
➥atlas-cli-automate/
➥for best practices.
To login, run: atlas auth login
? How would you like to connect to local9619? mongosh
Current Mongosh Log ID: 66af86eb95acd9c6bd663f89
Connecting to:
mongodb://localhost:27017/?directConnection=true&
➥serverSelectionTimeoutMS=2000&appName=mongosh+2.2.15
Using MongoDB: 8.0.4
Using Mongosh: 2.2.15

For mongosh info see: https://docs.mongodb.com/mongodb-shell/
AtlasLocalDev rs-localdev [direct: primary] test>

4	 Monitor the cluster. The Atlas CLI also enables you to monitor the logs of your local
Atlas cluster. This provides the benefit of real-time insights into cluster opera-
tions, helping you diagnose problems, monitor performance, and ensure the
smooth functioning of your cluster.
You can view the logs of your local cluster using the command atlas deployments
logs:

atlas deployments logs --deploymentName local9619 --type LOCAL

The logs are displayed in your console:

{"t":{"$date":"2024-08-04T13:54:35.299+00:00"},"s":"I", "c":"NETWORK",
"id":2944,"ctx":"conn117","msg":"Connection
➥ended","attr":{"remote":"127.0.0.1:45150",
➥"uuid":{"uuid":
{"$uuid":"4fa06363-affa-47e7-960c-a331e8d1f95"}},
➥"connectionId":117,"connectionCount":24}}
{"t":{"$date":"2024-08-04T13:54:35.299+00:00"},"s":"I",
"c":"NETWORK","id":22944,"ctx":"conn116","msg":"Connection
➥ ended","attr":{"remote":"127.0.0.1:45142",
➥"uuid":{"uuid":{"$uuid":"bfdbe0-c191-42d-9c51-
➥ af9a9f2d0bd5"}},"connectionId":116,
➥"connectionCount":23}}
{"t":{"$date":"2024-08-04T13:54:35.300+00:00"},"s":"I",
"c":"NETWORK","id":22944,"ctx":"conn115",
➥"msg":"Connectionended","attr":{"remote":
➥"127.0.0.1:45134","uuid":{"uuid":
{"$uuid":"61e66ddb-b2ea-44df-b281-a6f4b62d3ef3"}},
"connectionId":115,"connectionCount":22}}

344 Chapter 13  Developing AI applications locally with the Atlas CLI

5	 Delete the cluster. If you want to delete your local Atlas cluster, run the command
atlas deployment delete:

atlas deployments delete local9619 --type LOCAL

The command prompts you for confirmation and then deletes the cluster.

13.3.2	 Loading a sample data set

You may want to load a sample data set that can be used for exercises, as in previous
examples. Currently, the Atlas CLI does not support this option for local clusters, but
you can download the sample data set and import it into the cluster using mongorestore
(chapter 21). For now, it’s important to know that mongorestore restores data from a
Binary JSON (BSON) dump to a MongoDB database. Here’s how :

1	 Run the following curl command to download the sample data file to your local
machine. This can take a few minutes. When the sample data set download is
complete, you see the file sampledata.archive on your local machine:

curl https://atlas-education.s3.amazonaws.com/
➥sampledata.archive -o sampledata.archive

2	 To use mongorestore, install MongoDB Database Tools. The official MongoDB
documentation provides instructions based on your operating system. You can
find it at https://mng.bz/Qwnw.

3	 Find the connection string for the local Atlas cluster. You can display it using
the command atlas deployments connect --connectWith connectionString
<name>, where <name> is the name of the local cluster:

atlas deployments connect --connectWith connectionString local9619

The connection string for my local Atlas cluster looks like this:

mongodb://localhost:32769/?directConnection=true

Now you can use this connection string with the mongorestore command.

4	 Start loading the sample data set to your local MongoDB cluster:

mongorestore --archive=sampledata.archive \
--uri mongodb://localhost:32769/?directConnection=true

During data import, you may see messages like these:

2024-08-04T16:41:25.573+0200 preparing collections to restore from
2024-08-04T16:41:25.577+0200 reading metadata for sample_
training.routes from archive

https://mng.bz/Qwnw

	 345Managing your local Atlas cluster

'sampledata.archive'
2024-08-04T16:41:25.577+0200 reading metadata for
 sample_training.trips from archive 'sampledata.archive'
2024-08-04T16:41:25.577+0200 reading metadata for
 sample_analytics.accounts from archive
'sampledata.archive'
….
2024-08-04T16:41:34.746+0200 restoring indexes for
collection sample_geospatial.shipwrecks from
metadata 2024-08-04T16:41:34.746+0200
index: &idx.IndexDocument
{Options:primitive.M{"2dsphereIndexVersion":3,
"background":true,
➥"name":"coordinates_2dsphere",
➥"ns":"sample_geospatial.shipwrecks","v":2},
➥Key:primitive.D{primitive.E
➥{Key:"coordinates",Value:"2dsphere"}},
➥PartialFilterExpression:primitive.D(nil)}
2024-08-04T16:41:34.781+0200
no indexes to restore for collection sample_weatherdata.data
2024-08-04T16:41:34.781+0200
no indexes to restore for collection sample_restaurants.restaurants
2024-08-04T16:41:34.781+0200
no indexes to restore for collection sample_restaurants.neighborhoods
2024-08-04T16:41:34.781+0200
no indexes to restore for collection sample_supplies.sales
2024-08-04T16:41:36.173+0200 425367 document(s) restored
successfully. 0 document(s) failed to restore.

5	 Log in to the local Atlas cluster again, using the command atlas deployments
connect:

atlas deployments connect --type LOCAL

After logging back in to the local Atlas cluster, you see the databases created with
the sample data set for the exercises in previous sections:

AtlasLocalDev rs-localdev [direct: primary] test> show dbs
admin 120.00 KiB
config 296.00 KiB
local 220.30 MiB
sample_airbnb 52.69 MiB
sample_analytics 9.54 MiB
sample_geospatial 1.21 MiB
sample_guides 40.00 KiB
sample_mflix 110.28 MiB
sample_restaurants 6.20 MiB
sample_supplies 1.03 MiB
sample_training 47.62 MiB
sample_weatherdata 2.55 MiB
AtlasLocalDev rs-localdev [direct: primary] test>

346 Chapter 13  Developing AI applications locally with the Atlas CLI

13.4	 Diving into a local Atlas cluster
The docker inspect command obtains detailed information about Docker objects
such as containers, images, volumes, and networks. You can find the name of the image
by running docker ps. Docker inspect provides JSON-formatted output containing a
wide range of configuration and state data about the specified object. You can use this
information for troubleshooting, monitoring, and understanding the specific details
of the Docker environment. Here’s the output of the docker inspect command:

docker inspect mongodb/mongodb-atlas-local:8.0
[
 {
 "Id": "sha256:9acf037d83ece5c2bf8ef2818a72a026e7df9ef83
➥7096c1b898f4b792fbe3bad",
 "RepoTags": [
 "mongodb/mongodb-atlas-local:8.0"
],
 "RepoDigests": [
 "mongodb/mongodb-atlas-
[CA} local@sha256:c40e17fc675c294fe8464fca2654640e60cc
➥10f375bb90b98f47674737"
],
 "Parent": "",
 "Comment": "buildkit.dockerfile.v0",
 "Created": "2024-07-22T09:54:50.165656127Z",
 "DockerVersion": "",
 "Author": "",
 "Config": {
 "Hostname": "",
 "Domainname": "",
 "User": "mongod",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "ExposedPorts": {
 "27017/tcp": {}
 },
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
➥/sbin:/bin:/opt/mongot",
 "container=oci",
 "TOOL=CONTAINER"
],
 "Cmd": [
 "/usr/local/bin/runner",
 "server"
],
 "Healthcheck": {
 "Test": [
 "CMD",

The docker
inspect
command

The docker inspect
command

The PATH
environment variable

The container
command

The container
command

	 347Diving into a local Atlas cluster

 "/usr/local/bin/runner",
 "healthcheck"
],
 "Interval": 30000000000,
 "Timeout": 60000000000,
 "StartPeriod": 60000000000,
 "Retries": 3
 },
 "ArgsEscaped": true,
 "Image": "",
 "Volumes": {
 "/data/configdb": {},
 "/data/db": {}
 },
 "WorkingDir": "",
 "Entrypoint": null,
 "OnBuild": null,
 "Labels": {
 "architecture": "aarch64",
 "build-date": "2024-06-28T07:36:05",
 "com.redhat.component": "ubi9-container",
 "com.redhat.license_terms":
➥"https://www.redhat.com/en/about/
➥red-hat-end-user-license-agreements#UBI",
 "description": "Container configured
➥with a single node replicaset instance of
➥MongoDB and Atlas Search",
 "distribution-scope": "public",
 "io.buildah.version": "1.29.0",
 "io.k8s.description": "The Universal Base Image
➥is designed and engineered to be the base layer for
➥all of your containerized applications, middleware and utilities.
➥This base image is freely redistributable, but Red Hat
➥only supports Red Hat technologies through subscriptions for
➥Red Hat products. This image is maintained by
➥Red Hat and updated regularly.",
 "io.k8s.display-name": "Red Hat Universal Base Image 9",
 "io.openshift.expose-services": "",
 "io.openshift.tags": "base rhel9",
 "maintainer": "support@mongodb.com",
 "mongodb-atlas-local": "container",
 "name": "MongoDB Atlas Local",
 "release": "1123.1719560047",
 "summary": "MongoDB Atlas Local Container",
 "url": "https://access.redhat.com/containers/
➥#/registry.access.redhat.com/
➥ubi9/images/9.4-1123.1719560047",
 "vcs-ref": "92a4a475241865d0d11bd861fb2b29fbd9b17df0",
 "vcs-type": "git",
 "vendor": "MongoDB",
 "version": "8.0.4"
 }
 },
 "Architecture": "arm64",
 "Os": "linux",

The container
command

Volumes for data/
configdb and /data/db

348 Chapter 13  Developing AI applications locally with the Atlas CLI

 "Size": 896833968,
 "GraphDriver": {
 "Data": {
 "LowerDir": "/var/lib/docker/overlay2/afc6c2468758a5e3b60a51
➥ca07f3f3576fe9bc2cf57211bfa230feac325/diff:/var/lib/docker/
➥overlay2/4bef8399c049c97cd7ee9ab851ef4ddc8831a1b47eb41fffc
➥b26d1b9e946a95a/diff:/var/lib/docker/overlay2/
➥ac46bcbe95082dcf80258fdf4e300c89047b3abbafa73a1ecf45692f1d180c3b/
➥diff:/var/lib/docker/overlay2/
➥2a153597089c5c23afb712540d735da81dd5bd1ba9e388aafc571ed1fa54bbc2
➥/diff:/var/lib/docker/overlay2/
➥90a2c43b668796a2ae4d2f377772551f4ef104a1216c9243e6caaa8f0f5f77aa/
➥diff:/var/lib/docker/overlay2/
➥d85cc2c9485c25bf1b5f487b7eb0cb7a52e414614ec4e4b8cd1ebf4cf0919f0d
➥/diff:/var/lib/docker/overlay2/e9bb493bd34fcd7fcf
➥0d76ffe8ef55ac14ef215c01788d2e02de02183f3ad/diff:
➥/var/lib/docker/overlay2/
➥8a0e3e2e2d7098171fcc15a9040433298030d9095924c08f863377b8f3085291/diff",
 "MergedDir": "/var/lib/docker/overlay2/
➥cac61befd10c97387d66427f882d1ac377e40532541f166d02e808c25/merged",
 "UpperDir": "/var/lib/docker/overlay2/
➥cac61befd10c997387d66427f882d1ac377e40532541fd50bcf166d02e808c25/
➥diff",
 "WorkDir": "/var/lib/docker/overlay2/
➥cac61befd10c997387d66427f882d1ac377e40532541fd50bcf166d02e808c25/
➥work"
 },
 "Name": "overlay2"
 },
 "RootFS": {
 "Type": "layers",
 "Layers": [

"sha256:deb67401b5c584abadd5d179bdd276cfdd8aa144215f3a84080c597a9",
"sha256:5f76de7bb454d1aa238cd62251c0df8267b8e9216ee738db710aedefe",
"sha256:02346a59a9633b362209feffea349f8fe55dc27f750ea061667907e29",
"sha256:6c6cc35f5a5fe86ed0da435332830b88330b95773c4358c0d35349569",
"sha256:786fcd51af4c88de964798d72d416d580db9cb8fa5fab980b2a89fc15",
"sha256:701d5f46dcfadd41c360b24ffc08bc95886481a5df993405c510f2355",
"sha256:d8103d3d8cc12ce82eee6f21f4a67400f3c913f63e1b0493aeef757ad",
"sha256:866468f4505fccacbab3b341219a9eb036040c64f5dcc5dc2d21274f6",
 "sha256:ad94e6ecc9774f1d74fa0749e97207aca23a141b3d53ebe2552eb6f210e14251"
]
 },
 "Metadata": {
 "LastTagTime": "0001-01-01T00:00:00Z"
 }
 }
]

Here’s how the docker inspect command works:

¡	The docker inspect command for mongodb/mongodb-atlas-local:8.0 pro-
vides detailed information about the Docker image. The image runs the mongod
user and exposes port 27017/tcp.

	 349Diving into a local Atlas cluster

¡	The PATH environment variable includes /opt/mongot, indicating that this direc-
tory is part of the image’s executable path.

¡	The container command is /usr/local/bin/runner server. It includes a health
check that runs the command /usr/local/bin/runner healthcheck every 30
seconds with a timeout of 60 seconds, starting after a 60-second initial delay, and
retries up to three times.

¡	The image supports volumes for /data/configdb and /data/db, indicating
where MongoDB stores its data. The image labels provide metadata such as archi-
tecture (aarch64) and build date (2024-06-28T07:36:05) and confirm that it
is based on Red Hat Universal Base Image 9. The image architecture is arm64,
operating on the Linux system, and its size is approximately 896 MB. The image
uses the overlay2 storage driver, and the RootFS section lists multiple layers that
make up the filesystem of the Docker image.

13.4.1	 Displaying processes

Use the docker top command to understand the processes running in the container.
The docker top command is helpful because it allows you to see the list of processes
running inside a specific container without installing additional tools within the con-
tainer. This command provides information similar to that of the ps command but can
be executed directly from the Docker host.

Execute docker top <container name>. In the case of my deployment, the container
name is local9619:

docker top local9619

The command displays the following information about the processes running inside
the container:

UID PID PPID C STIME TTY TIME CMD
997 4395 4375 0 15:19 ? 00:00:00 /usr/local/bin/runner server

997 4426 4395 2 15:19 ? 00:03:45 mongod --replSet
➥rs-localdev --dbpath /data/db --keyFile /data/configdb/keyfile
➥--maxConns 32200 --bind_ip_all
➥--setParameter mongotHost=localhost:27027
➥--setParameter
searchIndexManagementHostAndPort=localhost:27027 –transitionToAuth

997 4520 4395 0 15:20 ? 00:01:09 /opt/mongot/bin/jdk/bin/java
➥-XX:+ExitOnOutOfMemoryError
➥-Djava.security.egd=file:/dev/urandom
➥-cp /opt/mongot/lib/*:
➥/opt/mongot/bin/mongot_deploy.jar com.xgen.mongot.MongotCli
➥ --keyFile /data/configdb/keyfile
➥--data-dir /data/mongot
➥--mongodHostAndPort localhost:27017

350 Chapter 13  Developing AI applications locally with the Atlas CLI

Here’s how the docker top command works:

¡	The /usr/local/bin/runner server process is the main command responsible
for starting the container. It operates under the user with UID 997 and has been
running since 15:19, but it hasn’t consumed much CPU time.

¡	The mongod process is the MongoDB server instance configured with various
parameters. It is set up as part of a local development replica set (rs-localdev)
with its database files stored in /data/db. The server uses a key file for authentica-
tion, limits maximum connections to 32,200, and binds to all network interfaces.
Also, it is configured to interact with mongot on localhost:27027 for search and
indexing operations. This process is also owned by UID 997.

¡	The Java process /opt/mongot/bin/jdk/bin/java runs the mongot component,
which handles search and indexing tasks. It is configured to exit on out-of-
memory errors and uses /dev/urandom for secure random-number generation.
The classpath includes necessary libraries and the mongot_deploy.jar file,
and it runs the MongotCli main class. This process also uses the key file for
authentication and stores its data in /data/mongot. It connects to the MongoDB
server on localhost:27017. This process is owned by UID 997.

13.4.2	 Executing into the container

The final test is logging into the MongoDB Atlas container using docker exec. The
command is docker exec -it <container_id> /bin/bash. The command docker ps
provides the container ID:

docker exec -it b32351f3a7c7 /bin/bash

After executing the command, I successfully logged in to the container with ID
b32351f3a7c7, which is running on my local machine as the default user. The prompt
bash-5.1$ indicates that I’m inside the container’s bash shell but without root privileges:

bash-5.1$

After executing into the container, navigate to the /opt/mongot/ directory using the
command cd /opt/mongot/:

bash-5.1$ cd /opt/mongot/
bash-5.1$ ls
LICENSE.txt README.md
➥THIRD_PARTY_NOTICES.txt
➥ bin exampleIndexDefinition.json
➥indexManager lib mongot
bash-5.1$

The directory contains important files and directories, including license information,
instructions, third-party-component listings, executables, an example index definition
file, index management files, libraries, and components related to mongot.

	 351Diving into a local Atlas cluster

Display the README.md file using the cat command to thoroughly understand the
concept of the local Atlas cluster and mongot process:

cat README.md
`mongot` runs as a separate process alongside `mongod`.
➥When configured, `mongot` handles requests related to search
➥and index management for `mongod`.

The mongot binary for local development is in Private Preview.
It is available for testing in order to gather feedback.
Do not use the mongot binary for production deployments.

Setup

1. Create a keyfile for the connection between mongod and mongot.
 * `mkdir data && echo keyfile > data/keyfile && chmod 600 data/keyfile`
 * If you already have replication enabled you don't
➥ need to create another keyfile, and you
 can keep your existing `replSetName` and `keyFile`
➥configurations in the following step.

2. Configure mongod
 * If you're using a configuration file, add these lines:
      ```yaml
      replication:
        replSetName: rs0
      security:
        keyFile: data/keyfile
      setParameter:
        mongotHost: localhost:27027
        searchIndexManagementHostAndPort: localhost:27027
      ```

 * If you're using command line flags, add these:
        ```shell
        --replSet rs0
        --keyFile data/keyfile
        --setParameter "mongotHost=localhost:27027"
        --setParameter "searchIndexManagementHostAndPort=localhost:27027"
        ```
3. Restart mongod. If a new replica set was created,
➥connect and run `rs.initiate()`
4. Start mongot: `./mongot --mongodHostAndPort=localhost:27017
➥–-keyfile=data/keyfile`
 * Other optional arguments include:
 * `--data-dir`: where mongot should persist data.
➥The default value is to data/mongot.
 * `--log-path`: location where mongot should write logs.
➥The default is to print to stdout.
5. Test the local Atlas Search server.
    ```js
    db.coll.createSearchIndex({"mappings": {"dynamic": true}})
    db.coll.aggregate([{"$listSearchIndexes": {}}])
    db.coll.dropSearchIndex("default")



352 Chapter 13  Developing AI applications locally with the Atlas CLI

mongot operates as a separate process alongside mongod, handling search and index 
management requests. It’s designed for local development and currently in private 
preview, which means that it’s available for testing and feedback but is not recom-
mended for production use.

The secure communication between mongod and mongot is established with a 
keyfile, which ensures that only authorized processes can join the replica set and 
interact with one another.

The mongod configuration includes replication settings, the location of the security 
key file, and parameters for mongotHost and searchIndexManagementHostAndPort. 
These configurations direct mongod on how to connect to mongot and manage search 
indexes.

After you configure mongod, you must restart. If a new replica set is created, the ini-
tialization command rs.initiate() is executed to set up the replica set.

When mongod is set up, mongot starts with the necessary parameters, including 
mongodHostAndPort and the keyfile location. Optional parameters for mongot specify 
the directory for data persistence and the log path for logging activities.

To test the local Atlas Search server, you can use mongosh commands to create a 
search index, list existing search indexes, and drop a search index. This testing verifies 
that the search and index management functionalities of mongod and mongot are oper-
ating correctly.

13.5	 Creating search indexes
You can run queries in your local MongoDB Atlas cluster by using not only the  
MongoDB database but also features such as full-text search and vector search, which 
are provided through the integration of mongod with Apache Lucene via the mongot 
process. The mongosh method db.collection.createSearchIndex() provides a wrap-
per around the createSearchIndexes database command.

13.5.1	 Executing full-text search locally

After logging in to the local cluster, you can create a full-text search index using 
the db.collection.createSearchIndex() wrapper. (Chapter 11 discusses full-text 
search.) Because this environment is a test environment, use dynamic mapping:

use sample_training
db.inspections.createSearchIndex(
   "LocalSearchIndex",
   { mappings: { dynamic: true } }
)

This command creates a search index in the local Atlas cluster. You can verify it by run-
ning the getSearchIndexes() method:

db.inspections.getSearchIndexes()
[
  {



	 353Creating search indexes

    id: '66afda78a85a4d1064106881',
    name: 'LocalSearchIndex',
    type: 'search',
    status: 'READY',
    queryable: true,
    latestVersion: 0,
    latestDefinition: { mappings: { dynamic: true, fields: {} } }
  }
]

Now you can perform full-text queries with the search index named LocalSearch
Index. The following listing shows how to perform an advanced full-text search query 
in a MongoDB collection using the Atlas Search functionality locally.

Listing 13.2  Executing a full-text search locally

db.inspections.aggregate([
  {
    $search: { 
      index: 'LocalSearchIndex', 
      text: {
        query: 'No Violation Issued', 
        path: ['result', 'business_name'], 
        fuzzy: {
          maxEdits: 2 
        }
      }
    }
  },
  {
    $match: { 
      sector: 'Cigarette Retail Dealer - 127', 
      'address.city': 'RIDGEWOOD' 
    }
  },
  {
    $addFields: { 
      score: { $meta: "searchScore" }
    }
  },
  {
    $sort: { 
      score: -1
    }
  },
  {
    $limit: 3 
  },
  {
    $project: { 
      _id: 0, 
      business_name: 1,
      certificate_number: 1,

Performs a full-text search 
with fuzzy matching

Specifies the name of 
the search index

The text you want 
to search for

The fields you 
want to search in

Allows up to two 
typographical errors

Additional filter criteria

Filters by sector

Filters by city

Includes the search 
score in the results

Sorts the results by search 
score in descending order

Limits the results 
to the top three

Specifies the fields 
to include in the output

Excludes _id from 
the result



354 Chapter 13  Developing AI applications locally with the Atlas CLI

      date: 1,
      result: 1,
      'address.street': 1,
      'address.number': 1,
      'address.zip': 1,
      score: 1 
    }
  }
])

The query uses fuzzy search to handle typographical errors, filters results based on 
specific criteria, sorts the results by relevance score, and limits the output to the top 
three entries. It also demonstrates how to include the search score in the final output 
for better understanding of the relevance of each result:

[
  {
    certificate_number: 50063474,
    business_name: 'GRACE NY INC',
    date: 'Nov 22 2015',
    result: 'No Violation Issued',
    address: { zip: 11385, street: 'WOODWARD AVE', number: 466 },
    score: 1.7540767192840576
  },
  {
    certificate_number: 50065725,
    business_name: 'GRACE NY INC',
    date: 'Dec 19 2015',
    result: 'No Violation Issued',
    address: { zip: 11385, street: 'WOODWARD AVE', number: 466 },
    score: 1.7540767192840576
  },
  {
    certificate_number: 50063482,
    business_name: 'WALGREEN EASTERN CO., INC.',
    date: 'Nov 22 2015',
    result: 'No Violation Issued',
    address: { zip: 11385, street: 'METROPOLITAN AVE', number: 5802 },
    score: 1.637845516204834
  }
]

The query performed a full-text search with fuzzy matching using the specified index 
LocalSearchIndex. It searched for the text "No Violation Issued" within the fields 
result and business_name, allowing up to two typographical errors. Additional filters 
were applied to limit the results to the sector "Cigarette Retail Dealer - 127" and the 
city "RIDGEWOOD". The search score was included in the results and used to sort them 
in descending order. The results were limited to the top three matches and included 
specific fields in the output. The query returned three results with the highest score. 
You can find more examples of full-text search in chapter 11.

Includes the search score



	 355Creating search indexes

If you want to delete this index, use the command db.collection 

.dropSearchIndex(<name>):

db.inspections.dropSearchIndex("LocalSearchIndex")

After you run the command, the index LocalSearchIndex will be dropped.

13.5.2	 Executing vector search locally

Switch to the sample_mflix database, and create a vector search index on the plot_
embedding field of the embedded_movies collection. (This collection already has 
embeddings in the plot_embedding field, as explained in chapter 12.) This field is 
configured as a knnVector with 1,536 dimensions and Euclidean similarity:

use sample_mflix
db.embedded_movies.createSearchIndex({
  "name": "vectorSearchIndex",
  "mappings": {
    "dynamic": true,
    "fields": {
      "plot_embedding": {
        "type": "knnVector",
        "dimensions": 1536,
        "similarity": "euclidean"
      }
    }
  }
})

A knnVector with 1,536 dimensions and Euclidean similarity means that the field is 
used for k-nearest neighbors (k-NN) searches, specifically for approximate nearest 
neighbor (ANN) searches, which identify the closest points in a multidimensional 
space based on a similarity measure. The vector has 1,536 numerical values, repre-
senting its position in a 1,536-dimensional space, with each dimension corresponding 
to a specific feature or attribute of the data. The similarity between vectors is mea-
sured using Euclidean distance, which calculates the straight-line distance between two 
points in this high-dimensional space. Run getSearchIndexes() to display the vector 
search index:

db.embedded_movies.getSearchIndexes()
[
  {
    id: '66afe77ea85a4d1064106885',
    name: 'default',
    type: 'search',
    status: 'READY',
    queryable: true,
    latestVersion: 0,
    latestDefinition: {
      mappings: {



356 Chapter 13  Developing AI applications locally with the Atlas CLI

        dynamic: true,
        fields: {
          plot_embedding: {
            type: 'knnVector',
            dimensions: 1536,
            similarity: 'euclidean'
          }
        }
      }
    }
  }
]

Chapter 14 delves deeper into Atlas Vector Search and methods for creating embed-
dings automatically, executing queries using semantic search, and creating AI chatbots 
using a local Atlas cluster.

Summary

¡	You can use the Atlas CLI to develop locally with MongoDB Atlas deployments, 
including Atlas Search and Atlas Vector Search. This enables the creation of full-
text search or AI-powered applications in your preferred development environ-
ment. The Atlas CLI handles setup, connections, and management tasks from 
development to production. For full-text search, the Atlas CLI allows you to cre-
ate and manage Atlas Search indexes locally and in the cloud.

¡	Running a local Atlas cluster requires Docker to be installed. Docker is a light-
weight containerization platform that simplifies how applications are deployed 
and managed. It enables consistent operation across various environments by 
bundling applications with their dependencies.

¡	Using Docker with Atlas locally ensures consistent application performance 
across environments and isolates the MongoDB environment, preventing con-
flicts with other applications. Docker also simplifies scaling the local Atlas cluster 
for testing and development, streamlines the setup process with preconfigured 
containers, and enables easy movement and replication of the local setup across 
systems.

¡	To create your local Atlas cluster, you can use the command atlas deployments 
setup --type local. This command guides you through the setup process, 
prompting you for deployment settings and providing default values.

¡	You can use atlas deployments to manage your local cluster. This command lets 
you stop, start, and connect to the database, view logs, and delete  your cluster.

¡	The Atlas CLI currently does not support loading a sample data set for local clus-
ters. Instead, you can download the sample data set and import it into the cluster 
using mongorestore.

¡	mongot runs as a distinct process alongside mongod, focusing on search function-
ality. When configured, mongot processes search queries and manages indexes, 



	 357Summary

allowing mongod to handle the core database operations efficiently. This separa-
tion of concerns optimizes performance and scalability for applications using 
MongoDB with advanced search capabilities.

¡	You can use the db.collection.createSearchIndex() wrapper around the 
createSearchIndex database command to create a full-text search index 
in the local Atlas cluster. To verify the existence of the index, you can use the 
getSearchIndexes() method.

¡	To drop an index, use the db.collection.dropSearchIndex(<name>) monogsh 
wrapper around the dropSearchIndex database command.

¡	You can manage Atlas Search and Vector Search indexes using the atlas 
deployments search indexes create command locally and in the cloud.



358

14Building retrieval-
augmented generation  

AI chatbots

This chapter covers

¡	Experiencing large language model 			
	 hallucinations
¡	Gaining insight into retrieval-augmented 		
	 generation and MongoDB
¡	Localizing Atlas Vector Search within RAG
¡	Orchestrating the RAG pattern with LangChain
¡	Building a generative AI chatbot
¡	Playing with the LangServe playground

Large language model (LMM) hallucinations occur when the model generates 
information that isn’t based on facts or given inputs. These errors can be made-up 
details, wrong facts, or believable but incorrect responses. They happen because 
LMMs like GPT-4 generate text from patterns they learned during training, not 
by checking facts. As a result, they may produce content that looks right but isn’t 
accurate. Reducing these mistakes is important for the reliability of LMMs. Meth-
ods include improving training data quality, using real-time fact-checking, adding 
better verification systems, and using retrieval-augmented generation (RAG), which 



	 359Gaining insight into retrieval-augmented generation

combines generating text with real-time information retrieval to improve accuracy. 
MongoDB Atlas Vector Search can serve as a key component for storing and retrieving 
data that RAG systems rely on, ensuring that LLMs have access to accurate, up-to-date 
information during the generation process.

RAG is a pattern that enhances the accuracy of language models by integrating text 
generation with information retrieval techniques. This approach allows the model to 
access relevant data from external sources during the generation process, reducing the 
likelihood of producing incorrect or fabricated information. RAG uses a vector database 
like Atlas Search to store and retrieve high-dimensional data such as text embeddings, 
enabling the model to efficiently find and use the most relevant information during the 
text generation process, significantly reducing the chances of hallucinations.

RAG is employed across various applications to enhance the accuracy and reliability 
of language models. In chatbots, RAG ensures that responses are precise and grounded 
in relevant, real-time information. In customer support, it helps deliver up-to-date assis-
tance by retrieving the latest data. In technical assistance, RAG enables accurate answers 
by accessing verified technical resources. For academic research, it aids in producing 
comprehensive reviews by sourcing data from multiple scholarly articles. In content 
creation, RAG integrates relevant and verified information, ensuring that the gener-
ated content is accurate and credible.

14.1	 Gaining insight into retrieval-augmented generation
From a high-level perspective, the RAG pattern operates as illustrated in figure 14.1.

PDF

Your question Your question 
embeddings

Documents Documents Documents

0.9 0.02 0.1 ...

0.9 0.09 0.1 ...

0.9 0.09 0.1 ...

0.9 0.08 0.1 ...

0.9 0.09 0.1 ...

Documents

Your answer

Vector store

LLM modelPrompt prep

Vector search

Storage

Embedding model

Embedding
model

Document chunks similar to questions

Figure 14.1  RAG paradigm step by step (Image © MongoDB 2024 CC BY-NC-SA 3.0)



360 Chapter 14  Building retrieval-augmented generation AI chatbots

The RAG process breaks down into several key steps:

¡	Steps 1 and 2—The process starts with documents, such as PDFs, Microsoft Word 
documents, and other text-based files, that are broken into small, manageable 
chunks of text. Typically, these documents are rich in information and may con-
tain detailed content on a specific topic.
The first technical step involves parsing these documents to extract the raw text, 
which is then segmented into smaller coherent chunks. Each chunk usually rep-
resents a complete piece of information, such as a paragraph or section, making 
it easier for the system to process and retrieve relevant data later. When pro-
cessed, these documents become the source of truth for the system, meaning that 
the responses generated by the model are grounded in and derived directly from 
the information contained within these documents.

¡	Step 3—The process passes the text chunks through an embedding model. This 
model converts each chunk to a high-dimensional vector representation, cap-
turing the semantic meaning of the text in a format that is easy to compare and 
search against other vectors.

¡	Step 4—The vector representations are stored in a vector database. This database 
is optimized for storing and quickly retrieving high-dimensional data, making it 
easier to find and access relevant information.

¡	Step 5—When a user submits a query, it is similarly processed by the embedding 
model, converting the query to a vector representation that encapsulates the 
semantic content of the user’s question.

¡	Step 6—The query vector is compared against the stored vectors in the vector 
database through a process known as vector search. This step identifies the most 
semantically similar document chunks that are relevant to the query.

¡	Step 7—The relevant document chunks retrieved from the vector search are assem-
bled into a prompt that provides context-rich input for the language model.

¡	Step 8—The LLM uses this prompt to generate a response that is informed by the 
retrieved information, ensuring that the output is accurate and grounded in the 
source-of-truth documents processed earlier in the workflow.

The process uses a vector database to ensure that the responses generated by the LLM 
are accurate and contextually relevant. Documents are parsed into chunks, converted 
to vector representations, and stored in the database. When a query is made, it is 
transformed into a vector and matched against the stored vectors. Then the retrieved 
relevant information is used to generate a response, ensuring that the LLM’s output 
is grounded in verified data. The vector database is essential for efficient retrieval, 
directly enhancing the quality and reliability of the LLM’s responses.

14.2	 Embedding LangChain in the RAG ecosystem
Building a generative AI (GenAI) application that relies on the RAG model without the 
right tools can be extremely challenging and inefficient. RAG requires seamless inte-
gration among multiple components: LLMs, embedding models, and vector databases 



	 361Embedding LangChain in the RAG ecosystem

like MongoDB Atlas Vector Search, all of which must work together to retrieve and 
use relevant information in real time. Without the right tools, you would have to man-
age the complex interactions between these systems manually, such as by generating 
embeddings, storing them in a vector database, and ensuring that the LLM can query 
this database effectively to retrieve contextually appropriate information. This process 
requires a deep understanding of both machine learning and system architecture, 
as well as the technical expertise to integrate these diverse components in a way that 
maintains efficiency and accuracy.

Two of the best frameworks that address these challenges are LangChain and Llama
Index. Although LlamaIndex is a powerful tool for building datacentric applications, in 
this book, I focus on using LangChain due to its versatility and robust integration capa-
bilities. LangChain offers a broad range of tools and features that are essential for the 
topics we will explore. It is a sophisticated framework that facilitates the development 
of AI applications by seamlessly integrating LLMs with various external data sources 
and computational tools. This framework is designed to manage complex workflows 
that require not only text generation but also advanced data retrieval and processing. 
Figure 14.2 illustrates how LangChain and LlamaIndex are embedded in the ecosystem 
for developing GenAI applications based on the RAG pattern.

MongoDB Atlas Triggers

Database

PDF

Documents

LLM prompted ApplicationsVector embeddingsData sources

Developer frameworks

word2vec lib 
or others

Natural-language user input received

Created by
the user

Data storage

Vector index

• Metadata
• Content chunks
• Vector embeddings
• Vector indexes

Figure 14.2  Embedding LangChain in the RAG pattern. Data from sources like databases, PDFs, and JSON files is 
converted to vector embeddings using tools like OpenAI, Cohere, and Hugging Face. These embeddings are stored 
and indexed in a database. Developer frameworks like LlamaIndex and LangChain manage the processing, storing, 
and indexing of these embeddings in databases, like MongoDB Atlas, along with metadata and context chunks. 
When a natural-language input is received, the system retrieves relevant data from the vector index and prompts 
the LLMs; then the generated output is delivered to the application. Also visible are Atlas Triggers, which react to 
new documents in the database by automatically using tools like OpenAI to convert them to embeddings and store 
them in the vector database. (Image © MongoDB 2024 CC BY-NC-SA 3.0)



362 Chapter 14  Building retrieval-augmented generation AI chatbots

LangChain serves as a bridge that connects LLMs with external data sources and 
computational tools. It orchestrates the entire process, starting with receiving natural-
language input from various sources, such as user queries in chatbots, databases, 
transcribed speech, and text extracted from documents, emails, PDFs, and other 
written formats. Then it manages the generation of vector embeddings using providers 
like OpenAI, Cohere, and Hugging Face; it also oversees the storage and indexing of 
these embeddings within a vector search index. This setup enables efficient retrieval 
and contextual processing of data across formats, ensuring that LLMs can access and 
use relevant information effectively in AI-driven applications.

One of LangChain’s key technical features is its ability to interact with vector 
databases. These databases store high-dimensional vector representations of text, 
which are generated by pretrained models. LangChain doesn’t generate these 
embeddings directly; instead, it coordinates the process by which text data is passed 
through an embedding model, converted to vectors, and stored in a database. Using 
the langchain-mongodb package, LangChain can integrate with Atlas Vector Search, a 
capability provided by MongoDB Atlas. This integration allows LangChain to store and 
retrieve embeddings in MongoDB Atlas, using its vector search functionality to find 
data efficiently based on semantic similarity.

14.3	 Introducing the MongoDB Atlas Vector Search RAG template
MongoDB, in collaboration with LangChain, has developed a RAG template called 
mongo-ra that uses MongoDB Atlas Vector Search and OpenAI. This template makes it 
easy for developers to build and deploy chatbot applications on their proprietary data. 
LangChain Template provides a reference architecture that can be readily deployed 
as a REST API using LangServe, making the integration straightforward and efficient. 
You can check the project in the GitHub langchain-ai repo at https://github.com/
langchain-ai/langchain.

LangServe is a framework for deploying LangChain models as REST APIs. It inte-
grates with FastAPI and uses pydantic for data validation, automatically inferring input 
and output schemas from LangChain objects. LangServe supports invoking, batching, 
and streaming endpoints, making it suitable for real-time AI applications. It includes 
built-in tracing and uses Python libraries like uvloop and asyncio to handle concurrent 
requests.

Also, when you deploy your chain using LangServe, you gain access to a built-in play-
ground. This playground allows you to modify configurable parameters, experiment 
with different inputs, and see the responses streamed in real time, enhancing the devel-
opment and testing experience.

14.4	 Getting started with AI chatbots
In this section, you use OpenAI’s GPT-4 model to build a chatbot that answers ques-
tions about MongoDB Atlas best practices. To minimize the risk of hallucinations, which 
occur when the model generates inaccurate or misleading information by relying 
solely on learned patterns, you will implement RAG.

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain


	 363Getting started with AI chatbots

In this setup, the chatbot not only generates answers but also retrieves relevant, ver-
ified information from an Atlas Vector Search database. This vector database stores 
embeddings generated from prevalidated data extracted from a PDF file of MongoDB 
documentation (from https://mng.bz/PwxP), specifically about Atlas. By using this 
data as context for queries sent to the LLM, the chatbot can provide more reliable, 
precise answers. The entire setup will be orchestrated by LangChain, ensuring seamless 
integration and management of all components.

Technically, this process involves embedding the user’s query in a vector space and 
then using this vector to search the database for the most relevant documents. The 
retrieved documents are used as additional context for the GPT-4 model to generate 
the final response. This approach significantly reduces the likelihood of errors and 
improves the reliability of the chatbot by ensuring that it references accurate, up-to-
date information when generating responses.

14.4.1	 Describing LangChain capabilities

LangChain is a framework for building applications that use LLMs, with one use case 
being the development of AI-powered chatbots. It is available through the Python 
LangChain library as well as the JavaScript LangChain. This chapter focuses on the 
Python version.

LangChain consists of several open source libraries, each serving a distinct purpose 
in the overall architecture. These libraries work together to provide a toolset for build-
ing, integrating, and deploying LLM-powered applications. The LangChain framework 
includes these key components:

¡	langchain-core—Provides base abstractions and the LangChain Expression 
Language. It serves as the foundational layer for language model-powered 
applications.

¡	langchain-community—Facilitates third-party integrations. This library makes it 
easy for developers to connect LangChain with a variety of external tools and 
services.

¡	Partner packages (e.g., langchain-openai and langchain-mongodb)—Split certain 
integrations into their own lightweight packages that depend only on langchain 
-core. These packages simplify the integration process by focusing on specific 
APIs and services.

¡	langchain—Contains the chains, agents, and retrieval strategies that form an 
application’s cognitive architecture. It provides the essential components to 
build intelligent and responsive applications.

¡	LangGraph—Enables the construction of robust, stateful multifactor applica-
tions with LLMs by modeling steps as edges and nodes in a graph. This approach 
ensures a clear, scalable structure for managing complex workflows.

¡	LangServe—Allows deployment of LangChain chains as REST APIs. It makes it 
easy to turn your LangChain models into accessible, scalable web services.

https://mng.bz/PwxP


364 Chapter 14  Building retrieval-augmented generation AI chatbots

¡	LangSmith—Provide a developer platform designed for debugging, testing, evalu-
ating, and monitoring LLM applications. It offers comprehensive tools to ensure 
that your models are performing optimally throughout the development life cycle.

TIP  If you want to discover more LangChain features, see the official Lang
Chain website (https://mng.bz/Mw07).

14.4.2	 Starting with the LangChain CLI

The LangChain command-line interface (CLI) allows you to interact with the Lang
Chain framework directly from the command line. It provides a range of commands for 
managing and deploying applications built with LangChain, such as creating new pro
jects, running and testing chains, and managing configurations. The CLI simplifies the 
development process by enabling quick, efficient operations that don’t rely on a graphi-
cal user interface. This makes it easier to automate tasks, integrate with other tools, and 
streamline the workflow for building and deploying LLM-powered applications.

To use the LangChain CLI, make sure you have the latest version installed. You 
can achieve this by using pip3, the package manager for Python 3. Run the following 
command:

pip3 install -U langchain-cli

After completing the installation, you can launch the LangChain CLI to view the user 
interface by typing langchain-cli. You’ve successfully launched the CLI when you see 
this message:

langchain-cli
 Usage: langchain-cli [OPTIONS] COMMAND [ARGS]...
╭─Options──────────────────────────────────────────
│ --version  -v        Print the current CLI version.
│ --help               Show this message and exit.
╰──────────────────────────────────────────────────────────
╭─Commands─────────────────────────────────────────────────
│ app         Manage LangChain apps
│ integration Develop integration packages for LangChain.
│ migrate     Migrate LangChain to the most recent version.
│ serve       Start the LangServe app, whether it's a template or an app.
│ template    Develop installable templates.
╰───────────────────────────────────────────────────────────────────────────

TIP  You can use the LangChain CLI to interact with LangChain templates 
such as mongo-rag, which allow you to build AI applications quickly.

14.5	 Creating an AI-powered MongoDB chatbot
Use the LangChain CLI to set up a LangServe project quickly. In this example, the 
project is named mongodb-in-action and specifies the template to use: rag-mongo. 

https://mng.bz/Mw07


	 365Creating an AI-powered MongoDB chatbot

This approach allows you to bootstrap the project with all the necessary components 
in place.

14.5.1	 Setting up a new application

Follow these steps to create a new LangChain project:

1	 Run the following command:

langchain app new mongodb-in-action --package rag-mongo

2	 Confirm that you want to install LangChain by typing Y at the following prompt:

Would you like to install these templates into
➥your environment with pip? [y/N]:

This command creates a new LangChain project and adds the mongo-rag template for 
building applications based on MongoDB Atlas. When successful, you see the follow-
ing message:

Success! Created a new LangChain app under "./mongodb-in-action"!

The command creates a new LangChain application named mongodb-in-action using 
the rag-mongo template. You can also use the --non-interactive flag to ensure that 
the process runs automatically without prompting you for additional input.

The command creates a new directory called mongodb-in-action. The following list-
ing shows the structure of the files and directories in the new directory.

Listing 14.1  Files and directories in the LangChain project

├── Dockerfile
├── README.md
├── app
│   ├── __init__.py
│   ├── __pycache__
│   │   ├── __init__.cpython-312.pyc
│   │   └── server.cpython-312.pyc
│   └── server.py
├── packages
│   ├── README.md
│   └── rag-mongo
│       ├── LICENSE
│       ├── README.md
│       ├── _images
│       │   ├── cluster.png
│       │   ├── collections.png
│       │   ├── connect.png
│       │   ├── create.png
│       │   ├── driver.png
│       │   ├── json.png
│       │   ├── json_editor.png



366 Chapter 14  Building retrieval-augmented generation AI chatbots

│       │   ├── search-indexes.png
│       │   └── uri.png
│       ├── ingest.py
│       ├── pyproject.toml
│       ├── rag_mongo
│       │   ├── __init__.py
│       │   └── chain.py
│       ├── rag_mongo.ipynb
│       └── tests
│           └── __init__.py
└── pyproject.toml

The structure shows a Python-based LangChain application organized under a root 
directory called mongodb-in-action with the rag-mongo template:

¡	__init__.py file in the app directory—Designates this folder as a Python package, 
enabling its modules to be imported throughout the application

¡	 __pycache__ directory—Contains compiled Python files (.pyc), speeding the 
execution of Python code

¡	server.py file—Handles the server-side logic of the application, managing API 
requests and database interactions

¡	rag-mongo subdirectory within packages—Manages MongoDB-related tasks within 
the LangChain application

¡	ingest.py file—Ingests data into MongoDB and interacts with Atlas Vector 
Search

¡	rag_mongo folder (subpackage within rag-mongo)—Contains code specific to 
MongoDB Atlas operations

¡	chain.py file—Sets up a process to answer questions by combining data from a 
MongoDB Atlas database with a language model, following the RAG pattern

You also need to install the langchain_openai module, which you can do via this 
command:

pip3 install langchain_openai

Next, you must make some minor adjustments to the default settings of the new pro
ject. Modify the mongodb-in-action/app/server.py file by adding the following code:

from rag_mongo import chain as rag_mongo_chain
add_routes(app, rag_mongo_chain, path="/rag-mongo")

After the modification, the mongodb-in-action/app/server.py file looks like this:

from fastapi import FastAPI
from langserve import add_routes
from rag_mongo import chain as rag_mongo_chain

app = FastAPI()



	 367Creating an AI-powered MongoDB chatbot

# Edit this to add the chain you want to add
add_routes(app, rag_mongo_chain, path="/rag-mongo")

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8000)

Each of the following lines plays a specific role. Here’s what they do:

¡	#from rag_mongo—Imports the chain module from the rag_mongo package and 
assigns it to rag_mongo_chain for clarity in the code. You must add this line to the 
mongodb-in-action/app/server.py file.

¡	add_routes—Adds the routes defined in rag_mongo_chain to the FastAPI appli-
cation, making them accessible under the path /rag-mongo. You must add this 
line to the mongodb-in-action/app/server.py file.

¡	 if __name__ == "__main__"—Ensures that the FastAPI app runs when the 
script is executed directly, using uvicorn.run() on host 0.0.0.0 and port 8000.

14.5.2	 Inserting embeddings into MongoDB Atlas

As I mentioned earlier, LangChain automates the process of creating embeddings 
from our data and storing them in a MongoDB collection. These embeddings serve as 
verified data and become the source of truth, which is sent as context to the LLM mod-
ule in response to queries, following the principles of RAG.

The chatbot will answer questions about MongoDB Atlas best practices, so you’ll 
use the official MongoDB documentation in PDF format as the data. This data will be 
stored in a MongoDB collection as embeddings.

To do this, navigate to the directory mongodb-in-action/packages/rag-mongo, and 
open the ingest.py file. In this file, change the default names of the MongoDB data-
base, collection, and vector search index. Also update the URL of the document you 
want to use to generate embeddings. In this case, the database name will be langchain, 
the collection name will be mongodb, the index name (which you’ll create in MongoDB 
Atlas) will be default, and the link to the MongoDB documentation in PDF format will 
be https://mng.bz/PwxP. After modification, the ingest.py file looks like this:

import os
from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient

MONGO_URI = os.environ["MONGO_URI"]

# Note that if you change this, you also
➥need to change it in `rag_mongo/chain.py`
DB_NAME = "langchain" Database name

https://mng.bz/PwxP


368 Chapter 14  Building retrieval-augmented generation AI chatbots

COLLECTION_NAME = "mongodb" 
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default" 
EMBEDDING_FIELD_NAME = "embedding"
client = MongoClient(MONGO_URI)
db = client[DB_NAME]
MONGODB_COLLECTION = db[COLLECTION_NAME]

if __name__ == "__main__":
    # Load docs
    loader = PyPDFLoader("https://mng.bz/PwxP") 
    data = loader.load()

    # Split docs
    text_splitter = RecursiveCharacterTextSplitter
➥(chunk_size=500, chunk_overlap=0)
    docs = text_splitter.split_documents(data)

    # Insert the documents in MongoDB Atlas Vector Search
    _ = MongoDBAtlasVectorSearch.from_documents(
        documents=docs,
        embedding=OpenAIEmbeddings(disallowed_special=()),
        collection=MONGODB_COLLECTION,
        index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
    )

The following list explains the main components of the preceding code:

¡	PyPDFLoader—Loads and processes PDF documents

¡	OpenAIEmbeddings—Generates vector embeddings for the text chunks

¡	RecursiveCharacterTextSplitter—Splits the document text into smaller 
chunks

¡	MongoDBAtlasVectorSearch—Handles inserting and searching documents in 
MongoDB Atlas using vector embeddings

¡	MongoClient—Establishes a connection with MongoDB

¡	MongoDB URI—Connects to the database

¡	DB_NAME—Specifies the name of the database used in MongoDB

¡	COLLECTION_NAME—Specifies the collection name where vector embeddings will 
be stored

¡	ATLAS_VECTOR_SEARCH_INDEX_NAME—Defines the name of the vector search 
index in MongoDB Atlas

¡	EMBEDDING_FIELD_NAME—Specifies the field name where the embeddings will be 
stored

¡	client—Initializes the MongoDB client with the specified URI

¡	MONGODB_COLLECTION—Establishes a reference to the MongoDB collection 
where documents will be stored

¡	PyPDFLoader—Loads the PDF document from a specified URL for processing

Collection name

Index name

Link to the MongoDB 
documentation

https://mng.bz/PwxP


	 369Creating an AI-powered MongoDB chatbot

¡	text_splitter—Splits the document into chunks of 500 characters each, with 
no overlap

¡	embedding—Generates vector embeddings for each chunk using 
OpenAIEmbeddings

¡	index_name—Inserts the processed documents with their embeddings into 
MongoDB Atlas, making them searchable via vector search

You also need to update the chain.py file, located at mongodb-in-action/packages/
rag-mongo/rag_mongo/chain.py, by setting DB_NAME = "langchain", COLLECTION_
NAME = "mongodb", and ATLAS_VECTOR_SEARCH_INDEX_NAME = "default". Here’s the 
modified chain.py file:

import os
from langchain_openai import ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import (
    RunnableLambda,
    RunnableParallel,
    RunnablePassthrough,
)
from langchain_text_splitters import RecursiveCharacterTextSplitter
from pymongo import MongoClient

# Set DB
if os.environ.get("MONGO_URI", None) is None:
    raise Exception("Missing `MONGO_URI` environment variable.")
MONGO_URI = os.environ["MONGO_URI"]

DB_NAME = "langchain"
COLLECTION_NAME = "mongodb"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "default"

client = MongoClient(MONGO_URI)
db = client[DB_NAME]
MONGODB_COLLECTION = db[COLLECTION_NAME]

# Read from MongoDB Atlas Vector Search
vectorstore = MongoDBAtlasVectorSearch.from_connection_string(
    MONGO_URI,
    DB_NAME + "." + COLLECTION_NAME,
    OpenAIEmbeddings(disallowed_special=()),
    index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 1})

# RAG prompt
template = """Answer the question based only on the following context:



370 Chapter 14  Building retrieval-augmented generation AI chatbots

{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)

# RAG
model = ChatOpenAI()
chain = (
   RunnableParallel({"context": retriever,
➥"question": RunnablePassthrough()})
    | prompt
    | model
    | StrOutputParser()
)

# Add typing for input
class Question(BaseModel):
    __root__: str

chain = chain.with_types(input_type=Question)

def _ingest(url: str) -> dict:
    loader = PyPDFLoader(url)
    data = loader.load()

    # Split docs
    text_splitter = RecursiveCharacterTextSplitter
➥(chunk_size=500, chunk_overlap=0)
    docs = text_splitter.split_documents(data)

    # Insert the documents in MongoDB Atlas Vector Search
    _ = MongoDBAtlasVectorSearch.from_documents(
        documents=docs,
        embedding=OpenAIEmbeddings(disallowed_special=()),
        collection=MONGODB_COLLECTION,
        index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
    )
    return {}

ingest = RunnableLambda(_ingest)

Here’s how it works:

¡	ChatOpenAI—Uses this language model to generate answers

¡	PyPDFLoader—Loads and processes PDF documents from a given URL

¡	OpenAIEmbeddings—Generates vector embeddings from text chunks

¡	MongoDBAtlasVectorSearch—Interacts with MongoDB Atlas for storing and 
retrieving vector embeddings

¡	StrOutputParser—Parses the model’s output into a string format



	 371Creating an AI-powered MongoDB chatbot

¡	ChatPromptTemplate—Formats the prompts sent to the language model

¡	BaseModel from pydantic—Handles data validation and typing

¡	RunnableLambda (runnable task)—Executes a lambda function

¡	RunnableParallel (runnable task)—Runs multiple tasks in parallel

¡	RunnablePassthrough (simple runnable task)—Passes its input to the next stage

¡	RecursiveCharacterTextSplitter—Splits the text into smaller chunks for 
processing

¡	MongoClient—Connects to MongoDB

¡	Set DB—Checks whether the MONGO_URI environment variable is set and raises an 
exception if it’s missing

¡	DB_NAME—Specifies the name of the MongoDB database

¡	COLLECTION_NAME—Specifies the collection where the vector embeddings are 
stored

¡	ATLAS_VECTOR_SEARCH_INDEX_NAME—Defines the name of the vector search 
index in MongoDB Atlas

¡	client—Initializes the MongoDB client with the specified URI

¡	MONGODB_COLLECTION—References the MongoDB collection where the docu-
ments are stored

¡	index_name—Sets up the vector store for reading from MongoDB Atlas Vector 
Search

¡	prompt—Creates a prompt template for the RAG process, specifying the format 
of the question and context

¡	mode—Initializes the ChatOpenAI model to handle the RAG process

¡	RunnablePassthrough—Configures a parallel runnable to retrieve context and 
pass the question through the chain

¡	StrOutputParser—Converts the model’s output to a string format

¡	class—Defines a Question class for typing the input question

¡	chain—Associates the Question class with the input type for the chain

¡	def—Defines the _ingest function, which loads a PDF, splits it into chunks, and 
stores these chunks in MongoDB Atlas as vector embeddings

NOTE  You might get this error message: openai.BadRequestError: Error 
code: 400 - {'error': {'message': "This model's maximum context length 
is 16385 tokens. However, your messages resulted in 47259 tokens}. To 
avoid this message, set the limit to one embedding by adjusting the retriever 
configuration. This ensures that only one result is returned, minimizing con-
text passed to the model.

Next, export your OpenAI API key and MongoDB Atlas URI:

export OPENAI_API_KEY="<your OpenAI API key>"



372 Chapter 14  Building retrieval-augmented generation AI chatbots

Replace <your OpenAI API key> with your actual OpenAI API key. For this example, I 
use a local Atlas cluster that I created using the Atlas CLI in chapter 13. You can do the 
same or use your own Atlas cluster available in the cloud. LangChain works the same 
way with either cluster. As a reminder, you can display the local Atlas cluster by using 
the command atlas deployments connect –connectWith as in this example:

 atlas deployments connect --connectWith local9619

The local Atlas cluster named local9619 connection string URI is displayed:

 mongodb://localhost:27017/?directConnection=true

Note that it does not include a username or password; this local test cluster should not 
be used to store sensitive data. The cluster is only for tests and development proposes. 
Export the MongoDB Atlas local cluster URI as follows:

export MONGO_URI="mongodb://localhost:27017/?directConnection=true"

Now you can begin creating embeddings from a PDF document containing best prac-
tices. You’ll use MongoDB Atlas and insert those embeddings into MongoDB Atlas 
using LangChain. The directory mongodb-in-action/packages/rag-mongo contains a 
file named ingest.py. Run this file with the following command:

python3 ingest.py

Creating and inserting embeddings into the MongoDB Atlas collection takes a few 
minutes. When the process is complete, log in to the local Atlas cluster using MongoDB 
Shell (mongosh):

mongosh "mongodb://localhost:27017/?directConnection=true"

Now, using the command show dbs, display the available databases. Notice that along 
with the databases created during the sample data load in chapter 13, there is a new 
database named langchain:

admin               120.00 KiB
config              332.00 KiB
langchain             2.26 MiB
local               250.84 MiB
sample_airbnb        52.75 MiB
sample_analytics      9.54 MiB
sample_geospatial     1.21 MiB
sample_guides        40.00 KiB
sample_mflix        110.28 MiB
sample_restaurants    6.20 MiB
sample_supplies       1.03 MiB
sample_training      47.62 MiB
sample_weatherdata    2.55 MiB



	 373Creating an AI-powered MongoDB chatbot

With the command use langchain, set the langchain database as your current data-
base, and display the collections using the show collections command:

  use langchain
  show collections
     mongodb

Use the find() command to display a single arbitrary document from the new mongodb 
collection:db.mongodb.find({}). The arbitrary document returned looks like this:

[
  {
    _id: ObjectId('66b7c4cd9f3322f67d485f1f'),
    text: 'Indexes\n' +
      'MongoDB uses B-tree indexes to optimize queries. Indexes\n' +
      'are defined on a collection's document fields. MongoDB\n' +
      'includes support for many indexes, including compound,\n' +
      'geospatial, TTL, text search, sparse, partial, unique, and\n' +
      'others. For more information see the section on indexing\n' +
      'below.\n' +
      'Transactions\n' +
      'Multi-document ACID transactions are available for users\n' +
      'of MongoDB 4.0 and later. With snapshot isolation and\n' +
      'all-or-nothing execution, transactions extend MongoDB',
    embedding: [
      -0.01761315017938614, 0.03746514022350311, 0.003932139370590448,
      -0.013999832794070244, -0.042311232537031174, 0.017117204144597054,
      -0.002088284818455577, -0.024598896503448486, -0.0032502140384167433,
      -0.01795322634279728, 0.025094840675592422, 0.026355959475040436,
      0.007311653345823288, 0.017698168754577637, 0.0034751608036458492,
      0.023592835292220116, 0.00828937441110611, -0.008346053771674633,
      0.021934960037469864, -0.008353139273822308, -0.011087924242019653,
      -0.0037443884648382664, -0.00025882155750878155,
      -0.013000856153666973, 0.016748787835240364, 0.02961502969264984,
      -0.016791297122836113, -0.0041694846004247665, 0.01585608534514904,
      0.021779092028737068, -0.001471895375289023, -0.038060273975133896,
      -0.040185753256082535, -0.024924803525209427, -0.011683058924973011,
      0.0006960948812775314, -0.014219465665519238, 0.0007306339684873819,
      0.008473582565784454, 0.022912681102752686, -0.015601027756929398,
      -0.009352114982903004, -0.001107906806282699, 0.01379436906427145,
      0.014793344773352146, -0.0029933853074908257, -0.01463747676461935,
      -0.005756509955972433, -0.03650158643722534, 0.008579856716096401,
      0.04593872278928757, -0.042197875678539276, 0.013851048424839973,
      0.008721555583178997, -0.03199556842446327, 0.027687927708029747,
      -0.0014267289079725742, 0.00809808075428009, -0.01104541402310133,
      -0.01019522175192833, 0.019129326567053795, 0.01867588981986046,
      -0.04163108021020889, 0.020971408113837242, -0.02659684792160988,
      0.016720447689294815, 0.01928519457578659, 0.025264879688620567,
      -0.014488693326711655, -0.011428000405430794, 0.012568674981594086,
      0.010400685481727123, 0.012143579311668873, 0.03550969809293747,
      -0.02451387606561184, -0.010365260764956474, 0.014460353180766106,
      0.00586278410628438, -0.00844524335116148, -0.007014086004346609,
      0.030578581616282463, -0.008331883698701859, 0.019568592309951782,
      -0.0006650983123108745, -0.6098712682723999, -0.016040293499827385,



374 Chapter 14  Building retrieval-augmented generation AI chatbots

      -0.0033529456704854965, -0.041546061635017395, 0.02206248976290226,
      0.007417927496135235, 0.01379436906427145, 0.028523949906229973,
      -0.006496885791420937, 0.004998421762138605, -0.002538178116083145,
      -0.006082416977733374, -0.00103262928314507, -0.02481144294142723,
      -0.010471534915268421, -0.017414771020412445, 0.0028392879758030176,
      -0.02516569010913372, -0.010747847147285938, 0.003857747418805957,
      -0.012915837578475475, 0.016621258109807968, -0.01278122328221798,
      0.005774222314357758, -0.013418867252767086, -0.0010414854623377323,
      0.025307388976216316, -0.0017641489394009113, 0.0011318183969706297,
      0.02381955273449421, -0.005830901674926281, 0.006202860735356808,
      0.01650789938867092, -0.02930329367518425, -0.049537867307662964,
      -0.0047398218885064125, -0.004792958963662386, 0.013681010343134403,
      -0.0012141808401793242, 0.020475463941693306, -0.00981972087174654,
      -0.010790356434881687, -0.012462401762604713, 0.0011132204672321677,
      -0.022558433935046196, -0.007382502779364586, -0.025080671533942223,
      -0.009040378034114838, 0.018746739253401756, 0.015955274924635887,
      0.0034096252638846636, ... 1436 more items   ],
    source: 'https://query.prod.cms.rt.microsoft.com/
➥cms/api/am/binary/RE4HkJP',
    page: 4
  }
]

In the document, you can see that LangChain split the PDF into chunks and sent these 
chunks to the OpenAI Embedding API, where they were converted to embeddings; 
then the embeddings were stored in the MongoDB collection along with the original 
text. The text field containing the human-readable content has been converted to a 
corresponding embedding:

'MongoDB uses B-tree indexes to optimize queries. 
Indexes are defined on a collection's document fields. 
MongoDB includes support for many indexes, including 
compound, geospatial, TTL, text search, sparse, partial, 
unique, and others. For more information see the section 
on indexing below. Transactions Multi-document ACID 
transactions are available for users of MongoDB 4.0 and later. 
With snapshot isolation and all-or-nothing execution, 
transactions extend MongoDB'

This embedding, along with the original text, is stored in the same document under 
the embedding key. The text originates from page 4 of the document at the source 
URL: https://mng.bz/PwxP.

By running the command db.vectorSearch.countDocuments(), you see that 158 
documents were created, containing chunks from the PDF document along with the 
corresponding embeddings.

14.5.3	 Creating an Atlas Vector Search index

The next step in building the AI chatbot is creating an Atlas Vector Search index. You 
can do this because you generated embeddings in the langchain database within the 

https://mng.bz/PwxP


	 375Creating an AI-powered MongoDB chatbot

vectorSearch collection. Using the Atlas CLI, create a file named vector-search.json 
with the following content:

{
  "name": "default",
  "type": "vectorSearch",
  "collectionName": "mongodb",
  "database": "langchain",
  "fields": [
    {
      "type": "vector",
      "path": "embedding",
      "numDimensions": 1536,
      "similarity": "cosine"
    }
  ]
}

This JSON configuration defines an index named default of type vectorSearch. The 
index is applied to the mongodb collection within the langchain database. It is designed 
to handle vector data stored in the embedding field, which contains 1,536-dimensional 
vectors. The index uses cosine similarity to compare these vectors—a common method 
for measuring similarity between vectors.

Next, using the Atlas CLI and the command atlas deployments search indexes 
create, create the vector search index in the local Atlas cluster. Use vector-search 
.json file with an index definition as an input parameter to the command:

atlas deployments search indexes create \
--file vector-search.json --type LOCAL

In about a minute, the vector search index is created:

Search index created with ID: 66b7d2aea85a4d1064106886

Log in to the local Atlas cluster again using mongosh, switch to the langchain data-
base, and use the command getSearchIndexes() to ensure that the index was created 
correctly:

use langchain
db.mongodb.getSearchIndexes()
[
  {
    id: '66b88766a85a4d1064106890',
    name: 'default',
    type: 'vectorSearch',
    status: 'READY',
    queryable: true,
    latestVersion: 0,
    latestDefinition: {
      fields: [



376 Chapter 14  Building retrieval-augmented generation AI chatbots

        {
          type: 'vector',
          path: 'embedding',
          numDimensions: 1536,
          similarity: 'cosine'
        }
      ]
    }
  }
]

The output confirms that the vector search index named default was successfully created 
in the monogdb collection of the langchain database. The index is of type vectorSearch, 
uses cosine similarity, and is marked as READY, indicating that it is fully operational and 
queryable. The index targets the embedding field, which has 1,536 dimensions.

14.5.4	 Testing a chatbot with LangServe

Now you can start testing whether the chatbot, which answers questions about 
best practices for using Atlas, is working. To do this, launch the LangServe play-
ground by running the following command from the main directory of LangChain, 
mongodb-in-action:

langchain serve

After starting the server, you see the message shown in figure 14.3.

Figure 14.3  The server LangServe process has started, and the application is waiting for further commands.  
The message indicates that the playground for the chain /rag-mongo/ is live and accessible at /rag-mongo/ 
playground . It also provides a link to all available routes at /docs/, where you can explore the API 
documentation and test the chatbot’s functionality. (Image © MongoDB 2025)

The server is running on port 8000 on the local host. In your web browser, enter the 
following URL: http://127.0.0.1:8000/rag-mongo/playground/. You see an inter-
face for interacting with the chatbot.



	 377Creating an AI-powered MongoDB chatbot

To start testing the chatbot, type “What indexes does MongoDB support?” in the 
Inputs field; then click Start. In a few seconds, you see the response in the Output field 
(figure 14.4).

Figure 14.4  The LangServe Playground interface when a user asks “What indexes does MongoDB 
support?” The output lists various types of indexes supported by MongoDB, including compound, 
geospatial, text search, and unique. Below the output, the interface shows that six intermediate steps 
are visible, highlighting the process taken to generate the response. The interface also includes a Start 
button to initiate the process and a Share button for sharing results. (Image © MongoDB 2025)

Click the Intermediate Steps menu in the LangServe Playground interface, and you’ll 
see how the LangChain mongo-rag template works under the hood:

1	 RunnableParallel<context,question> stakes the user’s question and the pro-
vided context as input and converts the question to an embedding, a numerical 
representation of the text.
This embedding is used to match the question with the most relevant context 
or documents. The prepared data is set up for parallel processing in subsequent 
steps:

{
  "question": "What indexes does MongoDB support?",
  "context": [
    {
      "id": null,



378 Chapter 14  Building retrieval-augmented generation AI chatbots

      "metadata": {
        "_id": "66b88ee93df2356d3d74556a",
        "embedding": [
          0.009976638481020927, 0.03502347320318222, 0.0018557107541710138,
          -0.020332135260105133, -0.04843791201710701, 0.0358373187482357,
          -0.0036973897367715836, 0.02977556362748146,0.012319955043494701,
        -0.009632858447730541, -0.006668631918728352, 0.00555660855025053,
          -0.01488778181374073, -0.03277837857604027, 0.03014039248228073,
          0.027291927486658096, 0.006345899309962988, 0.004051693715155125,
          0.013491613790392876, 0.021188078448176384, 0.018928952515275,
 0.049813032150268555, 0.00909964833441, 0.001960949506610632
➥// shortened for clarity
        ],
        "source": "https://mng.bz/PwxP",
        "page": 7
      },
      "page_content": "indexes are secondary indexes.
MongoDB includes support for many types of secondary indexes
that can be declared on any field(s) in the document,
 including fields within arrays and sub-documents.
Index options include: •Compound indexes •Geospatial indexes
•Text search indexes •Unique indexes •Array indexes
•TTL indexes •Sparse indexes •Partial Indexes
•Hash indexes •Collated indexes for different languages."
    }
  ]
}

2	 Retriever fetches relevant documents from the Atlas Vector Search index based 
on the question.
It uses the embeddings (numerical representations) in the context to find the 
most relevant documents. The embeddings allow the retriever to identify and 
rank documents that are semantically similar to the query, ensuring that the most 
relevant information is retrieved for the next steps in the process:

{
  "documents": [
    {
      "id": null,
      "metadata": {
        "_id": "66b88ee93df2356d3d74556a",
        "embedding": [
0.009976638481020927, 0.03502347320318222, 0.0018557107541710138,
-0.020332135260105133, 0.0484379121710701,0.02515908894724846,
0.0015636731404811144, 0.0405800785946503, 0.00609332640372419,
0.010439688339829445, 0.001372489377188997, 0.002436781550735235,
0.020247945562005043, 0.013246056623756886, 0.021398555487394333,
0.019490225240588188, 0.025972936302423477, 0.0024818817619234324,
0.03564087301492691, 0.026337763945776, 0.03909270465373993,
0.005093557760119438, 0.014957941137254238, 0.03900851309299469,
0.00571095896884799, 0.0010339712025597692, 0.008026212453842163,
0.0075349858850241, 0.0289897064246292, 0.02027008173823357,
          ... // shortened for clarity

https://mng.bz/PwxP


	 379Creating an AI-powered MongoDB chatbot

        ],
        "source": "https://mng.bz/PwxP",
        "page": 7
      },
      "page_content": "indexes are secondary indexes.
MongoDB includes support for many types of secondary indexes
 that can be declared on any field(s) in the document,
including fields within arrays and sub-documents.
Index options include: •Compound indexes
•Geospatial indexes •Text search indexes •Unique indexes
•Array indexes •TTL indexes •Sparse indexes •Partial Indexes
•Hash indexes •Collated indexes for different languages."
    }
  ]
}

3	 RunnablePassthrough passes the output from step 2 (likely the retrieved docu-
ments or context) directly to step 4 without any changes:

{
  "output": "What indexes does MongoDB support?"
}

4	 ChatPromptTemplate takes the retrieved document content and the relevant 
metadata, which is the context information obtained from the vector search.
This metadata includes details such as the document’s source, page number, and 
embedding vectors that represent the content of the document. The step com-
bines this context with the user’s question to create a structured prompt. This 
clear, organized prompt allows the AI to fully understand the question in relation 
to the provided context, enabling it to generate a precise, relevant answer:

{
  "messages": [
    {
      "content": "Answer the question based only
➥on the following context:\n[Document(
➥metadata={'_id': ObjectId('66b88ee93df2356d3d74556a'),
➥'embedding': [
        0.00997638481020927, 0.035347320318222, 0.00185571075417138,
0.020332135260105133,0.04843791201710701,0.0251590888724846,
0.0015636731404811144,0.04058007895946503,0.006093326490372419,
0.01894298382103443,0.011050073429942131,0.015336801297962666,
0.015266641974449158,0.0098228759676218,0.009646889753639698,
0.02243691124022007,0.0010778206633403897,0.013709107413887978,
0.027923360466957092,0.013309200294315815,0.00028173302416689694,
0.01088870782405138,0.007408811245113611,0.010250259190797806,
-0.014080950990319252,0.016908366233110428,0.018522027879953384,
0.019714735448360443,0.00040188065031543374,0.0038306922651827335,
0.019209587946534157,0.013442502357065678,0.014452794566750526,
0.026562273502349854,0.016304997727274895,0.04108522832393646,
0.0018241391517221928, 0.0030817429069429636, -0.009338188916444778,

https://mng.bz/PwxP


380 Chapter 14  Building retrieval-augmented generation AI chatbots

-0.020570676773786545, -0.01960247941315174
... // shortened for clarity
      ], 'source': 'https://query.prod.cms.rt.microsoft.com/cms/api
➥/am/binary/RE4HkJP', 'page': 7},
➥page_content='indexes are secondary indexes.
MongoDB includes support for many types of secondary
indexes that can be declared on any field(s) in the document,
including fields within arrays and sub-documents.
Index options include: •Compound indexes •Geospatial indexes
•Text search indexes •Unique indexes •Array indexes
•TTL indexes •Sparse indexes •Partial Indexes •Hash indexes
•Collated indexes for different languages.
You can learn more about each of these
➥indexes from the')]\nQuestion:
What indexes does MongoDB support?\n",
      "additional_kwargs": {},
      "response_metadata": {},
      "type": "human",
      "name": null,
      "id": null,
      "example": false
    }
  ]
}

5	 The ChatOpenAI model processes the prompt generated in step 4 and generates 
a response.
The response contains the answer to the user’s question based on the context pro-
vided. The output includes details such as the reason why the generation stopped 
and which AI model was used:

{
  "generations": [
    [
      {
        "text": "MongoDB supports various types of indexes,
including compound indexes, geospatial indexes,
text search indexes, unique indexes, array indexes,
TTL indexes, sparse indexes, partial indexes, hash indexes,
and collated indexes for different languages.",
        "generation_info": {
          "finish_reason": "stop",
          "model_name": "gpt-3.5-turbo-0125"
        },
        "type": "ChatGenerationChunk",
        "message": {
          "content": "MongoDB supports various types of indexes,
including compound indexes, geospatial indexes,
text search indexes, unique indexes, array indexes,
TTL indexes, sparse indexes,
partial indexes, hash indexes,
and collated indexes for different languages.",
          "additional_kwargs": {},



	 381Creating an AI-powered MongoDB chatbot

          "response_metadata": {
            "finish_reason": "stop",
            "model_name": "gpt-3.5-turbo-0125"
          },
          "type": "AIMessageChunk",
          "name": null,
          "id": "run-aea0b101-c006-4ec9-b4de-4e98d021e35d",
          "example": false,
          "tool_calls": [],
          "invalid_tool_calls": [],
          "usage_metadata": null,
          "tool_call_chunks": []
        }
      }
    ]
  ],
  "llm_output": null,
  "run": null
}

6	 StrOutputParser extracts the relevant text from the AI’s response, which is pre-
sented to the user as the final output:

{
  "output": "MongoDB supports various types of indexes,
including compound indexes, geospatial indexes, text search indexes,
unique indexes, array indexes, TTL indexes, sparse indexes,
partial indexes, hash indexes, and collated indexes
for different languages."
}

The process begins with the RunnableParallel step, in which the user’s question and 
context are converted to embeddings for parallel processing. The Retriever uses 
these embeddings to fetch relevant documents from the Atlas Vector Search index. 
The RunnablePassthrough step forwards the retrieved documents to the next step. 
In the ChatPromptTemplate step, the document content and metadata from the vec-
tor search are combined with the user’s question to create a structured prompt. The 
ChatOpenAI step processes this prompt, generating a response based on the context. 
Finally, the StrOutputParser extracts the key text from the AI’s response to be pre-
sented as the final output.

14.5.5	 Communicating programmatically with a chatbot

You can communicate with the server without using the GUI by using tools such as 
curl. This method enables programmatic communication via the command line, 
allowing you to send HTTP requests directly to the server. This approach is particularly 
useful for automation, scripting, and testing, as it allows you to interact with the server 
programmatically and efficiently manage requests and responses without relying on a 
graphical interface. You can achieve similar communication by using various program-
ming languages.



382 Chapter 14  Building retrieval-augmented generation AI chatbots

Use curl to send a POST request to the chatbot with a question:

curl -X POST "http://127.0.0.1:8000/rag-mongo/invoke" \
     -H "Content-Type: application/json" \
     -d '{"input": "Explain how MongoDB Atlas uses encryption."}'

The response from the chatbot explains that MongoDB Atlas uses encryption in two 
ways:

{"output":"MongoDB Atlas uses encryption in two ways:
it provides encryption of data at rest with encrypted storage
volumes by default, and users can configure an additional
layer of encryption on their data at rest using the
MongoDB Encrypted Storage Engine and their Atlas-compatible key.
This ensures that data stored in MongoDB Atlas is secure and
protected from unauthorized access.",
"metadata":{"run_id":"53a7e3d5-88fd-4943-
➥9c9d-09ed68ffe5b1","feedback_tokens":[]}}

Using methods like curl to interact with a LangChain chatbot enables direct 
command-line communication, which is ideal for automation, scripting, and testing. 
This approach efficiently handles server requests without a GUI, making it suitable for 
technical workflows that require programmatic interaction.

Summary

¡	LLM hallucinations occur when the model generates information that is not 
based on facts or input data, leading to fabricated or incorrect details. This hap-
pens because models like GPT-4 rely on patterns learned during training rather 
than fact-checking. To reduce these errors, strategies include improving training 
data, adding real-time fact-checking, enhancing verification systems, and using 
RAG to combine text generation with real-time data retrieval.

¡	RAG enhances language model accuracy by combining text generation with 
information retrieval. This approach allows the model to access external data in 
real time, reducing the risk of generating incorrect or fabricated content. RAG 
uses a vector database to store and retrieve text embeddings, enabling the model 
to efficiently find and use relevant information during generation, thereby min-
imizing hallucinations.

¡	Building a GenAI application using the RAG paradigm is challenging without 
the right tools because it requires seamless integration among LLMs, embedding 
models, and vector databases. Without proper tools, you’d have to manage com-
plex interactions manually, including embedding generation, storage, and real-
time querying, which demands deep technical expertise and understanding of 
system architecture.



	 383Summary

¡	LangChain is one of the top frameworks for addressing RAG challenges. It 
streamlines AI application development by seamlessly integrating LLMs with 
external data sources and computational tools.

¡	LangChain connects LLMs with external data sources and tools, managing the 
process from receiving natural-language input to generating and indexing vector 
embeddings. It handles data from various sources, such as chatbots, databases, 
and documents, enabling efficient retrieval and processing, so that LLMs can use 
relevant information effectively in AI applications.

¡	MongoDB and LangChain created a RAG template using MongoDB Atlas Vec-
tor Search and OpenAI. This template streamlines the development and deploy-
ment of chatbot applications on proprietary data. LangChain Templates offer a 
reference architecture that can be easily deployed as a REST API with LangServe, 
simplifying integration.

¡	LangServe deploys LangChain models as REST APIs with FastAPI and pydantic 
for data validation. It supports invoking, batching, and streaming endpoints for 
real-time AI apps and uses uvloop and asyncio for concurrency. It also includes a 
playground for testing and tweaking parameters in real time.

¡	The LangChain CLI is a tool that lets you interact with the LangChain framework 
directly from the command line. It offers commands for tasks such as creating 
projects, running tests, and managing configurations. The CLI simplifies devel-
opment by enabling quick, efficient operations, making it easier to automate 
tasks and streamline the workflow for building and deploying LLM-powered 
applications.

¡	The mongo-rag template orchestrates the chatbot process, starting with 
RunnableParallel to convert the question and context to embeddings. The 
Retriever fetches relevant documents, which RunnablePassthrough forwards 
to ChatPromptTemplate to create a structured prompt. ChatOpenAI generates a 
response, and StrOutputParser extracts the final output.

¡	You can communicate with the chatbot without a GUI by using tools like curl, 
enabling direct command-line HTTP requests. This method is ideal for automa-
tion, scripting, and testing, allowing efficient, programmatic interaction with the 
server. You can also use various programming languages to achieve this type of 
communication.



384

15Building event-driven 
applications

This chapter covers

¡	Understanding event-driven architecture
¡	Gaining insight into the streaming platform 		
	 concept
¡	Learning about stream processor integration 	
	 challenges
¡	Starting with Atlas Stream Processing
¡	Exploring the Atlas Stream Processing 		
	 architecture
¡	Mastering the $source aggregation pipeline 	
	 stage

Event-driven applications represent a fundamental shift from the traditional 
request/response model. In the conventional approach, services are tightly coupled 
and must request data directly from one another, creating a web of dependencies 
and introducing latency, as each service must frequently poll the others for updates, 
often processing data in batches. This method not only slows the system but also 



	 385Understanding event-driven technology

makes it difficult to scale or adapt to new business requirements due to the rigid inter-
connections between services.

By contrast, event-driven architecture decouples these services by enabling them to 
communicate through events. Instead of polling for data, upstream services immedi-
ately notify downstream services whenever new data or events are generated. This real-
time event notification system is typically managed through centralized platforms like 
Apache Kafka and RabbitMQ, which ensure that events are processed in the order in 
which they occur.

The benefits of this approach are substantial. Event-driven systems are highly respon-
sive and reactive, processing data in real time rather than waiting for periodic updates. 
This leads to lower system overhead, reduced latency, and more efficient performance 
overall.

In such a system, when an event occurs, the event producer sends a message to a cen-
tral platform. The event is picked up and processed by event consumers, ensuring that 
events are handled immediately even if different components operate independently 
or asynchronously. Where does MongoDB fit into this picture, and how can it enhance 
the architecture described previously? You’ll find the answers in this chapter.

15.1	 Understanding event-driven technology
Events are the backbone of event-driven applications, capturing key moments or 
changes within a system. When a user logs in to an online platform, that’s an event. 
Similarly, when a thermostat adjusts the temperature in response to a change in the 
environment or when an e-commerce site updates inventory levels after a purchase, 
these are events. These events can be 
simple, containing basic information, 
or complex, involving detailed data 
that must be securely transmitted, pro-
cessed, and stored to ensure precision 
and consistency. In traditional request/
response systems, applications often 
communicate by directly querying one 
another to retrieve the latest data or 
trigger specific actions. This point-to-
point communication pattern leads to 
tightly coupled architectures in which 
each application depends on the spe-
cific implementation details of the 
others. As a result, the system becomes 
complex, difficult to maintain, and 
challenging to adapt when new busi-
ness requirements arise. Figure 15.1 
shows an example of such a tightly cou-
pled system.

Application

ApplicationApplication

ApplicationApplication

Figure 15.1  Point-to-point communication 
pattern, in which multiple applications are 
interconnected through direct communication 
links. Each application relies on others to send  
or request data, creating a web of dependencies 
that can make the entire system fragile and 
resistant to change. (Image © MongoDB  
2024 CC BY-NC-SA 3.0)



386 Chapter 15  Building event-driven applications

Traditionally, applications have approached event processing in two main ways:

¡	In-app event processing—In this approach, the logic for processing events is embed-
ded directly within the application code. This includes managing the necessary 
state between events. As the complexity of event processing increases, the code 
becomes more challenging to write, debug, optimize, and maintain.

¡	In-database event processing—Events are not processed within the application 
but sent directly to a database, using its query capabilities to process the data. 
Although this approach reduces the complexity of the application code, it intro-
duces additional latency, as each event must be ingested, indexed, and stored 
before processing. Furthermore, traditional databases are typically designed 
to process fixed batches of data at rest rather than the continuous data streams 
characteristic of modern event-driven systems.

To address the problems of tightly coupled architectures and the challenges they pose 
in maintaining and adapting systems, new approaches have been introduced. With the 
rise of microservices and cloud computing, events were often packaged as messages 
and exchanged using pub/sub (publish/subscribe) queues. In this model, a publisher 
sends messages (events) to a central system called a message broker. The broker distrib-
utes these messages to subscribers: components that have expressed interest in specific 
types of messages. This setup allows different parts of an application to communicate 
without being directly connected, meaning that they can work independently and han-
dle events as they receive them.

In recent years, event streaming platforms like Apache Kafka have gained promi-
nence. Kafka is a distributed system designed to handle large volumes of data in real 
time. Unlike traditional pub/sub systems, Kafka stores events persistently on disk, 
allowing them to be replayed or processed later. It operates by streaming events into 
topics, which are stored in the order in which they were received. Consumers can read 
these events at their own pace, ensuring reliable, ordered processing. Figure 15.2 shows 
a typical architecture for an event-driven system using an event streaming platform like 
Apache Kafka.

For these events to be valuable, the systems that consume them must process and 
respond to them. Event processing can be straightforward, such as tracking the number 
of times an online ad is viewed or transforming data types within a message. But it can 
involve more complex tasks, such as detecting fraudulent transactions, analyzing sensor 
data from a production line to predict equipment failures, or processing clickstream 
data to offer users personalized content.

Today, several mature event streaming platforms and databases are available to han-
dle the transport and persistence of events. But processing high-volume streams of 
events in real time presents a different problem—one that many developers struggle 
with. This difficulty arises because processing data in motion is fundamentally different 
from working with it within an application or in a database. The experience becomes 
fragmented due to differences in programming languages, APIs, drivers, and tools.  



	 387Examining the concepts of stream processing

Producer app

Producer app

Producer devices

Producer devices

Producer app

Producer devices
Event streaming

platform
(e.g., Kafka)

Events

Events Events

Events

Figure 15.2  An event-driven system using an event streaming platform. Multiple producer applications and 
devices generate events, which are sent to the event streaming platform. The platform manages these events, 
ensuring that they are efficiently processed and delivered to the appropriate consumers. On the other side, various 
consumer applications subscribe to the events in which they are interested, consuming the data at their own pace. 
This architecture allows parallel processing and ensures that if one part of the system fails, the rest can continue 
functioning smoothly, maintaining the overall system’s reliability and scalability. An event streaming platform acts 
like the backbone that facilitates communication and event transfer between applications and microservices. 
Events are stored in a message log, and message brokers work with producer and consumer APIs to ensure reliable 
delivery of events between independent services. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

These inconsistencies slow development, increasing the time, cost, and complexity of 
building and evolving applications. The stream processor is an independent technol-
ogy that must be integrated into the application stack, so you have to manage an addi-
tional set of challenges.

15.2	 Examining the concepts of stream processing
To fully grasp the true potential of stream processing, it’s important to dive deeply into 
its underlying concepts. By breaking down these key elements, you can better appreci-
ate how they work together to enable real-time data analysis and processing.

15.2.1	 Differentiating event time and processing time

Event time refers to the actual time when an event occurred, whereas processing time 
is the time when the system processes that event. In streaming systems, event time is 
more precise because it captures the real occurrence of events, allowing accurate ana-
lytics and event ordering. But event time may require synchronization because events 
might arrive late or out of order due to network delays, system lag, or varying event 
sources. In distributed systems, for example, events might be generated at different 
times across multiple machines, so timestamps (such as event timestamps) are used to 
synchronize them and ensure correct ordering.

On the other hand, processing time is based on the time when the system processes 
the event, which depends on the system’s current performance and state. Although 
processing time is easier to implement because it doesn’t require additional synchro-
nization mechanisms, it is less accurate if system delays or network problems cause 
events to be processed later than when they occurred, which can lead to inaccuracies in 
time-sensitive analytics.



388 Chapter 15  Building event-driven applications

15.2.2	 Using time windows

Windowing is a fundamental concept in stream processing, enabling the division of 
continuous data streams into smaller, more manageable windows over time. Different 
types of windows group events in specific intervals, allowing the system to calculate 
trends, averages, and other aggregations based on those intervals. The two primary 
types of time windows are

¡	Tumbling—These windows are fixed and nonoverlapping. Each event belongs to 
only one window. When you are calculating daily sales totals, for example, each 
24-hour period is treated independently; data from one day doesn’t mix with the 
next. Tumbling windows are best suited to tasks that require distinct intervals and 
no data overlap, such as generating daily reports, hourly summaries, or end-of-
period accounting.

¡	Hopping—These windows can overlap, meaning that an event may belong to 
multiple windows. With a 5-minute window that hops every minute, data from a 
single event could appear in multiple overlapping windows. That is, an event at 
12:03 will be counted in windows 12:00–12:05, 12:01–12:06, and so on. Hopping 
windows are useful for continuous, rolling analysis that requires the system to 
update results over time, such as by calculating moving averages.

The choice of time windows depends on the needs of the stream processing applica-
tion, and selecting the right window type can have a significant effect on performance 
and accuracy:

¡	Aggregations—Time windows are important for calculating things like averages, 
sums, and counts over specific time intervals. A tumbling window is ideal for 
computing total sales per hour because each hour is treated separately. A hop-
ping window is better for rolling averages, such as a 5-minute moving average of 
stock prices; data from previous minutes overlaps with the current window.

¡	Anomaly detection—Time windows help you spot anomalies or outliers within cer-
tain time frames. Tumbling windows are suitable when you want to detect anoma-
lies within fixed, nonoverlapping periods, such as checking for unusual spikes in 
traffic every 10 minutes. Hopping windows are better for real-time monitoring, 
in which continuous, overlapping analysis helps you catch spikes or anomalies 
more quickly, such as monitoring rolling 5-minute windows for sudden surges in 
network traffic.

15.3	 Starting with Atlas Stream Processing
Integrating a stream processing platform into an application stack introduces additional 
complexity, requiring extra drivers, tools, and security measures. Technologies like 
Apache Kafka Streams, ksqlDB, Apache Flink, Apache Storm, and Amazon Web Services 
(AWS) Kinesis offer powerful solutions for processing real-time data streams, but they 
also come with challenges such as API fragmentation and schema rigidity. Maintaining 
consistent application state between the stream processor and the database can become 



	 389Starting with Atlas Stream Processing

especially difficult in the event of failures. Modern stream processors typically rely on 
Java-based APIs, which can be problematic if the application is developed in a different 
language. Also, the APIs for persisting and processing data in databases often differ sig-
nificantly from those used by stream processors, adding further intricacies.

Some stream processors offer a SQL interface to address API fragmentation, but this 
approach often forces users to adapt complex event data into rigid, tabular structures 
that may not align with the original event objects in the application, leading to ineffi-
ciencies and confusion. Rigid schemas also make it difficult to manage sparse data or 
implement necessary schema changes. These changes must be coordinated across the 
application, object-relational mapping (ORM) layer, stream processor, and database, 
which increases the time and risk involved in deploying new features.

Atlas offers a more integrated solution. Events naturally map to flexible, JSON-like 
document structures and can be processed using a powerful Query API, both of which 
are central to MongoDB’s design. This provides a more efficient and cohesive approach 
to handling event-driven applications. MongoDB’s adaptable document-based data 
model combined with its Query API provide a unified approach to interacting with 
data, whether it’s being processed in a stream or stored in the database. Figure 15.3 
illustrates the key benefits.

Integrated, fully managed service. 
Instantiate a stream processor and 

debate in a few lines of code.

Operational simplification

Materialize event streams 
and combine with app data in 

the database.

Enrich and integrate

Query and aggregate boundless 
event streams. Serverless triggers 

and functions react to changes.

Instantly react

Continuous stream processing, 
continuous validation, and 

continuous merge

Advanced capabilities

Same flexible data model and 
expressive Query API to work across 

data in motion and data at rest

Unified experience

Atlas

MongoDB

Figure 15.3  Atlas streamlines operations with its fully managed service, allowing easy instantiation of a stream 
processor and database with minimal code. The platform offers a unified experience by using the same flexible 
data model and Query API for data in motion and at rest. Atlas enhances applications by integrating event streams 
with database data and supports advanced stream processing, including continuous processing and validation. It 
also enables immediate reactions to events through serverless triggers and functions, with support for Kafka and 
other streaming platforms. This all-in-one approach simplifies the development and management of event-driven 
applications. (Image © MongoDB 2024 CC BY-NC-SA 3.0)



390 Chapter 15  Building event-driven applications

It is worthwhile to mention that the document data model is good for building event-
driven applications due to its natural alignment with event structures in motion and at 
rest. Unlike traditional tabular data, documents map directly to event objects in code, 
making it easier for you to represent and manage complex data without additional 
mapping layers. The model’s flexibility allows you to handle sparse data and adapt doc-
ument structures as application needs change;  MongoDB’s schema validation (chap-
ter 5) ensures data integrity before processing or storage. Furthermore, documents 
support a wide range of data models, from hierarchical objects to graphs, and their 
ability to consolidate related data reduces the need for complex joins, enabling faster, 
more efficient real-time processing.

NOTE  An Atlas Stream Processor is essentially a MongoDB aggregation pipe-
line that continuously processes incoming data streams from a designated 
source and outputs the results to a specified destination. Atlas Stream Process-
ing allows you to handle high-velocity streams of complex data using the same 
data model and Query API as in Atlas databases.

By using Atlas, you gain all the necessary tools to develop applications that respond 
instantly to live events. These applications can analyze vast streams of data in real time, 
enabling quick responses to opportunities and early detection of potential threats. 
They also allow the integration of live events with existing stored data, enhancing busi-
ness operations by enriching and searching this combined data. As events become less 
relevant over time, they can be archived seamlessly from active systems. All this is built 
on a fully managed platform that offers robust data security, redundancy, and compre-
hensive operational visibility.

The aim of Atlas Stream Processing is to provide a unified experience within the Atlas 
platform. It centralizes the development of modern applications using MongoDB’s 
familiar query language and aggregation pipeline, allowing a seamless shift to real-time 
data processing. Bridging stream processing with the MongoDB ecosystem enables 
developers to use real-time data while using their existing MongoDB skills, resulting in 
a more efficient and streamlined development process.

15.4	 Exploring Atlas Stream Processing
Atlas Stream Processing introduces several new stages and methods for handling 
streams. Unlike regular queries that run and finish, stream processors run continuously. 
Data flows through the aggregation pipeline from source to destination in real time.

DEFINITION  A source is the starting point of the stream, and a sink is the end-
point to which data flows. In between, various stages can process the data as it 
moves through the pipeline.

15.4.1	 Discovering Atlas Stream Processing components

Atlas Stream Processing scales your stream processing instance dynamically by allocat-
ing workers as you launch new stream processors. When all stream processors on a 



	 391Exploring Atlas Stream Processing

worker are stopped, the worker can be deprovisioned. The system prioritizes assigning 
new stream processors to available workers before creating additional ones. It is built 
around a few key components.

Connection Registry

The Atlas Stream Processing Connection Registry (key store) holds the configuration 
details for all connections between the stream processing instance and external data 
sources or sinks. It includes information such as connection endpoints and authen-
tication credentials that enable secure, reliable communication between the stream 
processor and external systems. Each registry contains one or more connections, allow-
ing a stream processor to interact with external services. The following list summarizes 
how connections operate within this framework:

¡	Connections defined in the registry of a specific stream processing instance are 
exclusively available to stream processors running within that instance.

¡	A single connection can support multiple stream processors simultaneously.

¡	A stream processor can have only one connection designated as its data source.

¡	A stream processor can have only one connection designated as its data sink.

¡	Connections are flexible and can function as either a source or a sink, depending 
on how they are used by the stream processor.

Stream processor

A stream processor in Atlas Stream Processing is a MongoDB aggregation pipeline query 
that runs continuously against your data stream. Stream processors are instances in 
which data processing pipelines are created and managed. You can think of them 
as being like modular units that process data streams in real time. These processors 
consist of specialized aggregation stages that control how events flow from the source 
to the destination. Within the pipeline, you can incorporate filters, validations, time-
based windowing, and other operations to handle complex data transformations.

Stream processor instance

A stream processor instance in Atlas is a designated namespace linked to a specific con-
nection string, cloud provider, region, and (optionally) security context for added 
protection. When you create a stream processor, it is available only within the stream 
processing instance in which it was defined (figure 15.4).

Each instance can manage up to four active stream processors. As you initiate more 
stream processors, Atlas Stream Processing automatically scales the instance by adding 
workers. A worker in this context is a virtual resource that provides the necessary com-
putational power, such as CPU and RAM, to execute these tasks. Conversely, a worker 
can be deprovisioned by stopping all stream processors running on it. The system pri-
oritizes assigning stream processors to existing workers before provisioning new ones, 
optimizing resource use.

When scaling, Atlas Stream Processing takes into account only the number of stream 
processors that are actively running, excluding any that are defined but not active. The



392 Chapter 15  Building event-driven applications

Connection Registry

MongoDB
database

Apache
Kafka

Stream instance

Stream processor: aggregation-1

Stream processor: aggregation-2

Figure 15.4  A stream processing instance is composed of multiple stream processors, such as 
aggregation-1 and aggregation-2, each dedicated to a specific task within the stream processing 
environment. These processors reside within the stream instance and are closely tied to the Connection 
Registry, which serves as a key store for managing secure connections to external resources. The 
bidirectional arrow between the Connection Registry and the stream instance signifies a dynamic 
interaction in which the stream instance relies on the registry for credentials or configuration settings to 
execute processing tasks effectively. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

amount of RAM and CPU allocated to its workers is determined by the tier of the stream 
processing instance. These instances are configured with several key components:

¡	One or more workers that supply the necessary RAM and CPU resources to run 
the stream processors

¡	A cloud provider and region where the processing takes place

¡	A Connection Registry that manages the available data sources and destinations

¡	A security framework that governs user permissions and access

¡	A connection string that links to the stream processing instance itself

The Atlas Streaming Processor operates within dedicated customer containers on a 
shared, multitenant infrastructure. It functions as an independent aggregation pipe-
line separate from your Atlas cluster, capable of consuming events from Kafka topics or 
MongoDB change streams, processing the data, and storing the output in a MongoDB 
database or emitting a new event to Kafka.

15.4.2	 Understanding Atlas Stream Processing capabilities

In Atlas, stream processing components are embedded in projects but function inde-
pendently from the underlying clusters. This decoupling provides significant flex-
ibility by allowing you to manage, scale, and optimize stream processing workloads 
without affecting cluster performance. It ensures that stream processing tasks can be 
scaled independently based on demand, offering a more efficient use of resources and 
greater control of processing workloads without cluster constraints. This architecture 
enables seamless scaling, better fault isolation, and more efficient resource manage-
ment across workloads. Figure 15.5 shows how Atlas Stream Processing interacts with 
various components to handle data flows.



	 393Exploring Atlas Stream Processing

Atlas Stream Processing

Stateful windows

AtlasAtlas via
change streams

Apache
Kafka

Connect to source data. • Continuously process using the Query API. • Materialize results.

Apache
Kafka

MongoDB Atlas

• Aggregate
• Filter
• Route

Figure 15.5  The process flow in Atlas Stream Processing. On the left, data from Apache Kafka is 
ingested into Atlas through Kafka or via Atlas change streams, which capture real-time data changes. 
This data is passed to Atlas Stream Processing, where it is processed continuously via operations 
such as aggregation, filtering, and routing. The figure highlights the stateful windows used within the 
processing to manage and analyze data over specific time intervals. After processing, the results are 
materialized into an Atlas database for storage, or the data can be sent back to external systems like 
Apache Kafka for further use. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

With Atlas Stream Processing, you can

¡	Create aggregation pipelines that process data streams in real time, eliminating 
the delays in batch processing

¡	Perform ongoing schema validation to ensure that messages are correctly for-
matted, detect corruption, and identify late-arriving data

¡	Continuously push results to Atlas collections or Apache Kafka clusters, main-
taining up-to-date data views and analysis

Atlas Stream Processing allows you to deploy stream processing instances in various 
AWS regions. Currently, Atlas Stream Processing  is not supported by other cloud 
providers. Table 15.1 lists the supported AWS regions in which you can set up your 
instances.

Table 15.1  Currently available Atlas Stream Processing AWS cloud regions

Atlas Stream Processing region AWS region

Virginia, USA us-east-1

Oregon, USA us-west-2

Canada (central) ca-central-1

Sao Paulo, Brazil sa-east-1

Ireland eu-west-1



394 Chapter 15  Building event-driven applications

Atlas Stream Processing region AWS region

London, England eu-west-2

Frankfurt, Germany eu-central-1

Mumbai, India ap-south-1

Tokyo, Japan ap-northeast-1

Singapore ap-southeast-1

Sydney, Australia ap-southeast-2

NOTE  This table applies only to stream processing instances themselves. Your 
stream processors can still interact with clusters hosted on different cloud pro-
viders or in different regions as long as they are within the same project as the 
stream processing instance.

15.5	 Structuring a stream processor aggregation pipeline
Atlas Stream Processing extends the core MongoDB aggregation pipeline by add-
ing features tailored to the specific needs of stream processing, allowing continuous 
real-time data handling and transformation. Each processor pipeline must start with 
a $source stage, which connects to a data source and begins receiving a continuous 
stream of data in the form of documents. The $source stage is the first step in every 
stream processing pipeline. After the $source, each subsequent aggregation stage pro-
cesses records from the stream sequentially. These stages can generally be categorized 
as follows:

¡	Validation—The $validate stage enables schema validation for ingested docu-
ments, ensuring that only properly formatted documents proceed to the next 
steps in the pipeline. It also allows you to define the handling of documents that 
fail validation. This stage is optional.

¡	Stateless operations—These aggregation stages or operators work directly on the 
incoming data stream. They process, transform, and forward documents individ-
ually as they pass through the pipeline. Stateless operations can be placed any-
where between the $source stage and the final stages, such as $emit and $merge.

¡	Stateful operations—These stages or operators handle sets of documents as a whole 
rather than processing them one by one. They require bounded sets of docu-
ments, which means that they operate within defined windows of data. Stateful 
operations can be used only within these windows.

Time windows are pipeline stages that consume streaming data and partition it into 
time-delimited sets, enabling the use of stages and operators that wouldn’t work with 
infinite data, such as $group and $avg. Each stream processor can have only one window 

Table 15.1  Currently available Atlas Stream Processing AWS cloud regions (continued)



	 395Structuring a stream processor aggregation pipeline

stage, which defines how the data is divided for stateful processing. Atlas Stream Pro-
cessing supports two key window stages (also described earlier in this chapter):

¡	$tumblingWindow—This stage divides the data stream into nonoverlapping, con-
tinuous windows based on a user-defined duration. Each window collects a set of 
documents, and when the window closes, a new window begins with no overlap, 
ensuring that each document is processed in only one window.

¡	$hoppingWindow—This stage creates overlapping windows, with each window 
defined by a specific duration and a hop interval. The windows overlap accord-
ing to the hop interval, meaning that a document can belong to more than one 
window. This approach is useful for generating a sliding window view of the data 
stream.

When the data has been processed through the defined stages, it is output via the 
$emit stage, which sends the data to a streaming platform, or the $merge stage, which 
writes the processed data to an Atlas database. These output stages are mutually exclu-
sive; a stream processor can use only one of them.

15.5.1	 Taking a deep dive into the $source aggregation stage

Each processor starts with a $source aggregation pipeline stage that connects to 
a data source, initiating the reception of a continuous stream of documents. These 
documents must be in valid JSON or Extended JSON (EJSON) format, which extends 
the standard JSON to include data types that are not natively supported by JSON. 
These additional types are necessary for representing richer data structures commonly 
used in databases like MongoDB. Although standard JSON can represent basic data 
types such as strings, numbers, arrays, and objects, it does not natively support types 
like dates, binary data, and ObjectIds (which are often used as unique identifiers in 
MongoDB). EJSON extends JSON by adding these types, allowing a more complete 
representation of the data as it exists in a MongoDB database. EJSON is designed to 
be human-readable and machine-parsable, like regular JSON, but with the ability to 
represent MongoDB’s more complex data types accurately.

The $source aggregation pipeline stage defines a connection from the Connection 
Registry to stream data. The Connection Registry is a centralized repository where con-
nections to various data sources are defined and managed. It allows you to specify and 
store the details needed to connect to different data sources, such as an Apache Kafka 
broker or a MongoDB collection. When you set up a stream processor, the Connection 
Registry provides the necessary connection information for the $source stage to begin 
streaming data from the specified source. The following sections describe the connec-
tions that are currently supported.

Apache Kafka broker

The $source stage can be configured to operate on streaming data from an Apache 
Kafka broker. The configuration involves specifying the connection name, Kafka topic, 
and optional settings, such as timestamp fields and partition idle timeouts:



396 Chapter 15  Building event-driven applications

{
  "$source": {
    "connectionName": "<registered-connection>",  
    "topic": "<source-topic>",  
    "timeField": {  
      "$toDate": "<expression>" |
     ➥"$dateFromString": "<expression>"  
    },
    "tsFieldName": "<timestamp>",  
    "partitionIdleTimeout": {  
      "size": <duration-number>,  
      "unit": "<duration-unit>"  
    },
    "config": {  
      "auto_offset_reset": "<start-event>",  
      "group_id": "<group-id>",  
      "keyFormat": "<deserialization-type>",  
      "keyFormatError": "<error-handling>"  
    }
  }
}

This configuration streams messages from a specified Kafka topic, allowing detailed 
control of how data is ingested and processed. Here are the key points of the prototype:

¡	registered-connection—Defines the connection name in the Connection 
Registry; used to ingest data from a specific Kafka broker

¡	source-topic—Defines the name of the Kafka topic from which messages will 
be streamed

¡	timeField—Specifies an authoritative timestamp field for incoming messages

¡	expression—Defines the format for the timestamp by converting to a date or 
parsing a date string

¡	timestamp—Overrides the default timestamp field name if necessary

¡	partitionIdleTimeout—Configures how long a partition can remain idle 
before it is ignored in watermark calculations

¡	duration-number—Specifies the duration of the partition idle timeout

¡	duration-unit—Sets the unit of time for the idle timeout duration, such as mil-
liseconds or seconds

¡	 config—Contains additional configuration settings for the Kafka source

¡	start-event—Specifies the event from which to start ingesting data, such as the 
earliest or latest event in the topic

¡	group-id—Sets the consumer group ID to associate with the stream processor

¡	deserialization-type—Specifies the data type used to deserialize the Kafka 
key data, such as binary data or JSON

¡	error-handling—Defines how to handle errors encountered during deserializa-
tion, such as writing to a dead-letter queue (DLQ)

Connection name

Kafka topic

Timestamp, format, 
and override

Idle duration before a partition is 
ignored in watermarking

Additional 
configuration settings



	 397Structuring a stream processor aggregation pipeline

MongoDB collection change stream

The $source stage can also stream data from a MongoDB collection change stream. 
This involves connecting to a MongoDB database and specifying the collections to 
monitor for changes:

{
  "$source": {
    "connectionName": "<registered-connection>",  
    "timeField": {  
      "$toDate": "<expression>" |
    ➥"$dateFromString": "<expression>"  
    },
    "tsFieldName": "<timestamp>",  
    "db": "<source-db>",  
    "coll": ["<source-coll>"],  
    "config": {  
      "startAfter": "<start-token>" |
➥"startAtOperationTime": "<timestamp>",  
      "fullDocument": "<full-doc-condition>",  
      "fullDocumentOnly": <boolean>,  
      "fullDocumentBeforeChange":
      ➥"<before-change-condition>",  
      "pipeline": [{  
        "<aggregation-stage>": {
          "<stage-input>": ". . ."
        }
      }]
    }
  }
}

This configuration allows the stream processor to monitor specified collections con-
tinuously for any updates and process them in real time. Here are the key points of the 
prototype:

¡	registered-connection—Defines the connection name in the Connection 
Registry; used to ingest data from a MongoDB collection

¡	timeField—Specifies an authoritative timestamp field for incoming messages

¡	expression—Defines the format for the timestamp by converting to a date or 
parsing a date string

¡	timestamp—Overrides the default timestamp field name if necessary

¡	source-db—Sets the name of the MongoDB database hosting the collection 
change stream

¡	source-coll—Sets the name(s) of the MongoDB collections to stream changes 
from

¡	config—Contains additional configuration settings for the MongoDB collection 
change stream

Connection name

Timestamp, format, 
and override

MongoDB database

MongoDB collection

Configuration settings



398 Chapter 15  Building event-driven applications

¡	start-token—Specifies the point in time or event from which to start streaming 
changes

¡	full-doc-condition—Controls whether a full document should be returned on 
update

¡	boolean—Specifies whether to return the full document or the entire change 
event document

¡	before-change-condition—Determines whether to include the full document 
in its original state before changes in the output

¡	 pipeline—Specifies an aggregation pipeline to filter the change stream output 
at the source

MongoDB database change stream

To stream data from an entire MongoDB database, you can configure the $source 
stage to track changes across all collections within a specified database:

{
  "$source": {
    "connectionName": "<registered-connection>",  
    "timeField": {  
      "$toDate": "<expression>" |
      ➥  "$dateFromString": "<expression>"  
    },
    "tsFieldName": "<timestamp>",  
    "db": "<source-db>",  
    "config": {  
      "startAfter": "<start-token>" |
    ➥  "startAtOperationTime": "<timestamp>",  

      "fullDocument": "<full-doc-condition>",  
      "fullDocumentOnly": <boolean>,  
      "fullDocumentBeforeChange":
      ➥"<before-change-condition>",  
      "pipeline": [{  
        "<aggregation-stage>": {
          "<stage-input>": ". . ."
        }
      }]
    }
  }
}

This setup is ideal for applications that need to track changes across an entire database 
rather than specific collections. Here are the key points of the prototype:

¡	registered-connection—Specifies the connection name in the Connection 
Registry; used to ingest data from a MongoDB database

¡	timeField—Specifies an authoritative timestamp field for incoming messages

¡	expression—Defines the format for the timestamp by converting to a date or 
parsing a date string

Connection name

Timestamp, format, 
and override

Format expression

Custom timestamp field

MongoDB database

Configuration settings

Start token or time

Full document on update

Boolean for document 
return type

Document state 
before change

Aggregation pipeline



	 399Structuring a stream processor aggregation pipeline

¡	timestamp—Overrides the default timestamp field name if necessary

¡	source-db—Sets the name of the MongoDB database hosting the change 
stream

¡	config—Contains additional configuration settings for the MongoDB database 
change stream

¡	start-token—Specifies the point in time or event from which to start streaming 
changes

¡	full-doc-condition—Controls whether a full document should be returned on 
update

¡	boolean—Specifies whether to return the full document or the entire change 
event document

¡	before-change-condition—Determines whether to include the full document 
in its original state before changes in the output

¡	pipeline—Specifies an aggregation pipeline to filter the change stream output 
at the source

Document array

You can also use the $source to stream data from an array of documents, which is use-
ful when the source data is predefined in an array format:

{
  "$source": {
    "timeField": {  
      "$toDate": "<expression>" |
      ➥"$dateFromString": "<expression>"  
    },
    "tsFieldName": "<timestamp>",  
    "documents": [{"source-doc"}] | "<expression>"  
  }
}

This configuration allows you to process an array of documents as a continuous stream, 
using the same pipeline processing logic as for other source types. Here are the key 
points of the prototype:

¡	timeField—Specifies an authoritative timestamp field for incoming documents

¡	expression—Defines the format for the timestamp by converting to a date or 
parsing a date string

¡	timestamp—Overrides the default timestamp field name if necessary

¡	documents—Specifies an array of documents or an expression that evaluates to 
an array of documents, serving as the data source for the stream

NOTE  You must place the $source stage at the beginning of any pipeline 
where it is used, and only one $source stage is allowed per pipeline.

Timestamp, format, 
and override

Format expression

Custom timestamp field

Document array or 
expression as data source



400 Chapter 15  Building event-driven applications

15.5.2	 Using the stream processor $validate aggregation stage

A second noteworthy aggregation pipeline stage dedicated to Atlas Stream Processing 
is $validate. The $validate stage checks streaming documents to ensure that they 
conform to a specified schema, including expected ranges, values, or data types. The 
pipeline stage has the following prototype form:

{
  "$validate": {
    "validator": { <filter> },  
    "validationAction": "discard" | "dlq"  
  }
}

This configuration enables validation of incoming streaming documents against a 
user-defined schema, ensuring that only data meeting specific criteria is processed fur-
ther. Here are the key points:

¡	validator—Contains expressions to validate incoming messages against the 
schema, supporting all query operators except $near, $nearSphere, $text, and 
$where.

¡	validationAction—Specifies the action for nonconforming messages. Options 
are discard and dlq (logs to DLQ while discarding without guarantees). The 
default action is discard.

NOTE  You can apply the $validate stage anywhere in the pipeline after the 
$source stage and before the $emit or $merge stage.

15.5.3	 Viewing all supported aggregation pipeline stages

An Atlas Stream Processing pipeline is limited to 16 MB. Table 15.2 lists the aggrega-
tion pipeline stages that are unique to Atlas Stream Processing as well as those that 
have been modified specifically for use in Atlas Stream Processing. Some stages have 
been changed or adapted from their original versions to better handle the continuous 
data streams in Atlas Stream Processing.

Table 15.2  Atlas Stream Processing aggregation pipeline stages

Aggregation pipeline 
stage

Purpose

$source Defines the streaming data source from which messages are consumed

$validate Checks incoming stream documents against a user-defined schema to ensure 
that they meet the required format

$lookup Executes a left outer join with a specified collection, pulling in documents from the 
joined collection for further processing. In this version, you must specify an Atlas 
collection from the Connection Registry for the from field.

Validator filter

Validation action 
on failure



	 401Structuring a stream processor aggregation pipeline

Aggregation pipeline 
stage

Purpose

$hoppingWindow Distributes stream documents into windows based on user-defined durations and 
intervals between window start times

$tumblingWindow Segregates stream documents into nonoverlapping, continuous windows, each 
with a user-defined duration

$emit Sends processed messages to a stream or time-series collection as defined in the 
Connection Registry

$merge A specialized version of the $merge stage in which connectionName must 
refer to a remote collection in the Connection Registry

You can also use the aggregation pipeline stages that were introduced in earlier chap-
ters. Table 15.3 shows the aggregation pipeline stages supported by MongoDB, which 
you can also apply in your streaming data pipelines.

Table 15.3  MongoDB aggregation pipeline stages usable with stream processing

Aggregation pipeline stage Use condition

$addFields Anywhere

$match Anywhere

$project Anywhere

$redact Anywhere

$replaceRoot Anywhere

$replaceWith Anywhere

$set Anywhere

$unset Anywhere

$unwind Anywhere

$group Only within $hoppingWindow or $tumblingWindow stages

$sort Only within $hoppingWindow or $tumblingWindow stages

$limit Only within $hoppingWindow or $tumblingWindow stages

$count Only within $hoppingWindow or $tumblingWindow stages

$group Only within $hoppingWindow or $tumblingWindow stages

Stream processing extends the aggregation pipeline with stages specifically designed 
for continuous data streams, seamlessly integrating with standard MongoDB aggre-
gation pipeline stages. This allows developers to perform operations on streaming 
data similar to the ones they would perform on static data. Unique stages such as 
$source, $validate, and $tumblingWindow handle stream-specific tasks. You can also 
use standard stages like $match and $project, though some are limited to specific 
contexts.

Table 15.2  Atlas Stream Processing aggregation pipeline stages (continued)



402 Chapter 15  Building event-driven applications

15.6	 Mastering Atlas Stream Processing
Let’s explore the new stream processing methods available in mongosh and create a 
stream processing instance (SPI) in an Atlas cluster, which you can think of as a logical 
collection of one or more stream processors. When the SPI is set up, it comes with a 
connection string, similar to what you would find in a standard Atlas cluster.

15.6.1	 Adopting new stream processor methods

New mongosh methods designed to manage stream processors are available only for 
deployments hosted in Atlas. These methods provide a set of tools to create, manage, 
and monitor stream processors in an Atlas environment. Table 15.4 describes the new 
mongosh methods that you can use to manage stream processors.

Table 15.4  Atlas mongosh methods dedicated to Atlas Stream Processing

Name Description

sp.createStreamProcessor() Creates a new stream processor

sp.listConnections() Lists all existing connections in the Connection Registry of the 
current instance

sp.listStreamProcessors() Lists all existing stream processors in the current SPI

sp.process() Creates a temporary (ephemeral) stream processor

sp.processor.drop() Deletes an existing stream processor

sp.processor.sample() Returns an array of sampled results from a running stream 
processor

sp.processor.start() Starts an existing stream processor

sp.processor.stats() Returns statistics summarizing a running stream processor

sp.processor.stop() Stops a running stream processor

You will use these methods later in the book; they will help you build and manage 
stream processors, allowing precise control over their creation, execution, and termi-
nation. They will also help you monitor the state and performance of stream proces-
sors and handle connections within the system. These methods are key for interacting 
efficiently with SPIs and ensuring smooth operations in Atlas.

15.6.2	 Using the Atlas CLI with stream processing

You can use the atlas streams command in the Atlas command-line interface (CLI) 
to create an SPI. The Atlas CLI supports creation of SPIs and management of the Con-
nection Registry, which handles available data sources and destinations. The following 
listing shows the capabilities of Atlas CLI stream processing.

Listing 15.1  Managing Atlas Stream Processing via the Atlas CLI

atlas streams --help
The streams command provides access to your Atlas Stream



	 403Mastering Atlas Stream Processing

➥Processing configurations. You can create, edit, and delete
➥streams, as well as change the connection registry.

Usage:
  atlas streams [command]

Aliases:
  streams, stream

Available Commands:
  instances   Manage Atlas Stream Processing instances.
  connections Manage Atlas Stream Processing connections.

The atlas streams command provides access to your Atlas Stream Processing config-
urations, allowing you to create, edit, and delete streams as well as modify the Connec-
tion Registry. To create an Atlas SPI, follow these steps:

1	 Use the command atlas streams, which will be named MongoDB-in-Action-SPI 
and located in the AWS Frankfurt region:

atlas streams instances create MongoDB-in-Action-SPI --provider "AWS" \
--region FRANKFURT_DEU

You can display the new instance with

atlas streams instances list

The output is

ID                         NAME                    CLOUD   REGION
66dc35fc0b97566745a8ccdb   MongoDB-in-Action-SPI   AWS     FRANKFURT_DEU

2	 Display the details of your new instance:

a	 Use atlas streams instances describe MongoDB-in-Action-SPI to display 
the details of your new instance.

b	 Click Stream Processing on the left side of the Atlas UI, located on the drop-
down menu below Services.

3	 Connect to the new SPI by clicking the Connect button. The menu shown in fig-
ure 15.6 appears; choose Shell from this menu.

4	 Copy your individual connection string to the Atlas SPI. My connection string 
looks like this:

 mongosh "mongodb://atlas-stream-66dc35fc0b9cdb-nu96v.frankfurt-
➥deu.a.query.mongodb.net/"
➥--tls --authenticationDatabase admin
➥--username manning



404 Chapter 15  Building event-driven applications

Figure 15.6  The Connect to MongoDB-in-Action-SPI interface includes steps for setting up 
connection security, choosing a connection method, and connecting. In the section Access Your Data 
Through Tools, you have two options. The first option is Shell, which allows you to add and update data 
quickly using MongoDB’s JavaScript CLI. The second option is MongoDB for VS Code, which enables you 
to work with your data in MongoDB directly from your Visual Studio Code (VS Code) environment.  
(Image © MongoDB 2025)

5	 Connect to the SPI instance, and execute the sp.listConnections() command:

AtlasStreamProcessing>  sp.listConnections()
[ { name: 'sample_stream_solar', type: 'inmemory' } ]
AtlasStreamProcessing>

This command displays all existing connections in the Connection Registry of the 
current instance. You see that the only existing connection is [ { name: 'sample_
stream_solar', type: 'inmemory' } ], which is the preconfigured connection 
to the sample data source called sample_stream_solar.

15.6.3	 Creating your first stream processor

The SPI comes preconfigured with a connection to a sample data source called sample_
stream_solar. This source generates a stream of reports from various solar power 
devices. Each report describes the observed wattage and temperature of a single solar 
device at a specific point in time, as well as the device’s maximum wattage. You can display 
a connection to a sample data source using the atlas streams connections command:

atlas streams connections list -i MongoDB-in-Action-SPI
NAME                  TYPE     SERVERS
sample_stream_solar   Sample   nil

The sample source in Atlas is a convenient built-in source that continuously emits a 
stream of sample solar generation data, which can be useful for learning, demos, and 



	 405Mastering Atlas Stream Processing

debugging. This source is configured in the Connection Registry like any other source. 
You can use the sp.process() mongosh method to create a temporary stream proces-
sor as your first exercise. Stream processors created with sp.process() do not persist 
after they are terminated. The sp.process() method is explained in section 15.6.4. 
Use it to create your first stream processor in mongosh:

// Create a source from the sample stream solar connection
let s = {$source: {connectionName:
➥"sample_stream_solar"}} // 
let processor = [s] // 
// Now, run it
sp.process(processor) // 

You should see a continuously flowing stream in your console, which might look like 
this output:

{
  device_id: 'device_1',
  group_id: 10,
  timestamp: '2024-09-07T12:32:02.717+00:00',
  max_watts: 450,
  event_type: 0,
  obs: {
    watts: 114,
    temp: 11
  },
  _ts: ISODate(‹2024-09-07T12:32:02.717Z›),
  _stream_meta: {
    source: {
      type: 'generated'
    }
  }
}
{
  device_id: 'device_4',
  group_id: 1,
  timestamp: '2024-09-07T12:32:02.717+00:00',
  max_watts: 450,
  event_type: 0,
  obs: {
    watts: 129,
    temp: 20
  },
  _ts: ISODate(‹2024-09-07T12:32:02.717Z›),
  _stream_meta: {
    source: {
      type: 'generated'
    }
  }
}

The source is created from the 
sample_stream_solar connection.

The source is added to 
the processor pipeline.

The processor is executed 
using the defined source.



406 Chapter 15  Building event-driven applications

TIP  Press Ctrl+C to stop the in-shell processing.

15.6.4	 Learning the anatomy of a stream processor

A stream processor is a sequence of stages that process and route data in real time. At 
its core, a processor is an array of these stages, and it can be constructed incremen-
tally using variables in the shell. Each stage serves a distinct purpose, starting with a 
source stage, which defines where the data originates, such as a MongoDB collection 
or another connected data source. After the source stage, more processing stages can 
be added. These stages might perform actions such as filtering, transforming, or aggre-
gating the data as it flows through the pipeline.

NOTE  The Connection Registry settings for the source and sink connections 
in this section, shown as the variables let source and let sink, are placehold-
ers, not defined. These examples are provided for learning purposes and will 
not work unless proper connections are set up in the registry. To run these 
examples in a real environment, you need to configure the appropriate con-
nections for the source and sink.

Understanding stream processor components

Common stages include operations such as $match to filter the data and $addFields 
to enhance it with new information. The final stage is a sink, where the processed data 
is sent. This could be another MongoDB collection, defined with a $merge stage, or a 
Kafka topic, sent using $emit. This ensures that the data is stored or forwarded for fur-
ther use. The pseudocode in the following listing demonstrates the key components of 
the processor and serves as a skeleton.

Listing 15.2  The stream processor key components pseudocode

// A processor is essentially a sequence of stages organized in an array,
// and it can be constructed incrementally using variables within the
// mongosh shell. Right now, this is an empty processor, meaning nothing is
// defined yet.
let processor = [] // 

// The first stage must always be a source. The source retrieves data from
// a connection, which is defined in the connection registry.
// For now, the source is empty.
let source = {$source:{}} // 

// Add the source to the processor. This creates the first stage in the
// processor pipeline.
processor = [source] // 

// At this point, the processor is useful to inspect the source data.
// We can preview the data in the shell by running .process() command.
// This will display the results continuously to the shell.
sp.process(processor) // 

// The sink is the final stage. It specifies where the data should go, such

Empty processor array

Source to retrieve data

Adds source to processor

Runs processor to view data



	 407Mastering Atlas Stream Processing

// as sending it to a MongoDB collection using $merge or to a Kafka topic
// using $emit.
let sink = {$merge: {}} // 

// This simple processor transfers data from a source to a sink without
// modifying it.
processor = [source, sink] // 

// Between the source and the sink, you can add any number of stages to
// process the data. These stages work like standard MongoDB aggregation
// stages, such as $match, $addFields, etc.
processor = [source, stageA, stageB, ..., sink] // 

// Finally, processors can be saved with a name for future use.
// You can start or stop them as needed.
// When started, they run continuously in the background.
sp.createStreamProcessor(
➥’myProcessor’, processor); // 
sp.myProcessor.start(); // 

The source is the starting point of the pipeline, where data is ingested, and the sink is 
the endpoint, where the processed data is sent. Between these two stages, you can add 
as many intermediate processing stages as you want, such as filtering or transforming 
the data. When they are configured, stream processors can run continuously, making 
them ideal for handling real-time data flows efficiently and dynamically. Here are the 
key points of the prototype:

¡	processor—Initializes an empty array to hold processing stages

¡	source—Defines the starting stage, retrieving data from a connection

¡	processor with source—Adds the source as the first stage in the processing 
pipeline

¡	sp.process—Runs the processor, displaying source data continuously

¡	sink—Specifies the endpoint, such as MongoDB or Kafka, to which to send pro-
cessed data

¡	processor with source and sink—Transfers data from source to sink without 
modifications

¡	processor with stages—Enables adding intermediate stages such as $match and 
$addFields between source and sink

¡	sp.createStreamProcessor—Saves the processor with a unique name for future 
use

¡	sp.myProcessor.start—Starts the processor, enabling continuous processing 
in the background

Using $validate stage

In the following listing, I add a $validate stage to ensure that the incoming data con-
forms to the required structure before it reaches the sink.

Sink for output

Processor from source to sink

Adds processing stages

Saves processor by name

Starts processor for 
continuous run



408 Chapter 15  Building event-driven applications

Listing 15.3  Stream processor with validation

// Initially, the processor is empty.
let processor = [] // 

// The first stage is a source that retrieves data
➥from a MongoDB connection. It's a placeholders,
➥not actually defined.
let source = {
  $source: {
    connectionName: "myMongoConnection",
➥// placeholder connection name for MongoDB
    db: "myDB",                           // Database name
    coll: "myCollection"                  // Collection name
  }
} // 

// Add the source to the processor.
processor = [source] // 

// $validate stage to check that each document has a required structure.
let validate = {
  $validate: {
    validator: {
      $and: [
        {
          name: { $exists: true, $type: "string" }
➥// Name must be a string and is required
        },
        {
          age: { $exists: true, $type: "int", $gte: 18 }
➥// Age must be >= 18 and an integer
        },
        {
          email: { $exists: true, $regex: "^.+@.+\\..+$" }
➥// Email must match a valid pattern
        }
      ]
    },
    validationAction: "discard"  // Discard invalid documents
  }
} // 

// Add the validation stage to the processor.
processor.push(validate) // 

// The sink is the final stage. It specifies where
➥the validated data should go.
let sink = {
  $merge: {
    into: {
      connectionName: "validatedDataConnection",
➥// Connection name for MongoDB placeholders,
➥not actually defined.
      db: "validatedDB",                     

Initializes an empty 
processor array

Defines the source 
to retrieve data

Adds source to processor

Defines $validate to ensure 
schema compliance

Adds validation 
stage to processor



	 409Mastering Atlas Stream Processing

➥// Database name for storing validated data
      coll: "validatedCollection"            
➥// Collection name for storing validated data
    }
  }
} // 

// Add the sink to the processor.
processor.push(sink) // 

// The complete processor transfers data from a source,
➥validates it, and sends it to a sink.
sp.createStreamProcessor(
➥'validatedProcessor', processor) // 

// Start the processor, which will now run continuously in the background.
sp.validatedProcessor.start() // 

The $source stage defines where the data is ingested from, and the $validate stage 
ensures that the incoming data meets the schema requirements (e.g., name, age, and 
email). If the data fails validation, it won’t proceed to the next stage. The validated data 
is sent to the sink, which stores the results in a MongoDB collection. With this configu-
ration, the stream processor continuously validates data in real time, making it ideal for 
scenarios in which data integrity is crucial. Here are the key points of the prototype:

¡	processor—Initializes an empty array to hold processing stages

¡	source—Defines the starting stage, retrieving data from a MongoDB connection 
(myMongoConnection), targeting myDB and myCollection

¡	processor with source—Adds the source as the first stage in the processing 
pipeline

¡	$validate—Ensures that each document meets required schema conditions:

–	 Name must exist and be a string

–	 Age must exist, be an integer, and be ≥ 18

–	 Email must match a valid email pattern

¡	validationAction—Specifies that invalid documents are discarded

¡	processor with validation—Adds the validation stage to the processor

¡	sink—Specifies the endpoint for storing validated data in MongoDB 
(validatedDB and validatedCollection)

¡	processor with source, validation, and sink—Creates a complete processor 
from source to sink, transferring only validated data

¡	sp.createStreamProcessor—Saves the processor as validatedProcessor for 
continuous use

¡	sp.validatedProcessor.start—Starts the processor, allowing it to run contin-
uously in the background to process data in real time

Defines sink to 
store validated data

Adds sink to processor

Saves processor as 
'validatedProcessor'

Starts processor 
for continuous run



410 Chapter 15  Building event-driven applications

Adding a dead-letter queue

In listing 15.4, I create a stream processor that validates incoming data against a 
defined schema. If the data does not match the schema, it is sent to a DLQ for further 
review or reprocessing. A DLQ is a designated collection that stores messages or data 
that could not be processed successfully, allowing troubleshooting or later reprocess-
ing. The DLQ is discussed in detail in section 15.7.2. Valid data is passed through and 
saved in a MongoDB collection.

Listing 15.4  Stream processor with validation and DLQ

// Initially, the processor is empty.
let processor = [] // 

// The source retrieves data from a placeholder connection.
let source = {
  $source: {
    connectionName: "salesDataConnection", // source connection name
    topic: "dailySales"                 // Kafka topic as the data source
  }
} // 

// Add the source to the processor. This creates the first stage.
processor = [source] // 

// Add a $validate stage to ensure the incoming data
➥meets the required structure.
let validate = {
  $validate: {
    validator: {
      $and: [
        {
          productId: { $exists: true, $type: "string" }
➥// productId must be a string and is required
        },
        {
          quantity: { $exists: true, $type: "int", $gte: 1 }
➥// quantity must be an integer >= 1
        },
        {
          price: { $exists: true, $type: "double", $gte: 0 }
➥// price must be a positive number
        }
      ]
    },
    validationAction: "dlq"  // If validation fails, send data to
➥the Dead Letter Queue (DLQ).
➥DLQ needs to be definied
  }
} // 

// Add the validation stage to the processor.
processor.push(validate) // 

Initializes processor array

Source for Kafka data

Adds source to processor

Defines $validate for schema

Adds validation to processor



	 411Mastering Atlas Stream Processing

// Final stage. It specifies where the valid data should go.
let sink = {
  $merge: {
    into: {
      connectionName: "validatedSalesData",
➥// The destination placeholder  connection for valid data
      db: "salesDB",                         // MongoDB database
      coll: "validatedSales"                 // MongoDB collection
    }
  }
} // 

// Add the sink to the processor.
processor.push(sink) // 

// The complete processor transfers data from a source, validates it,
// and sends valid data to the MongoDB collection,
➥with invalid data sent to the DLQ.
sp.createStreamProcessor(
➥'salesDataProcessor', processor) // 

// Start the processor, which will run continuously.
sp.salesDataProcessor.start() // 

Listing 15.4 shows a stream processor with validation and a DLQ. The processor starts 
with an empty array. The $source stage retrieves data from a connection, specifically 
from a Kafka topic named "dailySales" through the "salesDataConnection" 
connection. After the source is added, a $validate stage is introduced to ensure that 
the incoming data matches the required schema. This schema requires the fields 
productId, quantity, and price to meet the specified conditions. If the data does 
not meet these conditions, it is sent to the DLQ for further handling. The sink stage 
follows, specifying where the valid data is stored—in this case, the validatedSales 
collection in the salesDB database. The entire processor, now complete with the 
source, validation, and sink stages, is created using sp.createStreamProcessor, and 
once started, it continuously runs in the background, validating data in real time. Here 
are the key points of the prototype:

¡	processor array—Holds each stage of data processing

¡	source—Defines the starting stage, retrieving data from a Kafka topic specified 
by salesDataConnection

¡	validate—Ensures that each document has the required fields (productId as a 
string, quantity as an integer >= 1, and price as a positive number)

¡	sink—Specifies the final destination for valid data, sending it to a MongoDB col-
lection in validatedSalesData

¡	sp.createStreamProcessor—Saves the processor with the name 'salesData
Processor' for managing the pipeline

¡	sp.salesDataProcessor.start—Initiates the processor, allowing it to run con-
tinuously in the background to process data in real time

Defines sink for MongoDB

Adds sink to processor

Creates 'salesDataProcessor'

Starts for continuous 
processing



412 Chapter 15  Building event-driven applications

Enriching data with $lookup

In the next listing, I create a stream processor that retrieves messages from a Kafka 
topic and enriches them using a MongoDB collection via the $lookup stage. The 
enriched data is validated against a schema and stored in a MongoDB collection.

Listing 15.5  Stream processor with $lookup for data enrichment

// Initially, the processor is empty.
let processor = [] // 

// The source retrieves data from a Kafka topic.
let source = {
  $source: {
    connectionName: "inventoryKafkaConnection",
➥// placeholder Kafka connection
    topic: "inventoryUpdates"               
➥// Kafka topic for inventory updates
  }
} // 

// Add the source to the processor.
processor = [source] // 

// Use $lookup to enrich the incoming data with
➥ // information from an Atlas collection.
let lookup = {
  $lookup: {
    from: {
      connectionName: "inventoryDbConnection",
➥// pseudo Atlas connection for MongoDB
      db: "inventoryDB",                        // pseudo database in Atlas
      coll: "products"                     
➥// pseudo collection to join (product details)
    },
    localField: "productId",                    // Field from the source
    foreignField: "_id",                   
➥// Field from the products collection
    as: "productDetails"                   
➥// Output array field to store the results
  }
} // 

// Add the $lookup stage to the processor.
processor.push(lookup) // 

// Use $validate to ensure the enriched data meets the required structure.
let validate = {
  $validate: {
    validator: {
      $and: [
        {
          productId: { $exists: true, $type: "string" }
➥// productId must exist and be a string
        },

Initializes an empty 
processor array

Source stage to retrieve 
data from Kafka topic

Adds source to processor

Defines $lookup to enrich 
data from MongoDB

Adds $lookup to processor



	 413Mastering Atlas Stream Processing

        {
          quantity: { $exists: true, $type: "int", $gte: 1 }
➥// quantity must be an integer >= 1
        },
        {
          productDetails: { $exists: true, $type: "array" }
➥// productDetails must be an array from $lookup
        }
      ]
    },
    validationAction: "discard"  // Invalid documents will be discarded
  }
} // 

// Add the validation stage to the processor.
processor.push(validate) // 

// The sink is the final stage. It specifies where the valid,
➥enriched data should go.
let sink = {
  $merge: {
    into: {
      connectionName: "validatedInventoryData",
➥// placeholder connection for valid data storage
      db: "inventoryDB",                         // MongoDB database
      coll: "validatedInventory"            
➥// MongoDB collection for storing valid data
    }
  }
} // 

// Add the sink to the processor.
processor.push(sink) // 

// The complete processor transfers data from the Kafka topic,
➥ enriches it with $lookup,
// validates the data, and stores the valid results in a MongoDB collection.
sp.createStreamProcessor(
➥'inventoryProcessor', processor) // 

// Start the processor, which will run continuously.
sp.inventoryProcessor.start() // 

This example shows how to use $lookup within a stream processor to enrich incoming 
data from a Kafka topic by joining it with additional data from a MongoDB collec-
tion. The processor starts by retrieving messages from the Kafka topic "inventory
Updates", using a connection to a Kafka source. Then the $lookup stage is applied, 
pulling related data from the MongoDB collection "products" in the "inventoryDB"  
database. The join matches the productId from the Kafka messages with the _id 
field in the products collection, adding the results to the productDetails field in the 
source messages.

Defines $validate to 
ensure data structure

Adds validation to processor

Defines sink to store 
data in MongoDB

Adds sink to processor

Creates processor as 
'inventoryProcessor'

Starts processor 
to run continuously



414 Chapter 15  Building event-driven applications

After enrichment, a validation stage ensures that the resulting documents have the 
required fields: productId, quantity, and productDetails. If any of these fields is 
missing or invalid, the message is discarded as specified by the validation configura-
tion. If the data passes validation, it moves to the sink stage, where it is stored in the 
MongoDB collection validatedInventory within the same database. This process 
runs continuously, enriching and validating the data in real time before saving it to the 
specified collection. Here are the key points of the prototype:

¡	processor array—Holds each stage in the data processing pipeline

¡	source—Defines the initial stage, retrieving data from the Kafka topic 
inventoryUpdates via inventoryKafkaConnection

¡	lookup—Enriches incoming data by joining it with the MongoDB products col-
lection in inventoryDB using inventoryDbConnection

¡	validate—Ensures that the enriched data contains the required fields 
(productId as a string, quantity as an integer >= 1, and productDetails as an 
array from the $lookup)

¡	sink—Specifies the final destination for valid data, sending it to the MongoDB 
collection validatedInventory in inventoryDB

¡	sp.createStreamProcessor—Saves the processor with the name 'inventory
Processor' for managing this pipeline

¡	sp.inventoryProcessor.start—Starts the processor, running continuously to 
handle real-time data processing and validation

Using time windows

Listing 15.6 uses the $hoppingWindow command in a stream processor. In this scenario, 
I’m processing data from a Kafka topic that collects Internet of Things (IoT) sensor 
readings, and I want to calculate the average temperature from sensors in overlapping 
30-second windows, starting every 10 seconds.

Listing 15.6  Stream processor with $hoppingWindow for IoT sensor data

// Initially, the processor is empty.
let processor = [] // 

// The source retrieves data from a Kafka topic named "sensorData".
let source = {
  $source: {
    connectionName: "iotSensorConnection",
➥// placeholder Kafka connection for IoT data
    topic: "sensorData"                     // Kafka topic with sensor data
  }
} // 

// Add the source to the processor.
processor = [source] // 

Initializes processor array

Source from Kafka topic

Adds source to processor



	 415Mastering Atlas Stream Processing

// Use $hoppingWindow to create overlapping time windows of
➥30 seconds, starting every 10 seconds.
let hoppingWindow = {
  $hoppingWindow: {
    interval: {
      size: 30,    // Each window lasts 30 seconds
      unit: "second"
    },
    hopSize: {
      size: 10,    // Windows start every 10 seconds
      unit: "second"
    },
    pipeline: [
      {
        $group: {
          _id: "$_id",  // Use the default _id field for the window
          avgTemperature: { $avg: "$temperature" }
➥// Calculate the average temperature from sensor data
        }
      }
    ]
  }
} // 

// Add the hopping window stage to the processor.
processor.push(hoppingWindow) // 

// The sink is the final stage. It specifies where
➥the aggregated data should go.
let sink = {
  $merge: {
    into: {
      connectionName: "processedSensorData",
➥// placeholder connection name for storing processed data
      db: "iotData",                     
➥// MongoDB database for sensor data
      coll: "temperatureAverages"        
➥// Collection for storing average temperatures
    }
  }
} // 

// Add the sink to the processor.
processor.push(sink) // 

// The complete processor pulls data from the Kafka topic,
➥applies the hopping window,
// calculates average temperatures, and stores the results
➥in a MongoDB collection.
sp.createStreamProcessor(
➥'iotTemperatureProcessor', processor) // 

// Start the processor, which will run continuously.
sp.iotTemperatureProcessor.start() // 

$hoppingWindow for time windows 
and average temperature

Adds window to processor

Defines sink for MongoDB

Adds sink to processor

Creates 
'iotTemperatureProcessor'

Starts continuous 
processor



416 Chapter 15  Building event-driven applications

In this example, the stream processor pulls IoT sensor data from a Kafka topic called 
sensorData. The processor uses a $hoppingWindow stage to create overlapping time 
windows of 30 seconds, starting every 10 seconds. This allows the processor to calculate 
average temperatures from the sensor readings within each window. The windowed 
aggregation pipeline groups the data by the start time of the window and computes 
the average temperature from the incoming sensor data. After processing, the results 
are stored in a MongoDB collection named temperatureAverages in the iotData 
database. The processor runs continuously, providing real-time monitoring of average 
temperatures from the IoT sensor data and saving the aggregated results for further 
analysis. Here are the key points of the prototype:

¡	processor—Initializes an array to hold each processing stage.

¡	source—Sets up the initial stage to pull data from the Kafka topic sensorData, 
which provides IoT sensor readings.

¡	hoppingWindow—Creates overlapping 30-second time windows with a 10-second 
interval. Each window computes the average temperature using the $avg 
operator.

¡	sink—Specifies MongoDB as the destination, saving the aggregated tempera-
ture data in the temperatureAverages collection within the iotData database.

¡	sp.createStreamProcessor—Names and saves the processor as iot

TemperatureProcessor to manage this pipeline.

¡	sp.iotTemperatureProcessor.start—Starts the processor, running it continu-
ously to pull data, process it in time windows, and store results in MongoDB.

Debugging with a document array source

You can also use a document array as a source. This allows you to provide a predefined 
set of data directly to a processor without relying on external systems like Kafka and 
MongoDB. This is especially useful for debugging and testing because it offers full con-
trol of the input and allows quick validation of your pipeline logic. By using static data, 
you can focus on testing how each stage of the pipeline processes the data without the 
unpredictability of live data sources. The following listing shows how to run this work-
ing code in your SPI.

Listing 15.7  Using a document array as a source

// Create a source using an array of documents.
➥This array simulates incoming sensor messages
let source = {
  $source: {
    "documents": [
      { sensorName: 'sensor01', temperature: 22, humidity: 55,
➥timestamp: new Date("2023-09-07T12:00:00Z") },
      { sensorName: 'sensor02', temperature: 45, humidity: 60,
➥timestamp: new Date("2023-09-07T12:01:00Z") },
      { sensorName: 'sensor03', temperature: 5, humidity: 80,



	 417Mastering Atlas Stream Processing

➥timestamp: new Date("2023-09-07T12:02:00Z") }
    ]
  }
} // 

// Check for types and ranges of fields
let validate = {
  $match: {
    sensorName: { $exists: true, $type: "string" },
    temperature: {
      $exists: true,
      $type: "int",
      $gte: -50,    // Temperature range from -50 to 100°C
      $lte: 100
    },
    humidity: {
      $exists: true,
      $type: "int",
      $gte: 0,      // Humidity range from 0 to 100%
      $lte: 100
    },
    timestamp: { $exists: true, $type: "date" }
  }
} // 

// Projection with transformation of warning level using proper $cond
let projectWithWarning = {
  $project: {
    sensorName: 1,
    temperature: 1,
    humidity: 1,
    timestamp: 1,
    warningLevel: {
      $cond: {
        if: { $gte: ["$temperature", 40] },
        then: "HIGH",
        else: {
          $cond: {
            if: { $lte: ["$temperature", 10] },
            then: "LOW",
            else: "NORMAL"
          }
        }
      }
    }
  }
} // 

// Filter only sensors with warnings
let filterWarnings = {
  $match: {
    warningLevel: { $in: ["HIGH", "LOW"] }
  }
} // 

Source with static 
array for sensor data

Validates stage for 
required fields and ranges

Projection adds warningLevel 
based on temperature

Filters for HIGH 
or LOW warnings



418 Chapter 15  Building event-driven applications

// Combine processing stages
let processor = [source, validate,
➥ projectWithWarning, filterWarnings] // 

// Execute the processor
sp.process(processor) // 

First, a validation stage ensures that the data meets certain criteria, such as checking 
that sensorName is a string, temperature is between -50 and 100°C, and humidity is 
between 0 and 100%. Next, the pipeline transforms the data by adding a warningLevel 
based on the temperature: "HIGH" for temperatures 40°C or above, "LOW" for 10°C or 
below, and "NORMAL" otherwise. Finally, the processor filters out sensors without warn-
ings, showing only those with "HIGH" or "LOW" levels. Here are the key points of the 
prototype:

¡	processor—Initializes an array to hold each processing stage.

¡	source—Sets up the initial stage using a static array of documents, simulating 
incoming sensor messages.

¡	validate—Ensures that each document meets specific criteria: sensorName 
exists and is a string, temperature is an integer between -50 and 100°C, humidity 
is an integer between 0 and 100%, and timestamp exists and is a date.

¡	projectWithWarning—Adds a warningLevel field based on temperature. If the 
temperature is 40°C or higher, the level is set to HIGH. If it’s 10°C or lower, it is set 
to LOW. Otherwise, it is NORMAL.

¡	filterWarnings—Filters the data to include only documents with a warning-
Level of either HIGH or LOW.

¡	processor—Combines these stages in an array to define the processing pipeline.

¡	sp.process(processor)—Executes the pipeline, processing data based on the 
defined stages.

The output displays two sensor readings:

{
  sensorName: 'sensor02',
  temperature: 45,
  humidity: 60,
  timestamp: ISODate('2023-09-07T12:01:00.000Z'),
  warningLevel: 'HIGH',
  _stream_meta: {
    source: {
      type: 'generated'
    }
  }
}
{
  sensorName: 'sensor03',
  temperature: 5,

Combines stages 
into processor array

Executes processor on data



	 419Mastering Atlas Stream Processing

  humidity: 80,
  timestamp: ISODate('2023-09-07T12:02:00.000Z'),
  warningLevel: 'LOW',
  _stream_meta: {
    source: {
      type: 'generated'
    }
  }
}

sensor02 has a temperature of 45°C (classified as HIGH), and sensor03 has a tempera-
ture of 5°C (classified as LOW). These records are displayed in the console as the result 
of the processing pipeline.

TIP  Using a document array as a source is ideal for debugging because it 
allows you to control and define static data without relying on unpredictable 
live data sources. This setup makes it easy to quickly validate each stage of your 
pipeline and troubleshoot problems in a controlled environment.

15.6.5	 Setting up a streams Connection Registry

To create a new connection for the SPI, you can use the Atlas CLI with the command 
atlas streams connections create. You can also use the Atlas UI. To add an Atlas 
database connection to the SPI, follow these steps:

1	 In your Atlas UI, go to the Stream Processing panel, select your SPI, and click 
Configure in the top-right corner.
Click Connection Registry; then click the Add Connection button. An inter-
face like the one shown in figure 15.7 appears. I named my connection mongodb 
-in-action-connection, selected the Atlas cluster MongoDB-in-Action, and 
chose the role Read and Write to Any Database.

2	 Check whether the new connection has been created using mongosh by running 
sp.listConnections():

AtlasStreamProcessing>  sp.listConnections()
[
  {
    name: 'mongodb-in-action-connection',
    type: 'atlas',
    cluster: 'MongoDB-in-Action'
  },
  { name: 'sample_stream_solar', type: 'inmemory' }
]
AtlasStreamProcessing>

Alternatively, you can use the Atlas CLI with the command

atlas streams connections list -i MongoDB-in-Action-SPI



420 Chapter 15  Building event-driven applications

Figure 15.7  Add Connection interface within the Stream Processing panel in Atlas allows you to add connections 
for stream processors to use for reading and writing events. You have three connection options: Kafka, Atlas 
Database, and Sample Stream. The form includes fields for entering the connection name and selecting an Atlas 
cluster. You also have an option to choose the execution role, such as Read and Write to Any Database. At the 
bottom are buttons that cancel or add the connection. (Image © MongoDB 2025)

This command displays

NAME                           TYPE      SERVERS
mongodb-in-action-connection   Cluster   MongoDB-in-Action
sample_stream_solar            Sample    nil

The output shows two connections: mongodb-in-action-connection, which is a Clus-
ter type linked to the MongoDB-in-Action Atlas cluster, and sample_stream_solar, 
which is a Sample type with no servers listed.

15.6.6	 Ensuring persistence in stream processing

By using an aggregation pipeline, you can process and transform each document as it’s 
being ingested. The following pipeline calculates the maximum temperature and the 



	 421Mastering Atlas Stream Processing

average, median, maximum, and minimum wattages of each solar device at 1-second 
intervals. The data source used is again sample_stream_solar, and the sink is an Atlas 
cluster:

1	 In mongosh, set up a $source stage. The following $source stage pulls data from 
the sample_stream_solar source and maps the Atlas Stream Processing time 
field to the source’s timestamp field:

let s = {
   $source: {
      connectionName: "sample_stream_solar",
      timeField: {
         $dateFromString: {
            dateString: '$timestamp'
         }
      }
   }
}

2	 Configure a $group stage. The following $group stage groups incoming data by 
group_id, aggregates the obs.temp and obs.watts field values for each group_
id, and calculates the desired statistics:

let g = {
   $group: {
      _id: "$group_id",
      max_temp: {
         $avg: "$obs.temp"
      },
      avg_watts: {
         $avg: "$obs.watts"
      },
      median_watts: {
         $min: "$obs.watts"
      },
      max_watts: {
         $max: "$obs.watts"
      },
      min_watts: {
         $min: "$obs.watts"
      }
   }
}

3	 To perform accumulations like $group on streaming data, Atlas Stream Process-
ing uses windows to bound the data set. The following $tumblingWindow stage 
divides the stream into consecutive 10-second intervals. When the $group stage 
calculates a value for median_watts, for example, it uses the obs.watts values 
from all documents with a given group_id ingested in the previous 10 seconds:



422 Chapter 15  Building event-driven applications

let t = {
   $tumblingWindow: {
      interval: {
         size: NumberInt(10),
         unit: "second"
      },
      pipeline: [g]
   }
}

4	 Configure a $merge stage. The $merge stage allows you to write your processed 
streaming data to an Atlas database. The connectionName for the Atlas database 
is "mongodb-in-action-connection", which you created in the previous sec-
tion. The data will be written to the spiDB Atlas database and into the spiColl 
collection:

let m = {
   $merge: {
      into: {
         connectionName: "mongodb-in-action-connection",
         db: "spiDB",
         coll: "spiColl"
      }
   }
}

5	 Create the stream processor. Assign a name to your new stream processor, and 
define its aggregation pipeline by listing each stage in order. The $group stage 
is part of the nested pipeline in the $tumblingWindow stage, so it should not be 
included directly in the processor pipeline definition:

AtlasStreamProcessing> sp.createStreamProcessor
➥("mongodbInAction", [s, t, m])
Atlas Stream Processor: mongodbInAction
AtlasStreamProcessing>

6	 Start the new stream processor:

AtlasStreamProcessing> sp.mongodbInAction.start()
{ ok: 1 }
AtlasStreamProcessing>

After you start the stream processor, it begins processing data in real time. The 
$source stage continuously ingests data from the sample_stream_solar source. The 
$tumblingWindow stage organizes the data in 10-second intervals, during which the 
$group stage aggregates the obs.temp and obs.watts values. Finally, the $merge stage 
writes the processed data into the spiDB database and the spiColl collection in your 
Atlas database. As a result, you’ll have a constantly updating collection of processed 



	 423Mastering Atlas Stream Processing

streaming data stored in your database. To get the current status of your stream proces-
sor, execute the stats() function:

AtlasStreamProcessing> sp.mongodbInAction.stats()
{
  ok: 1,
  ns: '66dc35fc0b97566745a8ccdb.65d70c5bc9b5633e80a9c998.mongodbInAction',
  stats: {
    name: 'mongodbInAction',
    processorId: '66dc6a7dcf04eaa02e51e659',
    status: 'running',
    scaleFactor: Long('1'),
    inputMessageCount: Long('30'),
    inputMessageSize: 13292,
    outputMessageCount: Long('10'),
    outputMessageSize: 13560,
    dlqMessageCount: Long('0'),
    dlqMessageSize: 0,
    stateSize: 2448,
    memoryTrackerBytes: 33554432,
    watermark: ISODate('2024-09-07T15:01:04.708Z'),
    ok: 1
  },
  pipeline: [
    {
      '$source': {
        connectionName: 'sample_stream_solar',
        timeField: { '$dateFromString': { dateString: '$timestamp' } }
      }
    },
    {
      '$tumblingWindow': {
        interval: { size: 10, unit: 'second' },
        pipeline: [
          {
            '$group': {
              _id: '$group_id',
              max_temp: [Object],
              avg_watts: [Object],
              median_watts: [Object],
              max_watts: [Object],
              min_watts: [Object]
            }
          }
        ]
      }
    },
    {
      '$merge': {
        into: {
          connectionName: 'mongodb-in-action-connection',
          db: 'spiDB',
          coll: 'spiColl'
        }
      }



424 Chapter 15  Building event-driven applications

    }
  ]
}
AtlasStreamProcessing>

This command provides detailed statistics about the processor, including the number 
of input and output messages, memory use, and the current state of the processor. 
The pipeline shows the stages being processed: a $source pulling data from sample_
stream_solar, a $tumblingWindow that groups the data in 10-second intervals, and a 
$merge stage that writes the results to the spiDb database in the spiColl collection. 
You can also use the sample() method to retrieve a sample of the processed data:

AtlasStreamProcessing>sp.mongodbInAction.sample()
{
  _id: 5,
  max_temp: 24,
  avg_watts: 48,
  median_watts: 48,
  max_watts: 53,
  min_watts: 48,
  _stream_meta: {
    source: {
      type: 'generated'
    },
    window: {
      start: ISODate('2024-09-07T15:01:30.000Z'),
      end: ISODate('2024-09-07T15:01:40.000Z')
    }
  }
}
AtlasStreamProcessing>

This method returns a document with aggregated values such as max_temp, avg_
watts, and median_watts. It includes metadata about the window of time during 
which the data was processed, providing insight into the stream’s performance over 
that interval.

To stop and remove the stream processor, execute

AtlasStreamProcessing> sp.mongodbInAction.drop()

This command deletes the mongodbInAction stream processor. After dropping it, the 
output confirms with { ok: 1 }. To verify that the stream processor no longer exists, 
you can list all stream processors with

AtlasStreamProcessing> sp.listStreamProcessors()
[]
AtlasStreamProcessing>

The empty list [] confirms that no stream processors are active in the instance.



	 425Controlling the stream processing flow

15.7	 Controlling the stream processing flow
In stream processing, it is vital to ensure that data flows continuously, even if some 
records are incorrectly formatted, delayed, or contain errors. A strong, reliable pipe-
line should not stop processing due to these problems but should keep the data mov-
ing while flagging and logging any problems for later investigation. This allows the 
main flow of data to proceed without disruption. Atlas Stream Processing helps man-
age such scenarios by providing a DLQ. This feature captures any problematic data, 
storing it separately for future review and correction, ensuring that errors don’t halt 
the overall process.

15.7.1	 Capturing the state

Atlas Stream Processing relies on checkpoint documents to monitor its progress in 
processing data. These checkpoints function like bookmarks, allowing the system to 
remember its exact position in the data stream, ensuring that it can resume processing 
from the correct point without missing or duplicating data.

Atlas Stream Processing uses checkpoint documents to track the state of a stream 
processor. These documents have unique identifiers and follow the logic flow of the 
stream processor. When the final operator in the processor finishes processing a check-
point document, Atlas Stream Processing commits the checkpoint, creating two types 
of records:

¡	A record that confirms the checkpoint ID and the associated stream processor

¡	A series of records detailing the status of each stateful operation within the 
stream processor at the time of checkpoint commitment

If the stream processor is restarted after an interruption, Atlas Stream Processing 
retrieves the last committed checkpoint and resumes processing from the saved state.

15.7.2	 Using a dead-letter queue

In stream processing systems, a DLQ is used to ensure that data the system can’t process 
isn’t lost. Instead of being dropped, it’s sent to a special error or reprocessing queue. 
From there, it can be handled by another program, reviewed by humans, or deleted if 
necessary. Messaging systems including AWS EventBridge, Apache Kafka, and Solace 
use DLQs, and Atlas Stream Processing has this feature as well.

Atlas Stream Processing can be configured with an optional DLQ when defining a 
processor. The DLQ is stored in an Atlas database cluster, and the data can be saved to 
any MongoDB collection. This collection can be capped, sharded, and set up with any 
indexing strategy that MongoDB supports. The following listing shows an example.

Listing 15.8  DLQ configuration

// Set up a dead letter queue (DLQ) configuration
➥using an existing connection
let dlqConfig = {



426 Chapter 15  Building event-driven applications

  dlq: {
    connectionName: " mongodb-in-action-connection ",
➥// name of the connection in the connection registry
    db: "ErrorLogs",                     // target database for the DLQ
    coll: "TransactionErrors"       
➥// collection to store failed records
  }
}

// Create a basic stream processing pipeline
let inputSource = {$source: {$kafka: {...}}}  // input from a Kafka stream
let outputSink = {$merge: {...}}    // output data to a MongoDB collection
let pipeline = [inputSource, outputSink]

// Initialize a stream processor with a pipeline and DLQ setup
sp.createStreamProcessor("TransactionProc", pipeline, dlqConfig)

// Start the processor; any problematic data is sent to the DLQ
sp.TransactionProc.start()

Storing data in MongoDB is powerful because it allows easy querying within the Atlas 
ecosystem. You can also monitor the collection to track the rate, size, and type of mes-
sages saved to the DLQ. The data can be processed later using MongoDB commands, 
reintroduced into the stream, or handled according to specific business needs.

By adopting a few best practices, you can ensure that your stream processors are 
equipped to handle a wide range of data problems without disrupting the overall flow 
of your system. Even in the event of malformed data, validation failures, or processing 
errors, your stream can continue to operate smoothly while problematic data is safely 
captured in the DLQ for further inspection. These best practices are

¡	Defining a DLQ for any processor where it’s essential to ensure that all data is 
processed or sent to the DLQ—especially important for production-level stream 
processors

¡	Using tools such as the Atlas UI and alerts to monitor DLQ collections and track 
problems

¡	Using capped collections to prevent DLQs from growing too large in case of fre-
quent errors

¡	Setting up Atlas Triggers on DLQ collections to enable automatic reprocessing 
and various handling options

15.8	 Securing Atlas Stream Processing
Atlas offers a robust framework for managing user permissions across organization, 
project, and database levels (chapter 20). With Atlas Stream Processing, this frame-
work is expanded to include roles and privileges tailored to stream processing tasks, 
allowing for fine-grained control. Also, user permissions can be restricted to individual 
SPIs, ensuring precise access control.



	 427Securing Atlas Stream Processing

15.8.1	 Discovering new roles

Users manage SPIs and their connection registries at the project level. Atlas Stream 
Processing offers the Project Stream Processing Owner role for this purpose. A user 
with this role can manage all SPIs, connection registries, and databases within the proj-
ect. Assigning this role allows the user to configure everything related to Atlas Stream 
Processing while following the principle of least privilege, ensuring that they have only 
the permissions required for stream processing tasks.

15.8.2	 Learning new privilege actions

You can access and manage an existing SPI as a database user, similar to how you would 
access an Atlas cluster. The roles and actions assigned to your database users control 
what operations they can perform on stream processors within the instance. Atlas 
Stream Processing offers several privilege actions, including

¡	processStreamProcessor

¡	createStreamProcessor

¡	startStreamProcessor

¡	stopStreamProcessor

¡	dropStreamProcessor

¡	listStreamProcessors

¡	sampleStreamProcessor

¡	streamProcessorStats

¡	listConnections

You can assign only the necessary privilege actions to a database user or custom role, 
ensuring that they have exactly the permissions they need for their tasks.

15.8.3	 Protecting network access

Atlas Stream Processing can connect to both Atlas clusters and external data sources 
like Apache Kafka. Connections to Atlas clusters are set up automatically, but for exter-
nal sources, you need to add Atlas IP addresses to the access list of your external data 
source.

When setting up a connection to an external streaming data source, you can choose 
to connect via public IP addresses or through a virtual private cloud (VPC) peering 
connection.

15.8.4	 Auditing events

Atlas Stream Processing auditing allows administrators to monitor authentication and 
entity management events within their SPIs. Whenever an auditable event happens, 
it is logged for that specific instance. The log remains available for the lifetime of the 
SPI, and events are never deleted. If an SPI is deleted, its log is retained for 30 more 
days.



428 Chapter 15  Building event-driven applications

Summary

¡	Event-driven applications move away from the traditional model where tightly 
coupled services request data directly, leading to latency and complex depen-
dencies. This traditional approach slows the system and limits scalability.

¡	Traditionally, event processing is handled in two ways: embedding the logic 
directly in the application code, which can make the code complex and difficult 
to maintain, or sending events to a database for processing. The latter approach 
simplifies the code but adds latency, as events need to be stored and indexed 
before processing.

¡	Event-driven architecture decouples services by using real-time events for com-
munication, managed by platforms like Apache Kafka. This approach reduces 
latency, lowers overhead, and enhances system performance.

¡	Today, mature event streaming platforms and databases exist for managing 
events, but real-time processing of high-volume streams remains challenging. 
The differences in languages, APIs, and tools create fragmentation, slowing 
development and increasing complexity, time, and costs.

¡	Atlas offers a seamless solution in which events align naturally with flexible, 
JSON-like document structures. These events can be processed efficiently using 
MongoDB’s unified Query API, which is central to its design.

¡	The Connection Registry stores configuration details for all connections between 
an SPI and external data sources or sinks. It contains information such as connec-
tion endpoints, authentication credentials, and other settings to ensure secure, 
reliable communication between the stream processor and external systems.

¡	A stream processor is a MongoDB aggregation pipeline that continuously pro-
cesses streaming data from a designated source and sends the output to a speci-
fied destination.

¡	An Atlas SPI is a designated namespace tied to a specific connection string, cloud 
provider, region, and (optionally) a security context for extra protection. Stream 
processors created within an instance are available only in that instance.

¡	Atlas stream processor pipelines begin with a $source stage that connects to a 
data source, initiating the flow of a continuous stream of documents. These doc-
uments must be in valid JSON or EJSON format.

¡	The $source aggregation pipeline stage specifies a connection in the Connec-
tion Registry to stream data from, supporting the following connection types: 
Apache Kafka broker, MongoDB collection change stream, MongoDB database 
change stream, and document array.

¡	The $source stage must be placed at the beginning of any pipeline where it is 
used, and only one $source stage is allowed per pipeline.

¡	The $validate stage examines streaming documents to confirm that they 
match a defined schema, ensuring that correct ranges, values, and data types are 
adhered to.



	 429Summary

¡	The $tumblingWindow stage divides the data stream into fixed, nonoverlapping 
windows based on a set time duration. Each document is processed only once 
because each window closes before the next begins.

¡	The $hoppingWindow stage creates overlapping windows with a specified dura-
tion and hop interval. Documents can appear in multiple windows, providing a 
sliding view of the data stream.

¡	A document array as a data source is perfect for debugging because it lets you 
control static data, avoiding unpredictable live sources. This makes validating 
your pipeline and troubleshooting easier.

¡	Atlas Stream Processing uses checkpoint documents to track its progress in 
processing data. These checkpoints act like bookmarks, allowing the system to 
resume processing from the correct point, preventing data loss or duplication 
and maintaining the state of a stream processor.

¡	In Atlas Stream Processing, a DLQ prevents unprocessable data from being 
lost by sending it to an error queue for further handling. You can configure an 
optional DLQ when defining a processor with data stored in an Atlas database 
cluster and saved to a MongoDB collection.

¡	With Atlas Stream Processing, the existing Atlas framework for managing user 
permissions at the organization, project, and database levels is expanded to 
include roles and privileges specific to stream processing tasks. This allows fine-
grained control, and permissions can be restricted to individual SPIs for precise 
access management.



430

16Optimizing data 
processing with Atlas 

Data Federation

This chapter covers

¡	Explaining the MongoDB unified Query API
¡	Understanding the Atlas Federated Database 	
	 architecture
¡	Deploying a federated database instance

Atlas Data Federation serves as a distributed query engine that seamlessly integrates 
various data sources within and beyond Atlas, such as external cloud storage. The 
federation setup allows the creation of virtual databases and collections, which serve 
as pathways to access the stored data. It enables you to perform complex analytical 
queries across combined data sets from historical and live data sources, ensuring 
efficient data management and deep analytical insights. This setup is particularly 
useful when you need to maintain a consistent, comprehensive view of your data for 
strategic decision-making.

16.1	 Querying Amazon S3 and Azure Blob Store data via the Query API
Atlas Data Federation is a powerful feature that allows users to query, transform, and 
analyze data across various sources in a unified way without moving or duplicating 



	 431Querying Amazon S3 and Azure Blob Store data via the Query API

the data. It provides seamless access to data stored in different places, including 
MongoDB databases, cloud storage (such as Amazon S3 or Microsoft Azure Blob 
Store), Atlas Online Archive (chapter 17), HTTP and HTTPS endpoints, and other 
external sources. With Atlas Data Federation, you can run queries using the MongoDB 
Query API or Structured Query Language (SQL) and combine results from multiple 
data sources into a single consistent view. This flexibility makes it easier to work with 
diverse data sets while maintaining performance and efficiency, all within the Atlas 
environment.

Figure 16.1 illustrates Atlas data processing. The unified Query API allows you to 
query data from a data source such as S3 using MongoDB Query Language, the same 
language used for querying the database.

Document model and Query API

Secure • Global and multicloud • Resilient and elastic

Your data

Your applications

Full-text
search

Vector
search

Stream
processing TransactionsAnalytics Time

series

Figure 16.1  The unified Query API allows you to query workloads from S3 and Azure Blob Store.  
(Image © MongoDB 2024 CC BY-NC-SA 3.0)

In addition to providing seamless access to multiple data sources, Atlas Data Federation 
reduces the complexity of managing large data sets across storage systems. By allowing 
you to run real-time queries on data stored in MongoDB collections, cloud storage 
like S3, or even other databases, it eliminates the need for costly and time-consuming 
extract, transform, load (ETL) processes. The federation also enables you to create 
virtual databases, which means you can work with your data as though it were all in 
one place, even when it’s spread across locations. This feature is especially useful for 
businesses that need to integrate and analyze data from multiple environments without 
moving or replicating it, thus lowering costs and simplifying data governance.



432 Chapter 16  Optimizing data processing with Atlas Data Federation

16.2	 Learning Atlas Data Federation architecture
The Atlas Data Federation distributed query engine facilitates seamless querying, trans-
forming, and transferring of data across multiple internal and external Atlas sources. 
Federated database instances are deployed, consisting of virtual databases and collec-
tions that map to your existing data stores. Atlas Data Federation supports a variety 
of data stores, including Atlas clusters, Atlas Online Archive, S3 buckets, Azure Blob 
Storage, and HTTP and HTTPS endpoints.

Storage configuration involves setting up mappings in JSON format between your 
virtual databases, collections, and data sources. By defining these mappings in the stor-
age configuration, you can access and execute queries on your data.

Figure 16.2 displays the architecture of Atlas Data Federation. The architecture is 
segmented into four main components: Application & Services, Control Plane, Com-
pute Plane, and Data Plane, each serving specific functions within the system.

Region 1

Atlas 
clusters

Region 2

HTTP
store

Data Plane

MongoDB Atlas
control

{data federation 
endpoint}

Drivers
JavaScript, Perl,
Python, C, C++,
Java, Ruby, Go,
Scala, R

MONGODB SHELL

Application & Services Computer PlaneControl Plane

Data federation 
computer node

Data federation 
computer node

Data federation 
computer node

Data federation 
computer node

Data federation 
computer node

Data federation 
computer node

Data federation 
computer node

Data federation
computer node

Data federation 
computer node

Apps
• Analytic engines
• Data products

MongoDB Compass
• Data exploration

MongoDB SQL support
• Business analytics
• Reporting

Data science tools
• Statistics
• Machine learning

Figure 16.2  The architecture of Atlas Data Federation (Image © MongoDB 2024 CC BY-NC-SA 3.0)

Let’s take a closer look at the layers. Together, they form a cohesive data federation 
architecture with distinct responsibilities:

¡	Application & Services—This layer includes various applications and data explo-
ration tools such as MongoDB Compass, supports multiple programming lan-
guages through drivers (such as JavaScript, Python, and C++), and provides data 
science tools for statistics and machine learning. It serves as the interface for 
users to interact with the federation system.



	 433Deploying an Atlas Federated Database instance

¡	Control Plane—Operating similarly to the Atlas Control Plane, this layer handles 
the orchestration of user requests and aggregates the final results. It ensures that 
operations are managed efficiently and data processing workflows are optimized 
across the distributed environment.

¡	Compute Plane—Here, Atlas Data Federation processes all data requests. It uses 
an elastic pool of compute nodes strategically placed close to the data sources to 
minimize latency and data transfer, enhancing query response times and system 
performance. This plane is critical for the dynamic allocation of resources based 
on demand and data locality.

¡	Data Plane—This plane is where the data is stored. Configurations within this 
plane allow Atlas Data Federation to access a variety of storage services, includ-
ing S3 buckets and Azure Blob Storage. It supports role-based access control 
(RBAC), ensuring that data access is secure and compliant with data governance 
standards. The plane is optimized for data locality, aiming to process data close to 
its source to reduce transmission costs and speed access.

Overall, these components work together to provide a robust, scalable, and efficient 
distributed query system that uses Atlas technologies to facilitate complex data opera-
tions across multiple sources and regions.

With Atlas Data Federation, you can copy data from Atlas clusters into Parquet or 
CSV files and store them in S3 buckets or Azure Blob Storage. You can also query mul-
tiple Atlas clusters and Atlas Online Archive to gain a comprehensive overview of your 
Atlas data. And you can materialize data from aggregations spanning Atlas clusters and 
S3 buckets, as well as read and import data from your S3 buckets into an Atlas cluster.

TIP  To avoid high charges, set up your Atlas Data Federation in the same 
Amazon Web Services (AWS) or Azure region as your S3 or Azure Blob Stor-
age. You can query S3 only with federated database instances created in AWS 
and Azure Blob Storage with instances created in Azure.

NOTE  The Atlas SQL interface is available by default when you create a fed-
erated database instance. You can query your data using the well-known SQL 
language (chapter 18).

16.3	 Deploying an Atlas Federated Database instance
To create an Atlas Data Federation instance, start by logging in to your Atlas account. 
In the left navigation pane, select the Data Federation option. In the Data Federation 
section, click Create New Federated Database. You will be prompted to choose how 
you want to set up your federated instance.

First, give your federated database a name. Then specify data sources, which could 
be one or multiple Atlas clusters or external data stores like S3. You can include all col-
lections within a cluster or select specific collections. If you’re using an external data 



434 Chapter 16  Optimizing data processing with Atlas Data Federation

store, you need to authorize the connection, such as by setting up Amazon identity and 
access management (IAM) roles for S3 access.

Next, configure how and when data will be queried or exported. If you’re exporting 
to S3, for example, you can schedule recurring queries that copy data to your S3 buck-
ets at defined intervals, transforming it into formats such as Parquet, CSV, Binary JSON 
(BSON), or JSON.

After you’ve selected your data sources and defined the connection and export set-
tings, review your setup, and click Create to finalize the federated database instance. 
After deployment, you can begin running federated queries across the selected data 
sources, accessing, transforming, and analyzing data from various locations without 
moving it from its original storage environment.

TIP  You can find a detailed step-by-step guide in the official MongoDB docu-
mentation at https://mng.bz/DwDE.

16.4	 Limitations of Atlas Data Federation
Atlas Data Federation is a powerful tool, but it has several important limitations that 
you need to be aware of when planning implementations. These limitations affect var-
ious functionalities, from authentication to query handling. Features not supported 
include the following:

¡	Limited authentication methods—Atlas Data Federation supports only specific 
authentication methods, including SCRAM, X.509 Certificates, OpenID Connect 
(OIDC), and AWS IAM. Any other forms of authentication are not supported.

¡	Lack of monitoring support—Although Atlas offers robust monitoring tools for clus-
ters, these tools are not available for monitoring federated database instances. 
This limitation requires alternative methods for tracking performance or diag-
nosing problems in federated instances.

¡	Restricted AWS S3 account use—If you are using S3 buckets for storage with Atlas 
Data Federation, the federated database instance must be confined to a single 
AWS account. Atlas does not support federating data across S3 buckets that span 
multiple AWS accounts.

¡	Document size limitation—Atlas Data Federation does not support handling que-
ries for documents that exceed 16 MB. Any queries involving such large docu-
ments will fail.

¡	Inconsistent document order in queries—The order of documents across queries is 
not guaranteed unless specific query operators are used. Without the appro-
priate operators, the order in which documents are returned may vary between  
queries, making consistent ordering difficult.

¡	Connection limits—A federated database instance in Atlas is limited to 60 simul-
taneous connections per region. Exceeding this limit may result in connection 
problems or degraded performance.

https://mng.bz/DwDE


	 435Summary

¡	Query limitations—Atlas Data Federation supports a maximum of 30 simultane-
ous queries on a federated database instance. When this limit is reached, addi-
tional queries will not be processed until other queries are completed.

¡	Lack of index creation support—Atlas Data Federation does not support creation of 
indexes within federated database instances. As a result, query performance may 
be affected when you’re working with large data sets that typically benefit from 
indexing.

TIP  Atlas Data Federation automatically terminates your cursor if it doesn’t 
process at least 16 MB of results every minute.

These limitations are important to consider when you’re designing or deploying a system 
that relies on Atlas Data Federation to manage and query data from multiple sources.

16.5	 Charges for Atlas Data Federation
You will face charges for the following:

¡	Data processed by federated database instances

¡	Data returned by federated database instances

These charges are based on total bytes processed from your data sources, rounded 
to the nearest megabyte, at a rate of $5 per TB, with a minimum of 10 MB per query. 
Charges include costs for the data processed to execute your queries and the data 
returned as results. Processing a 10 GB file without partitions, for example, incurs a 
cost for all 10 GB, but if the file is partitioned into 10 segments of 1 GB each, and only 
one segment is read, the charge is for 1 GB. Implementing partitioning strategies and 
setting query limits can help you manage and reduce these costs.

Atlas also calculates charges based on the total bytes returned and transferred by 
your federated database instance, encompassing all data movements during query 
operations. This includes bytes returned to the client from query results, bytes trans-
ferred between Atlas Data Federation query nodes during query execution, and bytes 
written during $out or $merge operations. The cost of these data transfers varies with 
the cloud service provider’s rates for data movement within the same region, between 
regions, or to the internet. AWS, for example, typically charges 1 cent per GB for data 
returned and transferred within the same region and to the client.

Summary

¡	Atlas Data Federation, a distributed query engine, enables seamless querying, 
transforming, and transferring of data across Atlas sources. It deploys federated 
database instances, including virtual databases and collections mapped to your 
existing data stores.

¡	The federation merges data from your Atlas clusters, HTTP and HTTPS end-
points, Atlas Online Archive, and cloud storage into virtual databases and collec-
tions. The data remains in its original location and format.



436 Chapter 16  Optimizing data processing with Atlas Data Federation

¡	You can build and manage Atlas Federated Database in the Atlas UI as well as the 
Atlas command-line interface (CLI).

¡	Atlas charges for data processed and returned by federated database instances. 
These costs are based on the volume of data handled and delivered by the system 
during operations.

¡	The Atlas SQL interface is enabled by default when you create a federated data-
base instance, which allows you to start querying your data immediately without 
additional configuration.



437

17Archiving online with 
Atlas Online Archive

This chapter covers

¡	Archiving infrequently accessed data to lower-	
	 cost storage
¡	Setting archiving rules based on data use and 	
	 retention
¡	Archiving data from time-series collections
¡	Accessing archived and live data together
¡	Calculating costs associated with querying 		
	 archived data
¡	Restoring archived data to live cluster

Atlas Online Archive is designed to help you manage data storage costs by archiving 
infrequently accessed data to lower-cost storage. It integrates seamlessly with Atlas, 
allowing you to define custom rules based on data access patterns and retention 
requirements. The archived data is queryable, ensuring that it remains accessible 
without full restoration. This service is particularly useful for long-term data storage, 
compliance, and historical analysis, providing a scalable solution (though one that 
likely sacrifices some performance).



438 Chapter 17  Archiving online with Atlas Online Archive

WARNING  Online Archive is not a substitute for a primary backup solution 
because it is designed primarily for cost-effective storage of infrequently 
accessed data, not for data recovery purposes. Backups, on the other hand, are 
comprehensive snapshots of your data intended for recovery after data loss, 
corruption, or other catastrophic events. Therefore, it’s important to maintain 
a separate, robust backup strategy to ensure data integrity and availability.

17.1	 Archiving your data
Atlas transfers infrequently accessed data from your primary Atlas cluster to a read-
only federated database instance (chapter 16), managed by MongoDB, in cloud object 
storage. When the data is archived, you can access your live Atlas data and the archived 
data through a unified, read-only federated database instance.

The archiving process is governed by rules you establish, specifying what data should 
be archived. Table 17.1 outlines archiving criteria based on the type of collection to 
archive.

Table 17.1  Atlas archiving criteria

Criteria type Archiving criteria Federated database instance 

Standard 
collection

Date-based archiving—A combination 
of a date field and number of days to 
retain data in the Atlas cluster. Data 
is archived when the current date sur-
passes the date field plus the specified 
days.

Custom query—Executes a specified 
query to determine which documents to 
archive

Archive-only instance—Allows querying of 
only the archived data

Combined instance—Allows querying of the 
live cluster and archived data

Time-series 
collection

Time-based archiving—A combination 
of a time field and a specified number 
of days to keep data in the Atlas cluster. 
Data is archived when the current time 
exceeds the specified time field by the 
designated days, hours, and minutes.

Archive-only instance—Permits queries on 
archived data only

Combined Instance—Enables querying of 
the live cluster and archived data

Remarks Online Archive is available only for clus-
ters that are M10 and higher.

Atlas offers a single endpoint that allows you to query all databases and collections 
from your live cluster and archived data using the same names as in your Atlas cluster.

17.1.1	 Seeing how Atlas archives data

Atlas runs a designated query within the archive’s specific namespace to identify docu-
ments eligible for archiving; this query is called a job. By default, this job is scheduled to 
run every 5 minutes. Should the size of documents ready for archiving fall below the 2 
GB threshold, Atlas extends the interval between job runs by 5 minutes, with a possible 



	 439Archiving your data

extension of up to 4 hours. The job restarts at 5-minute intervals when the document 
size meets the threshold or when the maximum time interval is reached.

To ensure the efficiency of the archival process, Atlas conducts an index sufficiency 
query. When the ratio of documents scanned to documents returned is 10 or higher, it 
triggers an Index Sufficiency Warning message, indicating the need for better index-
ing. Specifically, date fields in date-based archives and expressions in custom queries 
must be indexed appropriately.

Each archiving job can process up to 10,000 partitions and writes a maximum 2 GB 
of document data per run to the cloud object storage. Data is grouped efficiently to 
reduce partition numbers, particularly with date fields, and each subsequent data 
batch up to 2 GB continues in this manner per job execution.

TIP  The interval for each archival job in Atlas is 5 minutes, with the next job 
starting 5 minutes after the current one completes. The duration of an archival 
job varies based on factors such as cluster resources.

Online Archive operates within your Atlas cluster and consumes the same resources, 
including input/output operations per second (IOPS). To prevent excessive resource 
use, it imposes a default cap of 2 GB per archival job. If your cluster is already ope
rating near its resource limits, enabling Online Archive could exceed its capacity. It’s 
important to confirm that your Atlas cluster has additional resources available before 
you activate Online Archive.

With Online Archive, you choose a region to store your archived data. Table 17.2 
describes these regions.

Table 17.2  Current Online Archive regions

Provider Atlas Data Federation region Corresponding region

Amazon Web Services (AWS) Virginia, USA us-east-1

AWS Oregon, USA us-west-2

AWS São Paulo, Brazil sa-east-1

AWS Ireland eu-west-1

AWS  London, England eu-west-2

AWS  Frankfurt, Germany eu-central-1

AWS  Tokyo, Japan ap-northeast-1

AWS  Mumbai, India ap-south-1

AWS  Singapore ap-southeast-1

AWS  Mumbai, India ap-southeast-2

AWS  Montreal, Canada ca-central-1

Azure  Virginia, USA US_EAST_2

Azure   The Netherlands EUROPE_WEST



440 Chapter 17  Archiving online with Atlas Online Archive

Online Archive currently has several limitations that you should be aware of:

¡	Writing data directly to Online Archive is not supported. Data must be archived 
from the primary data store according to specific archiving rules.

¡	Archiving from capped collections is unavailable. These collections have a fixed 
size and retain only the most recent data, making them incompatible with the 
archiving process.

¡	Any data that remains smaller than 5 MB after seven days will not be archived 
because the system prioritizes larger, less frequently accessed data to optimize 
storage.

NOTE  Atlas uses Amazon’s server-side encryption with S3-managed keys  
(SSE-S3) to encrypt your archived data.

17.1.2	 Deleting archived documents

When it archives data, Atlas initially transfers the data to cloud object storage and 
subsequently removes it from your Atlas cluster. This process may temporarily result 
in duplicated documents appearing in your Atlas cluster and Online Archive. When 
the archival process is complete and Online Archive is idle, however, the previously 
archived documents are no longer in your Atlas cluster.

NOTE  The archiving job can be initiated from any node within the cluster, 
but it connects to the primary replica set member for operations that involve 
deletion.

You have the option to set up automatic deletion of archived data after a specified 
period by configuring the Deletion Age Limit when creating or updating your Online 
Archive. When data is archived, Atlas does not synchronize Online Archive with the 
Atlas cluster to ensure consistency.

NOTE  Online Archive is read-only. Atlas doesn’t update archived data.

17.2	 Initializing Online Archive
You can set up archiving for data within a collection by defining an archiving rule. In 
this example, I use the M10 cluster MongoDB-in-Action-M10, created in chapter 16. 
(M10 is the smallest cluster that has access to Online Archive.) To initiate archiving, 
you need to do the following:

¡	Define an archiving rule by specifying a namespace (database name with collec-
tion name) along with a date field and age limit or a custom query for selecting 
documents to archive.

¡	Select fields that are frequently queried to partition your archived data, ensuring 
optimal query performance.

¡	Set up Online Archive and start archiving documents that comply with your spec-
ified rule.



	 441Initializing Online Archive

When they are archived, documents are removed from your Atlas cluster and cannot 
be modified or deleted. You have the flexibility to pause or remove the archive when-
ever necessary. Although Online Archive can reduce your cluster’s storage expenses by 
archiving historical data automatically, it introduces additional costs for object storage 
and archive queries, which will appear as new items on your monthly bill.

Here’s an archiving rule that archives documents located in the sample_supplies 
database within the sales collection:

use sample_supplies
db.sales.find({_id: ObjectId('5bd761dcae323e45a93ccfe9')})
{
  _id: ObjectId('5bd761dcae323e45a93ccfe9'),
  saleDate: ISODate('2015-08-25T10:01:02.918Z'),
  items: [
    {
      name: 'envelopes',
      tags: [ 'stationary', 'office', 'general' ],
      price: Decimal128('8.05'),
      quantity: 10
    },
    {
      name: 'binder',
      tags: [ 'school', 'general', 'organization' ],
      price: Decimal128('28.31'),
      quantity: 9
    },
    {
      name: 'notepad',
      tags: [ 'office', 'writing', 'school' ],
      price: Decimal128('20.95'),
      quantity: 3
    },
    {
      name: 'laptop',
      tags: [ 'electronics', 'school', 'office' ],
      price: Decimal128('866.5'),
      quantity: 4
    },
    {
      name: 'notepad',
      tags: [ 'office', 'writing', 'school' ],
      price: Decimal128('33.09'),
      quantity: 4
    },
    {
      name: 'printer paper',
      tags: [ 'office', 'stationary' ],
      price: Decimal128('37.55'),
      quantity: 1
    },
    {
      name: 'backpack',
      tags: [ 'school', 'travel', 'kids' ],



442 Chapter 17  Archiving online with Atlas Online Archive

      price: Decimal128('83.28'),
      quantity: 2
    },
    {
      name: 'pens',
      tags: [ 'writing', 'office', 'school', 'stationary' ],
      price: Decimal128('42.9'),
      quantity: 4
    },
    {
      name: 'envelopes',
      tags: [ 'stationary', 'office', 'general' ],
      price: Decimal128('16.68'),
      quantity: 2
    }
  ],
  storeLocation: 'Seattle',
  customer: { gender: 'M', age: 50,
➥email: 'keecade@hem.uy', satisfaction: 5 },
  couponUsed: false,
  purchaseMethod: 'Phone'
}

This rule archives documents five days after the sale date, which is recorded in the 
saleDate field. The archiving rule corresponds to this query:

db.sales.find({ "saleDate": { $lte: new Date(ISODate().getTime()
➥ - 1000 * 3600 * 24 * 5)}}).sort({ "saleDate": 1 })

You must index this field before the archiving process starts, which you can accomplish 
using the createIndex() method:

db.sales.createIndex({ "saleDate": 1 })

Listing 17.1 demonstrates using the Atlas command-line interface (CLI) to facilitate 
managing Online Archive through the command atlas clusters onlineArchive. 
The command uses the saleDate as the date field to determine when documents 
should be archived, which is set to occur five days after the specified date.

Listing 17.1  initializing Atlas Online Archive with the Atlas CLI

atlas clusters onlineArchive create \
--clusterName MongoDB-in-Action-M10 \
--db sample_supplies --collection sales \
--dateField saleDate --archiveAfter 5 \
--partition saleDate,customer --output json
{
  "_id": "66771d91d7775c0583b47e93",
  "clusterName": "MongoDB-in-Action-M10",
  "collName": "sales",
  "collectionType": "STANDARD",
  "criteria": {



	 443Initializing Online Archive

    "type": "DATE",
    "dateField": "saleDate",
    "dateFormat": "ISODATE",
    "expireAfterDays": 5
  },
  "dataProcessRegion": {
    "cloudProvider": "AWS",
    "region": "US_EAST_1"
  },
  "dbName": "sample_supplies",
  "groupId": "65d70c5bc9b5633e80a9c998",
  "partitionFields": [
    {
      "fieldName": "saleDate",
      "order": 0
    },
    {
      "fieldName": "customer",
      "order": 1
    }
  ],
  "paused": false,
  "schedule": {
    "type": "DEFAULT"
  },
  "state": "PENDING"
}

The command atlas clusters onlineArchive create configures a new online archive 
for the cluster named MongoDB-in-Action-M10. It specifies the sample_supplies data-
base and sales collection, using saleDate as the key field to trigger archiving five days 
after the specified date. The command sets up partitioning of the archived data based 
on saleDate and customer to optimize access and query performance. The archive 
operation is set to run on Amazon Web Services (AWS) in the US East (Northern Vir-
ginia) region, which is the default.

You can also view the current status of Atlas Online Archive using the Atlas CLI:

atlas clusters onlineArchive list --clusterName MongoDB-in-Action-M10
ID                         DATABASE          COLLECTION   STATE
66771d91d7775c0583b47e93   sample_supplies   sales        ACTIVE

You can start an archive job manually using the command atlas clusters online
Archive start:

atlas clusters onlineArchive start 66771d91d7775c0583b47e93 \
--clusterName MongoDB-in-Action-M10
Online archive '66771d91d7775c0583b47e93' started.

You can also use the Atlas UI to display Online Archive. In the Atlas UI, choose the 
Online Archive option from the drop-down menu in the Database section. This option 
displays the archive setup for the sample_supplies.sales collection, including 



444 Chapter 17  Archiving online with Atlas Online Archive

archiving criteria and storage settings. Clicking the Connect button provides the con-
nection string for the federated database and lets you query archived data using the 
Atlas SQL interface.

TIP  You can also query your Online Archive data with SQL (chapter 18).

17.3	 Connecting and querying Online Archive
You have the option to set data processing limits for queries against archived data to 
manage the costs associated with Online Archive. If the processed data hits any set 
limit, Atlas halts new queries and issues an error notification to the client application, 
indicating that the limit has been exceeded. Alternatively, you can enable query termi-
nation, which stops any queries that surpass the established limit.

To access archived data via the federated database, click Connect in the Online 
Archive section of your cluster. A set of connection strings appears, as shown in figure 
17.1. The main string allows read-only federated queries across both a live Atlas cluster 
and Online Archive. Two additional strings are available: one for the cluster only and 
another for the archive only.

Figure 17.1  Federated database connection strings (Image © MongoDB 2025)

First, connect to the federated database, which consists of the primary Atlas cluster and 
Online Archive:



	 445Connecting and querying Online Archive

mongosh "mongodb://atlas-online-archive-
➥66768d062b21b3003b36aaa2-
➥nu96v.a.query.mongodb.net/" \
--tls --authenticationDatabase admin \
--username manning
Enter password: ************
AtlasDataFederation test> show dbs
admin               0 B
config              0 B
local               0 B
sample_airbnb       0 B
sample_analytics    0 B
sample_geospatial   0 B
sample_guides       0 B
sample_mflix        0 B
sample_restaurants  0 B
sample_supplies     0 B
sample_training     0 B
sample_weatherdata  0 B
AtlasDataFederation test>

All database names and collections are available, archived and live, so you can run 
queries on both types of data seamlessly.

Then use the third connection string in the list—Connect to the Online Archive— 
which provides a connection string solely for the Online Archive instance:

mongosh "mongodb://archived-atlas-online-archive-
➥66768d06003b36aaa2-nu96v.a.query.mongodb.net/" \
--tls --authenticationDatabase admin \
--username manning
Enter password: ************
AtlasDataFederation test> show dbs
sample_supplies  0 B
AtlasDataFederation test> use sample_supplies
switched to db sample_supplies
AtlasDataFederation sample_supplies> show collections
sales
AtlasDataFederation sample_supplies> db.sales.countDocuments()
5000
AtlasDataFederation sample_supplies>

The data from the sample_supplies.sales collection has been archived from the live 
database and is now available as read only in the Online Archive instance. All docu-
ments were transferred in this case because each of them had a saleDate older than 
five days, which triggered their archival according to the defined rule. This allows 
applications to connect and query the archived data continuously, providing cost ben-
efits by reducing the load on the live database and using cheaper storage solutions for 
infrequently accessed data. Also, maintaining this separation between live and archived 
data improves performance and scalability, ensuring that critical operations on the live 
database are not affected by historical data queries.



446 Chapter 17  Archiving online with Atlas Online Archive

NOTE  When data is archived, it is no longer included in the backup configu-
ration of your live Atlas cluster, but the archived data benefits from the same 
redundancy guarantees provided by the object storage vendor.

When you query data in your cluster and Online Archive through the federated con-
nection string, performance varies based on the type of query:

¡	Blocking queries—These queries, such as sorts that process all input documents 
before returning results, are constrained by the slower speed of the archive stor-
age. This means that sort operations wait to receive all data from the queried 
sources before producing results.

¡	Streaming queries—These queries, like find operations, benefit from the faster 
performance of the Atlas cluster. Results are returned as they become available, 
leading to quicker responses from the Atlas cluster compared with the archive.

Querying a federated database is associated with additional costs:

¡	Data scan—Costs are incurred when Atlas processes data from both the cluster 
and the archive. The system strives to minimize scans from the archive, which is 
more costly, by executing as much of the query as possible on the cluster. Specific 
match queries, for example, extract only relevant documents from the cluster to 
reduce costs.

¡	Data access—Each partition accessed within the archive is charged. If a query 
requires accessing specific partitions, each accessed partition incurs a fee.

¡	Data seek—Operations to locate necessary partitions for a query also come with 
costs. Atlas runs the fewest possible operations to find the required partitions—
up to 1,000 partitions per operation.

¡	Data transfer—Any data transferred to or processed by the federated infrastruc-
ture results in data transfer fees.

17.4	 Restoring archived data
You have the option to restore archived data to your Atlas cluster. Atlas Data Federa-
tion offers an alternative syntax for the $merge pipeline stage, allowing you to transfer 
the data back to the same or a different Atlas cluster, database, or collection within the 
same Atlas project. To restore the archived data, you pause it first and then restore it, 
following these steps:

1	 Find your archive ID. You can display your archive ID using the following 
command:

atlas clusters onlineArchive list --clusterName MongoDB-in-Action-M10
ID                         DATABASE          COLLECTION   STATE
66771d91d7775c0583b47e93   sample_supplies   sales        ACTIVE

2	 Use the command atlas clusters onlineArchive pause to pause the archive 
service:



	 447Restoring archived data

atlas clusters onlineArchive pause 66771d91d7775c0583b47e93 \
--clusterName MongoDB-in-Action-M10
Online archive '66771d91d7775c0583b47e93' paused.

3	 Run the command atlas clust:rs onlineArchive list again to verify that the 
archive has been paused:

atlas clusters onlineArchive list --clusterName MongoDB-in-Action-M10
ID                         DATABASE          COLLECTION   STATE
66771d91d7775c0583b47e93   sample_supplies   sales        PAUSED

4	 Use MongoDB Shell (mongosh) to connect to your live Atlas instance (MongoDB 
-in-Action-M10), which is the target for data restoration. Then create a unique 
index on the fields saleDate and customer, which Atlas requires to avoid 
duplicates:

use sample_supplies
db.sales.createIndex({ saleDate:1,customer:1}, {unique: true })

5	 Use mongosh to connect your Online Archive instance. You can obtain the con-
nection string through the Atlas UI:

mongosh "mongodb://archived-atlas-online-archive-
➥66768d062b21b3-nu96v.a.query.mongodb.net/" \
--tls --authenticationDatabase admin \
--username manning
Enter password: ************
AtlasDataFederation test> use sample_supplies
switched to db sample_supplies
AtlasDataFederation sample_supplies> show collections
sales

6	 Run this aggregation pipeline with the $merge step. Be sure to provide the cor-
rect names for the target cluster (MongoDB-in-Action-M10), database (sample_
supplies), and collection (sales):

db.sales.aggregate([
  {
    "$merge": {
      "into": {
        "atlas": {
          "clusterName": "MongoDB-in-Action-M10",
          "db": "sample_supplies",
          "coll": "sales"
        }
      },
      "on": [ "saleDate", "customer" ],
      "whenMatched": "keepExisting",
      "whenNotMatched": "insert"
    }
  }
])



448 Chapter 17  Archiving online with Atlas Online Archive

By running this aggregation pipeline, you restore data from your Online Archive 
instance back to the main database.

TIP  Make sure that your cluster has enough capacity to handle the data being 
restored from your archive to avoid running out of space during or after the 
restoration process.

WARNING  This method is not advisable for large data sets (approximately 1 
TB) that have many partitions.

Summary

¡	Atlas Online Archive reduces storage costs by moving rarely accessed data to 
cheaper storage, integrating smoothly with Atlas. You can set custom archiving 
rules based on data use and retention needs.

¡	Online Archive is available only for clusters that are M10 and higher.

¡	Atlas moves rarely used data from your primary Atlas cluster to a read-only 
federated database instance, hosted on cloud object storage and managed by 
MongoDB. After archiving, you can access your active Atlas data and the archived 
data through a single read-only federated database instance.

¡	Atlas executes a specific query within the archive’s designated namespace to 
select documents for archiving. This job is set to run every 5 minutes.

¡	During data archiving, Atlas first moves data to cloud storage and then deletes it 
from your cluster. This may briefly cause duplicates in both locations, but when 
archival is complete, these documents are only in Online Archive.

¡	You can access both the Atlas cluster and Online Archive to execute read-only 
federated queries across live and archived data. You can also connect solely to the 
archived data.

¡	You can configure data processing limits for queries on archived data to control 
costs related to Online Archive. When the amount of processed data reaches a 
specified limit, Atlas stops executing new queries and sends an error message to 
the client application, indicating that the limit has been exceeded.

¡	Costs for federated and archive-only queries in Atlas accrue from data scans, 
access, and transfers. These expenses are driven by the amount of data processed, 
the number of archive partitions accessed, and the volume of data transferred 
within the federated infrastructure.

¡	You can restore archived data to your Atlas cluster. Atlas Data Federation pro-
vides a different syntax for the $merge pipeline stage, enabling the transfer of 
data to the same or another Atlas cluster, database, or collection within the same 
project.



449

18Querying Atlas  
using SQL

This chapter covers

¡	Exploring the Atlas SQL interface architecture
¡	Enabling Atlas SQL interface with Quick Start
¡	Connecting to the Atlas SQL interface with 		
	 mongosh

¡	Querying with the $sql aggregation pipeline 	
	 stage
¡	Operating a short-form SQL syntax with 		
	 db.sql()

Atlas enables SQL querying through its Atlas Data Federation feature, allowing you 
to run SQL queries such as SELECT and WHERE statements directly on your MongoDB 
collections. This feature provides a unified interface for data analysis and reporting 
using familiar SQL syntax. This functionality also enables you to create visualiza-
tions, graphs, and reports on your Atlas data using relational business-intelligence 
(BI) tools such as Power BI and Tableau.



450 Chapter 18  Querying Atlas using SQL

The Atlas SQL interface, along with its connectors and drivers, allows you to use 
your existing SQL skills to query and analyze live application data directly from your 
favorite SQL-based tools. Built with mongosql, an SQL-92–compatible dialect, this 
interface is designed to eliminate complex extract, transform, load (ETL) opera-
tions, enabling faster insights on Atlas data while preserving the richness of the doc-
ument model.

18.1	 Introducing the Atlas SQL interface
The Atlas SQL interface is exclusively for read operations. It does not support writ-
ing data back to your Atlas cluster because the interface uses Atlas Data Federation 
as its backend query engine, integrating data from various sources solely for query-
ing purposes. The SQL interface is accessible only through this federated database 
setup, ensuring that you can perform SQL queries seamlessly across aggregated data 
from multiple sources. This design maintains data integrity and consistency by limiting 
operations to read-only, optimizing query performance, and preventing data synchro-
nization complexities across sources.

Figure 18.1 shows the architecture of the Atlas SQL interface. Starting from the left, 
the Atlas data is accessed via the SQL interface, which is available through Atlas Data 
Federation. Each federated database instance contains virtual databases and collections 
that map to data in your data stores. The interface connects to SQL drivers and named 
connectors, facilitating seamless integration with various BI tools.

Uses MongoSQL—a MongoDB-native
SQL-92–compatible dialect

Atlas Atlas SQL
interface

Available via 
Atlas Data Federation

BI toolsSQL driver Named
connectors

Drivers and connectors

Figure 18.1  Atlas SQL interface architecture (Image © MongoDB 2024 CC BY-NC-SA 3.0)

NOTE  Querying your federated database instance with Atlas SQL incurs data 
transfer charges.

Atlas Data Federation automatically generates schemas for collections to facilitate SQL 
query compilation and type inference.



	 451Connecting to the Atlas SQL interface

Atlas SQL schemas are based on JSON schemas, which define the structure 
of MongoDB data, including flexible and nested fields. Atlas Data Federation 
automatically creates these JSON schemas by analyzing a sample of documents from 
your collection or view, making it easier for SQL-based tools to understand and work 
with MongoDB data.

If you change the name of a collection or view with an existing schema, the schema 
is renamed accordingly. Also, Atlas Data Federation automatically creates a schema 
for wildcard (*) collections upon their discovery in the namespace catalog. Atlas SQL 
recognizes the following fields within JSON schemas: bsonType, items, properties,  
additionalProperties, and required.

18.2	 Connecting to the Atlas SQL interface
First, enable the SQL interface by using the Atlas SQL Quick Start or configuring your 
own federated database instance, which automatically enables Atlas SQL. In this chap-
ter, I cover the first method.

18.2.1	 Enabling the interface

Navigate to the main view of your cluster in the Atlas UI. In this example, I use the M0 
instance created in part 1 of this book, MongoDB-in-Action (figure 18.2). To connect 
to Atlas SQL, click the Connect button.

Figure 18.2  The Connect button connects to the Atlas UI in the M0 cluster. (Image © MongoDB 2025)

You see various options for connecting your application to the MongoDB cluster. 
Select Atlas SQL, the last option in the list. When I wrote this book, the Atlas 
command-line interface (CLI) did not support Atlas SQL; therefore, you must use the 
Atlas UI.

Figure 18.3 shows the interface that appears after you select the Atlas SQL option. 
This chapter focuses solely on the Quick Start option. If you are interested in advanced 
options, look them up in the official MongoDB documentation at https://mng.bz/Jwlv.

https://mng.bz/Jwlv


452 Chapter 18  Querying Atlas using SQL

Figure 18.3  Atlas SQL Quick Start (Image © MongoDB 2025)

Click the Create button, and Atlas creates a data federation and activates the SQL 
interface. Atlas SQL operates on Atlas Data Federation and is free to enable.

18.2.2	 Accessing the interface

After a short time, your SQL interface is ready to use. All you have to do is copy the 
connection string and execute SQL queries. Step 3 of the interface provides a drop-
down menu of recommended drivers, including the Power BI connector, Tableau con-
nector, Java  Database Connectivity (JDBC) driver, and Open Database Connectivity 
(ODBC) driver. Although MongoDB Shell (mongosh) is not listed, you can still use it 
with the SQL interface.

In this chapter, you use mongosh. Copy the connection string from the URL section 
that is appropriate for your cluster, add the --username flag, and use the connection 
string with mongosh. My connection string follows:

mongosh "mongodb://atlas-sql-6658af98-nu96v.a.query.mongodb.net/" \
➥--tls --username manning
Enter password: ************

Current Mongosh Log ID: 66781bda6e037b83814161ac
Connecting to: mongodb://<credentials>@atlas-sql-6658cf98-
➥nu96v.a.query.mongodb.net/?directConnection=true&tls=true&
➥appName=mongosh+2.1.5
AtlasDataFederation test>

Now that you are connected to the SQL instance, you can execute queries on Mon-
goDB using the familiar SQL language.



	 453Querying MongoDB using SQL

18.3	 Querying MongoDB using SQL
Atlas SQL offers two syntax options for formulating SQL queries: an aggregation pipe-
line stage syntax and a simplified short-form syntax. You can use both options to craft 
queries within mongosh.

18.3.1	 Aggregation pipeline Atlas SQL syntax

The $sql aggregation pipeline stage allows you to craft Atlas SQL queries by process-
ing an SQL query on the data within a collection. Key points about the $sql stage are

¡	It must be the initial stage in any pipeline.

¡	It supports SELECT and UNION statements.

The $sql stage has the following syntax:

{
  $sql: {
    statement: "<SQL-statement>",
    excludeNamespaces: true | false
  }
}

statement is a string, SQL query, or command to run. excludeNamespaces is an 
optional Boolean flag that specifies whether to exclude namespaces in the result set.

Let’s see how to execute an Atlas SQL query that includes the $sql aggregation stage 
through mongosh. After logging into the Atlas SQL instance, navigate to the sample_
analytics database:

AtlasDataFederation test> use sample_analytics
switched to db sample_analytics
AtlasDataFederation sample_analytics>

Next, run the aggregation pipeline shown in the following listing, which uses SQL to 
retrieve a document from the customers collection.

Listing 18.1  Aggregation pipeline with the $sql stage

AtlasDataFederation sample_analytics>
db.aggregate([
  {
    $sql: {
      statement: "SELECT * FROM customers WHERE
➥username = 'valenciajennifer' AND
➥email = 'cooperalexis@hotmail.com'",
      format: "jdbc",
      dialect: "mongosql"
    }
  }
])



454 Chapter 18  Querying Atlas using SQL

[
  {
    customers: {
      _id: ObjectId('5ca4bbcea2dd94ee58162a69'),
      username: 'valenciajennifer',
      name: 'Lindsay Cowan',
      address: 'Unit 1047 Box 4089\nDPO AA 57348',
      birthdate: ISODate('1994-02-19T23:46:27.000Z'),
      email: 'cooperalexis@hotmail.com',
      accounts: [ 116508 ],
      tier_and_details: {
        c06d340a4bad42c59e3b6665571d2907: {
          tier: 'Platinum',
          benefits: [ 'dedicated account representative' ],
          active: true,
          id: 'c06d340a4bad42c59e3b6665571d2907'
        },
        '5d6a79083c26402bbef823a55d2f4208': {
          tier: 'Bronze',
          benefits: [ 'car rental insurance', 'concierge services' ],
          active: true,
          id: '5d6a79083c26402bbef823a55d2f4208'
        },
        b754ec2d455143bcb0f0d7bd46de6e06: {
          tier: 'Gold',
          benefits: [ 'airline lounge access' ],
          active: true,
          id: 'b754ec2d455143bcb0f0d7bd46de6e06'
        }
      }
    }
  }
]

The query runs an aggregation pipeline in MongoDB using the $sql stage to exe-
cute an SQL query directly on the customers collection. It uses a SELECT statement to 
retrieve all fields (*) from records in which the username is valenciajennifer and 
the email is cooperalexis@hotmail.com. The query format is specified as jdbc and 
the dialect as mongosql, which indicates the use of MongoDB’s SQL-like query syntax. 
This approach enables complex querying capabilities within MongoDB, bridging the 
gap between SQL and NoSQL database interactions by using SQL syntax directly in 
MongoDB’s aggregation framework.

NOTE  Atlas SQL uses the dialect mongosql.

18.3.2	 Short-form Atlas SQL syntax

You have the option to use the concise db.sql method to input an Atlas SQL statemen 
directly, as shown in the following listing. This streamlined syntax simplifies executing 
SQL queries within MongoDB by allowing you to pass SQL statements directly, bypass-
ing the more complex aggregation pipeline structure.



	 455Querying MongoDB using SQL

Listing 18.2  The short-form syntax (db.sql)

AtlasDataFederation test> use sample_analytics
switched to db sample_analytics
AtlasDataFederation sample_analytics>

db.sql(`
  SELECT username, name, address, birthdate
  FROM customers
  WHERE username = 'valenciajennifer' AND email = 'cooperalexis@hotmail.com'
`);

[
  {
    '': {
      username: 'valenciajennifer',
      name: 'Lindsay Cowan',
      address: 'Unit 1047 Box 4089\nDPO AA 57348',
      birthdate: ISODate('1994-02-19T23:46:27.000Z')
    }
  }
]

The db.sql method in mongosh allows direct execution of SQL queries within Atlas 
Federated Database. This method inputs an SQL statement that projects specific 
fields—username, name, address, and birthdate—from the customers collection. The 
query targets a customer identified by the username valenciajennifer and the email 
cooperalexis@hotmail.com.

18.3.3	 UNWIND and FLATTEN with Atlas SQL

With Atlas SQL, you can use UNWIND and FLATTEN functions to work efficiently with 
complex data structures within your documents. These functions enhance your capac-
ity to manipulate and analyze data directly in an SQL-like environment, providing pow-
erful tools for dealing with nested arrays and semistructured data.

UNWIND serves to deconstruct an array field from a data source, producing a separate 
row for each item in the array, simplifying data manipulation and analysis of array struc-
tures. The syntax for expanding array fields involves using the UNWIND function within 
the FROM clause, along with a data source and various options:

SELECT *
FROM UNWIND(<data source>
 WITH PATH => <array_path>,
 INDEX => <identifier>,
 OUTER => <bool>
)

Let’s see how the UNWIND function works in Atlas SQL, using a document from the 
accounts collection in the sample_analytics database:



456 Chapter 18  Querying Atlas using SQL

AtlasDataFederation sample_analytics> db.accounts.findOne()
{
  _id: ObjectId('5ca4bbc7a2dd94ee5816238e'),
  account_id: 198100,
  limit: 10000,
  products: [ 'Derivatives', 'CurrencyService', 'InvestmentStock' ]
}
AtlasDataFederation sample_analytics>

This document contains an array of products associated with an account, making it a 
suitable candidate for demonstrating the UNWIND operation in Atlas SQL. Here’s how 
you use the UNWIND function to expand the products array to individual rows, each 
containing a product and the associated account_id:

db.sql(`
  SELECT account_id, products AS product
  FROM UNWIND(accounts WITH PATH => products)
  WHERE account_id = 198100
`);
Note: this is an experimental feature that
➥may be subject to
➥change in future releases.
[
  { '': { account_id: 198100, product: 'Derivatives' } },
  { '': { account_id: 198100, product: 'CurrencyService' } },
  { '': { account_id: 198100, product: 'InvestmentStock' } }
]

You can use the UNWIND function in Atlas SQL to handle array fields by transforming 
them into a format akin to that of traditional relational database outputs, facilitating 
easier data analysis and manipulation.

FLATTEN transforms semistructured data such as JSON name–value pairs into distinct 
columns for easier analysis. This function converts document field names to column 
names and aligns their corresponding values in rows. It’s particularly useful for flatten-
ing nested documents. You can specify the function in the FROM clause of an SQL query 
with options to control the depth and format of the output.

The syntax for converting nested documents to a flattened format employs the 
FLATTEN function, which is incorporated into the FROM clause along with a designated 
data source and various options:

SELECT *
FROM FLATTEN(<data source>
 WITH DEPTH => <integer>,
 SEPARATOR => <string>
)

I’ll demonstrate how the FLATTEN function works in Atlas SQL using a document 
from the routes collection in the sample_training database. To select the relevant 



	 457Querying MongoDB using SQL

document, I query the routes collection for flights that originate from Kazan Interna-
tional Airport (KZN) and land at Astrakhan Airport (ASF):

AtlasDataFederation sample_training>
➥db.routes.find({ src_airport: 'KZN', dst_airport: 'ASF' })
[
  {
    _id: ObjectId('56e9b39b732b6122f877fa3f'),
    airline: { id: 410, name: 'Aerocondor', alias: '2B', iata: 'ARD' },
    src_airport: 'KZN',
    dst_airport: 'ASF',
    codeshare: '',
    stops: 0,
    airplane: 'CR2'
  }
]
AtlasDataFederation sample_training>

The query returns a single document that details a flight without any codeshares and 
with no stops, using a CR2 aircraft. To further illustrate the use of the FLATTEN func-
tion, I ensure that the SQL query specifically targets this document by using precise 
conditions in the WHERE clause:

db.sql(`SELECT * FROM FLATTEN(routes) WHERE src_airport = 'KZN'
➥AND dst_airport = 'ASF'`);
Note: this is an experimental feature that
➥may be subject to
➥change in future releases.
[
  {
    routes: {
      _id: ObjectId('56e9b39b732b6122f877fa3f'),
      airline_alias: '2B',
      airline_iata: 'ARD',
      airline_id: 410,
      airline_name: 'Aerocondor',
      airplane: 'CR2',
      codeshare: '',
      dst_airport: 'ASF',
      src_airport: 'KZN',
      stops: 0
    }
  }
]

The FLATTEN function transforms the nested structure of the document into a flat, 
tabular format. In this case, it extracts and lists the fields from the nested airline object 
and other top-level fields directly within the routes key, providing a simplified, more 
accessible view of the data.



458 Chapter 18  Querying Atlas using SQL

Limitations of the Atlas SQL interface
Atlas SQL is built on the SQL-92 standard, but it has some limitations that prevent full 
compatibility:

¡	The UNION function is not supported, though UNION ALL is available.
¡	The date data type is not supported. Use timestamp instead.
¡	SELECT DISTINCT is not supported.
¡	Interval and date-interval arithmetic are not supported.

NOTE  Atlas SQL does not support Atlas Vector Search and Atlas Search.

Summary

¡	Atlas enables SQL querying through Atlas Data Federation, allowing you to run 
SQL queries directly on your MongoDB collections.

¡	The Atlas SQL interface is designed solely for read operations. It can’t perform 
write operations back to your Atlas cluster because it relies on Atlas Data Fed-
eration as its backend query engine, consolidating data from multiple sources 
exclusively for querying.

¡	Atlas Data Federation automatically generates JSON schemas for collections to 
aid in SQL query compilation and type inference. These schemas capture the 
unique characteristics of MongoDB data, including its polymorphism, sparse-
ness, and complex nested structures.

¡	To use the Atlas SQL interface, activate it by using the Atlas SQL Quick Start or 
setting up your own federated database instance, which automatically enables 
Atlas SQL.

¡	The $sql aggregation pipeline stage enables the formulation of Atlas SQL  
queries through the execution of an SQL query on the data set within a collection.

¡	You can use the streamlined db.sql method to input an Atlas SQL statement 
directly. Be aware that this short-form syntax is unstable and may be subject to 
change.

¡	Atlas SQL allows you to use the UNWIND and FLATTEN functions to handle complex 
data structures in your documents. These functions enable effective manipula-
tion and analysis of nested arrays and semistructured data within an SQL-like 
environment.



459

19Creating charts, 
database triggers,  

and functions

This chapter covers

¡	Visualizing your data with charts
¡	Using natural language to build charts
¡	Discovering the Atlas billing dashboard
¡	Triggering server-side logic with database triggers
¡	Writing functions

MongoDB Atlas Charts is a powerful data visualization tool that makes it easy to 
analyze, explore, and interpret data. With customizable charts and dashboards, you 
can gain insights into data trends, detect anomalies, and effectively communicate 
findings to stakeholders. The intuitive drag-and-drop interface ensures that you can 
create detailed visualizations without going near a command-line interface (CLI). 
Its integration with MongoDB data makes it simple to keep information current and 
actionable. Atlas Charts can also help you create and customize your own billing 
dashboard, allowing precise tracking and visualization of your database expenses.

Atlas offers a wide range of auxiliary features to enhance database management 
and streamline operations. One of these features is Atlas Database Triggers, part of 
Atlas Application Services, which allows you to automate real-time data processing by 



460 Chapter 19  Creating charts, database triggers, and functions

executing server-side logic in response to specific database events. This reduces manual 
intervention, ensuring that workflows and data updates happen seamlessly and with-
out human involvement. Triggers are particularly useful for applications that require 
immediate data synchronization, logging, or notifications based on changes within the 
database.

19.1	 Visualizing data with Atlas Charts
Sometimes, you need to visualize data to gain insights or communicate complex infor-
mation more effectively, particularly when dealing with cloud spending, user behavior 
analytics, performance metrics, and other large data sets. Effective visualization can 
help identify trends, anomalies, and areas for optimization, which is crucial for making 
informed business decisions.

Atlas Charts is a data visualization tool that allows you to create and share charts and 
graphs based on your MongoDB data. It provides a user-friendly, no-code interface to 
build visualizations such as bar charts, line graphs, and heat maps directly from your 
MongoDB collections. The feature is designed to work seamlessly with MongoDB, offer-
ing powerful aggregation capabilities and real-time data updates. Key features  include

¡	Aggregation—It includes built-in aggregation capabilities, allowing you to analyze 
your collection data using various metrics. You can perform calculations such as 
mean and standard deviation to gain deeper insights.

¡	Integration with Atlas—It integrates with Atlas, enabling you to connect charts to 
your Atlas projects and visualize your cluster data.

¡	Document data handling—It can manage document-based data, including embed-
ded objects and arrays. It supports flexible data structuring while maintaining 
robust visualization features.

Figure 19.1 shows a dashboard displaying multiple charts of key movie statistics from 
documents in a MongoDB collection.

You can embed these charts in your applications or dashboards, making it easy to 
analyze and present your data without moving it to another platform. The ecosystem 
consists of several essential elements:

¡	Data source—When creating a chart, you must select a data source that provides 
the fields for building your visualizations. You can connect to these data sources:

–	 MongoDB collection or database view—Connect directly to a collection or view 
within your MongoDB deployment.

–	 Charts view—Create a custom charts view from an existing collection to tailor 
the data specifically for visualization.

¡	Chart—A chart is a visualization built from a specific data source. Fields from the 
selected data source are used to construct the chart, enabling you to represent 
complex data sets in formats such as bar charts, scatter plots, and number charts.

¡	Dashboard—A dashboard displays one or more charts. The dashboard is the pri-
mary interface for creating, managing, and viewing your visualizations.



	 461Visualizing data with Atlas Charts

Figure 19.1  This example dashboard displays the total number of movies (2,658) and their average Metacritic 
score (55). The Movie Ratings pie chart breaks down films by rating categories. The Top 10 Genres bar chart 
highlights the most popular genres, with Drama leading. The Top 10 Languages chart shows that English 
dominates, and the Most Prolific Actors chart identifies actors with the most appearances, categorized by critic 
ratings (Fresh, Not Rated, and Rotten). (Image © MongoDB 2025)

The following chart types offer a wide range of options for visualizing your data. Each 
type serves a specific purpose, allowing you to analyze and present your data effectively 
in various formats:

¡	Natural language—Automatically generate charts based on a plain-English query 
using AI models.

¡	Column and bar—Compare values within categories to provide an overview of 
data trends.

¡	Line and area—Display data points connected by lines, showing trends over time 
or categories.

¡	Combo—Combine column and line views for a mixed representation of data.

¡	Heatmaps—Visualize aggregated data in a color-coded grid format.

¡	Scatter—Plot individual data points along the X and Y axes to show distribution 
or correlation.

¡	Doughnut—Represent data as segments of a circle, showing proportions of each 
category.

¡	Gauge—Show data as a percentage of a semicircle with customizable ranges and 
an optional target value.



462 Chapter 19  Creating charts, database triggers, and functions

¡	Tables—Display data in a spreadsheetlike tabular format.

¡	Number—Show a single aggregated value from the data.

¡	Word—Highlight key words or phrases by their frequency in the data.

¡	Top item—Show the document with the largest or smallest value for a specified 
field.

¡	Geospatial—Combine geospatial and other data to create map-based visualizations.

19.1.1	 Using natural language to build visualizations

With natural-language mode, you can generate data visualizations instantly by 
querying your Atlas data sets in plain English. This functionality eliminates complex 
query writing and technical expertise, allowing you to interact with data intuitively. You 
can quickly create advanced, scalable visualizations directly within the Atlas ecosystem, 
significantly streamlining data analysis and reducing the time required for insights. 
Without knowing how to generate a chart professionally or write an aggregation 
pipeline, you can use a plain-English sentence like “ What are the top 10 cuisines in 
terms of the number of restaurants in each borough?” when visualizing data from the 
sample_restaurants database and the restaurants collection. Atlas can generate a 
chart based on your request. Figure 19.2 presents the chart generated from this query.

Figure 19.2  The chart generated using natural-language mode based on a plain-English query. The chart displays 
a boroughwise breakdown of the top 10 cuisines by number of restaurants. The y axis lists the cuisines, and the 
x axis shows the count of restaurants (restaurant_id). Each borough is represented by different colors (along 
with restaurants that are missing a designation). The chart shows that American cuisine has the highest presence, 
particularly in Manhattan. (Image © MongoDB 2025)



	 463Visualizing data with Atlas Charts

You can view the aggregation pipeline that was used to create the chart in figure 19.2 
by accessing the chart’s Options menu. The aggregation applied to the data source for 
this chart looks like this:

[
  {
    "$group": {
      "_id": {
        "__alias_0": "$cuisine",
        "__alias_1": "$borough"
      },
      "__alias_2": {
        "$sum": {
          "$cond": [
            {
              "$ne": [
                {
                  "$type": "$restaurant_id"
                },
                "missing"
              ]
            },
            1,
            0
          ]
        }
      }
    }
  },
  {
    "$project": {
      "_id": 0,
      "__alias_0": "$_id.__alias_0",
      "__alias_1": "$_id.__alias_1",
      "__alias_2": 1
    }
  },
  {
    "$project": {
      "x": "$__alias_2",
      "y": "$__alias_0",
      "color": "$__alias_1",
      "_id": 0
    }
  },
  {
    "$addFields": {
      "__agg_sum": {
        "$sum": [
          "$x"
        ]
      }
    }
  },
  {



464 Chapter 19  Creating charts, database triggers, and functions

    "$group": {
      "_id": {
        "y": "$y"
      },
      "__grouped_docs": {
        "$push": "$$ROOT"
      },
      "__agg_sum": {
        "$sum": "$__agg_sum"
      }
    }
  },
  {
    "$sort": {
      "__agg_sum": -1
    }
  },
  {
    "$limit": 10
  },
  {
    "$unwind": "$__grouped_docs"
  },
  {
    "$replaceRoot": {
      "newRoot": "$__grouped_docs"
    }
  },
  {
    "$project": {
      "__agg_sum": 0
    }
  }
]

This aggregation groups data by cuisine and borough, counting the number of valid 
restaurants. Then it projects the results into fields for visualization: x for the count of 
restaurants, y for cuisine, and color for borough. After sorting by total count, it selects 
the top 10 cuisines and restructures the output for display in the chart.

Natural-language charts currently rely on the Microsoft Azure OpenAI service, 
although this may change. When you interact with natural-language charts, Atlas trans-
mits the following data to MongoDB’s backend and/or the third-party AI provider:

¡	The full content of your natural-language query

¡	The schema of the collection used to generate the chart, including collection 
and field names and field data types

¡	Sample field values to enhance the accuracy of chart recommendations

This information is not shared with external third parties or retained by the AI pro-
vider. Database connection strings and credentials are never transmitted. By default, 
MongoDB retains your original query text for up to one year to support customer assis-
tance and improve the service.



	 465Visualizing data with Atlas Charts

19.1.2	 Using billing dashboards

You can use Atlas Charts to visualize your billing data by creating a billing dashboard. 
These dashboards come with prebuilt charts to help you track your Atlas use. After you 
import your billing data, you can add a billing dashboard and adjust it to fit your needs.

Billing dashboards offer detailed metrics and charts that show your organization’s 
use across various categories and time frames. These insights help you manage and 
optimize your Atlas expenses. Billing dashboards include the following metrics and 
charts:

¡	Total spending across the organization

¡	Top spenders in the organization

¡	Total spending by instance size, project, cluster, product category, or Stock Keep-
ing Unit (SKU), a unique identifier for each product or service)

¡	Total cost by product category

You can also customize your billing dashboard by applying filters and adding new 
charts, including those based on tags you’ve assigned to your billing data. Figure 19.3 
shows an example of a billing dashboard.

Figure 19.3  The Atlas billing dashboard with three main financial metrics on the left. Total spend for the month 
to date is $23.80, total spend for the previous month is $25.42, and total spend for the year to date is $98.42. The 
central chart visualizes daily spending across projects over the past week, with each project contributing to the 
total spend on each day, represented by colored bar segments. Filters on the right side allow further customization 
of the data displayed. (Image © MongoDB 2025)



466 Chapter 19  Creating charts, database triggers, and functions

Billing dashboards make it easy to monitor and compare costs across projects and peri-
ods. Filtering by project, team, and other criteria makes this tool flexible and enables 
you to drill down into specific spending patterns, which helps with budget manage-
ment, cost optimization, and identifying trends in resource use across the organization.

NOTE  Billing dashboards always display the most recent 12 months of billing 
data for the selected organization.

Pricing

Billing is based on the data volume transferred from the Charts web server to clients’ 
web browsers. Each instance comes with 1 GB of free data transfers per month. You 
can monitor this use on the Data Transfer page and create a billing dashboard to get a 
detailed view.

This free tier provides around 500,000 chart renders monthly, though the actual 
number depends on the chart types. Simple charts, such as number and bar charts, use 
less data; complex charts, such as scatter plots with numerous data points, use more.

After you exceed the 1 GB free limit, data transfer is billed at $1 per gigabyte. Addi-
tional data transfer fees may apply, as detailed in the Data Transfer Fees section of the 
pricing page.

NOTE  Atlas Charts is hosted in the Amazon Web Services (AWS) us-east-1 
region, which is used for fee calculation.

Supported cluster types

Atlas Charts provides full support for all cluster configurations within Atlas, whether 
you’re using flex clusters, dedicated clusters, data stored in Online Archive, or feder-
ated data through Atlas Data Federation. No matter how you set up or manage your 
application data, you can visualize it easily with charts. There are no hidden limita-
tions or compatibility problems; if your data is hosted in Atlas, it can be represented in 
Charts, allowing you to explore and analyze it effortlessly. This flexibility ensures that 
as your data architecture evolves, Charts remains a powerful, reliable tool for visualiz-
ing your data without additional constraints.

If you’re looking to get started with Charts, the best place to begin is the MongoDB 
documentation, which provides step-by-step tutorials to guide you through creating 
and managing your charts. You can explore all the resources and tutorials by visiting 
https://www.mongodb.com/docs/charts/tutorials.

19.2	 Atlas Application Services
Atlas Application Services provides fully managed backend solutions in Atlas, enabling 
you to use database triggers and functions to build reactive, event-driven applications. 
Database triggers automatically execute functions when specific changes occur in the 
Atlas database, allowing real-time responses to data updates, inserts, deletes, and sim-
ilar operations. This makes it easier to automate processes, such as sending notifica-
tions or synchronizing data across systems.

https://www.mongodb.com/docs/charts/tutorials


	 467Atlas Application Services

Functions, written in JavaScript, allow developers to define custom server-side logic 
without managing or deploying servers. These functions can handle complex opera-
tions such as data validation, transformation, and external API integration, simplifying 
tasks that typically require more infrastructure.

By using triggers and functions together, you can create scalable, serverless solutions 
that react to data changes dynamically, improving efficiency and performance. For 
more information about Atlas Application Services, see https://www.mongodb.com/
docs/atlas/app-services.

19.2.1	 Triggering server-side logic with Atlas Database Triggers

Triggers in a database are powerful tools that allow automation and enforcement 
of rules without manual intervention. They can respond to changes in the data and 
ensure that the information being stored adheres to predefined standards or business 
requirements. In the real world, triggers are similar to doors that open automatically 
when someone approaches. No one needs to push a button; the door reacts to the 
person’s presence. In the same way, database triggers respond to changes in data auto-
matically, performing tasks without manual input.

Triggers can facilitate complex data interactions and automate responses to data 
changes. When a customer’s address is modified, for example, a trigger can automat-
ically update related records, such as shipping information, to maintain consistency 
across the system. Triggers can also communicate with external services. Adding a new 
order might initiate a real-time stock update in an inventory management system, for 
example.

With the help of functions, triggers can automate calling external APIs, such as the 
OpenAI Embedding API, to generate a vector representation of a new document upon 
its insertion into the database. Then this vector can be stored automatically alongside 
the original document in MongoDB. This setup streamlines data processing and inte-
gration workflows, allowing advanced analysis and retrieval by keeping the original data 
and its enriched vector representation directly within the database. Triggers invoke 
Atlas Functions (section 19.2.2).

Figure 19.4 showcases the trigger types available for an Atlas cluster, designed to 
react automatically to changes, schedules, and user actions. These triggers are orga-
nized in three main types: database, scheduled, and authentication.

Trigger types

Atlas supports three types of triggers, allowing you to automate workflows and respond 
to events within your system based on specific criteria or actions:

¡	Database—These triggers fire when certain operations occur in a collection, such 
as inserting, updating, deleting, or replacing documents. In an e-commerce 
application, for example, a database trigger could automatically adjust inventory 
levels when a new order is placed. Similarly, if a customer updates their address, 
the trigger ensures that the new shipping information is synced across all rel-
evant systems, eliminating manual updates. Database triggers use MongoDB 

https://www.mongodb.com/docs/atlas/app-services
https://www.mongodb.com/docs/atlas/app-services


468 Chapter 19  Creating charts, database triggers, and functions

Database triggers

Operation type

Insert Update Delete Replace

Authentication triggers

Action type

Create Login Delete

Scheduled triggers

Schedule type

Basic Advanced

Trigger types

Figure 19.4  Trigger types in Atlas: database (insert, update, delete, and replace), scheduled (basic and 
advanced), and authentication (create, login, and delete) (Image © MongoDB 2024 CC BY-NC-SA 3.0)

change streams to monitor real-time updates in a collection. A change stream 
consists of a sequence of events, each detailing an operation performed on a 
document within the collection. For every collection with at least one active trig-
ger, the application opens a single change stream. If a collection has multiple 
triggers, all of them use this shared change stream.

¡	Scheduled—These triggers enable tasks to be executed at predefined intervals. 
You can use scheduled triggers for daily tasks such as sending automated email 
reports and performing routine data analysis. You could use advanced sched-
uled triggers for more complex workflows, such as generating monthly finan-
cial reports or sending out seasonal promotions based on specific dates and 
times.

¡	Authentication—These triggers are activated by user authentication events such as 
login, account creation, or deletion. When a user creates an account, for exam-
ple, an authentication trigger might send a welcome email or initiate a process 
to add the user to a mailing list. If a user deletes their account, the trigger could 
automatically revoke the user’s access to associated services or log the event for 
security tracking.

NOTE  Atlas Triggers are, in essence, serverless functions linked to change 
streams. Every trigger is associated with a specific function. When the trigger 
detects an event matching its configuration, it activates and sends the event 
object to the linked function as an argument.

TIP  Atlas limits the number of database triggers based on the size of your 
cluster. Each trigger requires a change stream, and the total number cannot 
exceed the cluster’s change stream limit.



	 469Atlas Application Services

Creating a trigger

Database triggers execute server-side code whenever a change occurs in a connected 
Atlas cluster. You can set up triggers for specific collections, whole databases, or the 
entire cluster. Unlike SQL data triggers, which operate directly on the database server, 
Atlas Triggers run on a separate serverless computing layer, which scales independently 
from the database server itself. Triggers can automatically invoke functions and also 
send events to external services using AWS EventBridge.

Database triggers use change streams to monitor real-time changes within a collec-
tion. When multiple triggers are enabled on the same collection, they all use a single 
change stream. You can control which operations activate a trigger and define what 
actions are taken when the trigger is fired. Triggers support $match expressions to filter 
change events and $project expressions to restrict the data included in each event. 
Follow these steps to create a trigger:

1	 Navigate to the Atlas UI for your cluster.

2	 In the left panel, expand the Services section, and click Triggers.

3	 Click the Add Trigger button in the top-right corner. The menu shown in figure 
19.5 appears.

Figure 19.5  The Add Trigger interface in Atlas. At the top, you can choose the trigger type: Database or 
Scheduled. In the Trigger Details section, you can set the trigger’s name, enable or disable it, choose to skip events 
when reenabled, and control event ordering. (Image © MongoDB 2025)

4	 In the Trigger Details section, choose Database for database triggers, and provide 
a name for the trigger.

5	 Activate the trigger by clicking the Enable toggle switch, and choose to skip 
events on reenable to avoid processing events that occurred while the trigger 
was disabled. Enable event ordering if you want events to be processed sequen-
tially based on their timestamps, or disable it for parallel processing to improve 
performance.



470 Chapter 19  Creating charts, database triggers, and functions

6	 Configure the trigger source details:

a	 Select the level of granularity for the Watch Against setting.

b	 Choose Collection to trigger on changes in a specific collection, Database 
for changes in any collection within a specific database, or Deployment for 
changes across the entire cluster. Note that the deployment option is available 
only on dedicated tiers.

I used MongoDB-in-Action as the cluster name, sample_restaurants as the data-
base, and restaurants as the collection.

7	 Select the operation types that will trigger the event, such as insert, update, and 
delete.

8	 Enable the Full Document option to include the latest version of the modified 
document in the change events and the Document Preimage option to include a 
snapshot of the document before the change.

9	 In the Function section, select the action to take when the trigger fires. List-
ing 19.1 demonstrates a function designed to log various change events, such 
as insert, update, and delete, in a separate collection for debugging and 
recordkeeping.

Listing 19.1  Database trigger function to log change events

exports = async function(changeEvent) {
  // Log the entire change event for debugging
  const fullChangeEvent = EJSON.stringify(changeEvent, null, 2);
  console.log(`Full Change Event: ${fullChangeEvent}`);

  // Check if changeEvent is empty
  if (!changeEvent || Object.keys(changeEvent).length === 0) {
➥// 
    console.error('No change event data received.');
➥// 
    return; // 
  }

  // Log all keys in changeEvent
  console.log(`Change Event Keys: ${Object.keys(changeEvent).join(', ')}`);
➥// 

  // Access the change event details
  const { operationType, documentKey, updateDescription } = changeEvent;
➥// 

  // Validate the existence of required fields in the change event
  if (!operationType) { // 
    console.error('Missing operationType in changeEvent.');
➥// 
    return; // 
  }

Validates 
changeEvent

Logs changeEvent keys

Extracts event details

Validates 
operationType



	 471Atlas Application Services

  if (!documentKey) { // 
    console.error('Missing documentKey in changeEvent.');
➥// 
    return; // 
  }

  // Get a reference to the MongoDB service
  const mongodb = context.services.get("MongoDB-in-Action");
➥// 
  const logsCollection =
➥mongodb.db("sample_restaurants").collection("restaurants_logs");

  // Handle different operation types
  if (operationType === 'insert') { // 
    console.log('Insert operation detected.'); // 

    // Create a log entry for the insert operation
    const logEntry = { // 
      operation: "insert", // 
      documentId: documentKey._id, // 
      timestamp: new Date() // 
    };

    // Insert the log into the "restaurants_logs" collection
    await logsCollection.insertOne(logEntry); // 

    console.log(`Log entry inserted: ${JSON.stringify(logEntry)}`);
➥// 

  } else if (operationType === 'update') { // 
    if (!updateDescription || !updateDescription.updatedFields) {
➥// 
      console.error('Missing updateDescription.updatedFields in
➥changeEvent.');
// 
      return; // 
    }

    // Get the updated fields
    const updatedFields = updateDescription.updatedFields; //
➥

    // Log the updated fields
    console.log(`Updated Fields: ${JSON.stringify(updatedFields)}`);
➥// 

    // Create a log entry for the update operation
    const logEntry = { // 
      operation: "update", // 
      documentId: documentKey._id, // 
      updatedFields: updatedFields, // 
      timestamp: new Date() // 
    };

    // Insert the log into the "restaurants_logs" collection

Validates 
documentKey

Accesses MongoDB service

Handles 
insert 
event

Handles 
update 
event



472 Chapter 19  Creating charts, database triggers, and functions

    await logsCollection.insertOne(logEntry); // 

    console.log(`Log entry inserted: ${JSON.stringify(logEntry)}`);
➥// 

  } else if (operationType === 'delete') { // 
    // For delete operations, only documentKey is available
    console.log('Delete operation detected.'); // 

    const logEntry = { // 
      operation: "delete", // 
      documentId: documentKey._id, // 
      timestamp: new Date() // 
    };

    // Insert the log into the "restaurants_logs" collection
    await logsCollection.insertOne(logEntry); // 

    console.log(`Log entry inserted: ${JSON.stringify(logEntry)}`);
➥// 

  } else { // 
    console.error(`Unsupported operation type: ${operationType}`);
➥// 
  }
};

The function logs the entire change event for debugging purposes and then checks 
whether the change event contains any data. If essential fields such as operationType 
and documentKey are missing, it logs an error and stops execution. It connects to the 
"MongoDB-in-Action" service and accesses the restaurants_logs collection in the 
sample_restaurants database. It handles different events based on the operation
Type. For inserts, it logs the event with the document ID and timestamp; for updates, 
it includes the updated fields; and for deletes, it logs the document ID. Then it inserts 
each log entry into the restaurants_logs collection.

The Advanced section of the interface provides optional configurations. The Match 
Expression field allows you to define a $match expression to filter which change events 
cause the trigger to fire, for example. For detailed information, see https://mng 
.bz/4n1a.

NOTE  Atlas Database Triggers have many uses beyond the examples listed, 
such as syncing databases, enforcing business rules, calling external APIs, 
auditing, validating data, sending alerts, aggregating in real time, maintaining 
views, cleaning up after deletions, and securing sensitive data. All this logic is 
implemented within Atlas Functions (section 19.2.2).

Configuring a scheduled trigger

You can use scheduled triggers for recurring tasks, such as updating a document every 
minute, cleaning up old log entries every night, or synchronizing data with an external 
API on a weekly basis. Figure 19.6 shows how to create a scheduled trigger in the Atlas UI.

Handles 
update 
event

Handles 
delete 
event

Handles 
unsupported 
types

https://mng.bz/4n1a
https://mng.bz/4n1a


	 473Atlas Application Services

Figure 19.6  The interface for setting up a scheduled trigger. Trigger Type is set to Scheduled, indicating that this 
trigger will execute at regular intervals. Schedule Type is set to Advanced, which allows complex scheduling with 
cron expressions. cron expressions provide flexibility by allowing you to define when the trigger should run. 
(Image © MongoDB 2025)

To set up a scheduled trigger, select Scheduled in the Trigger Type section, ensuring 
that the trigger runs at specific intervals that you define. Make sure that the Enabled 
toggle is switched on, indicating that the trigger is active. In the Schedule Type sec-
tion, select Advanced, and allow complex scheduling with CRON expressions. CRON 
expressions are strings made up of five space-separated fields, with each field defining a 
particular part of the schedule for the trigger:

*  *  *  *  *
│  │  │  │  └── weekday...........[0 (SUN) - 6 (SAT)]
│  │  │  └──── month.............[1 (JAN) - 12 (DEC)]
│  │  └────── dayOfMonth........[1 - 31]
│  └──────── hour..............[0 - 23]
└────────── minute............[0 - 59]

In this case, the CRON expression */1 * * * * is used, indicating that the trigger 
will execute every minute. You can customize the schedule to suit your needs, how-
ever, specifying exactly when the trigger should run, including the minute, hour, day, 
month, and day of the week. With this configuration, the trigger will execute the func-
tion you define at the specified times.

Using an authentication trigger

An authentication trigger activates when a user interacts with an authentication pro-
vider. Atlas handles user authentication by using role-based access rules to set permis-
sions for reading and writing data. It links each request to an authenticated user and 
assesses permissions for every object involved. You can manage user-specific metadata 
and custom data through user accounts. Authentication is managed through vari-
ous providers, including built-in ones like Facebook and Google, as well as custom 



474 Chapter 19  Creating charts, database triggers, and functions

providers for integrating other authentication systems. For more details on authentica-
tion providers, see the documentation at https://mng.bz/Qw8w.

Authentication triggers are useful for sophisticated user management tasks such as 
these:

¡	Saving new user data to your connected cluster

¡	Ensuring data consistency when a user is deleted

¡	Invoking a service with user information upon login

Event processing performance

Triggers operate in a serverless manner, processing events as capacity allows. Their 
capacity is influenced by the event ordering configuration:

¡	Ordered triggers process events sequentially from the change stream, handling 
one event at a time. The next event starts processing only after the previous one 
is fully processed.

¡	Unordered triggers can handle multiple events concurrently, with a default limit 
of up to 10,000 events. If the trigger’s data source is an M10+ Atlas cluster, this 
limit can be increased to surpass the default 10,000 concurrent events.

It’s important to note that trigger capacity doesn’t translate directly to throughput or 
a fixed execution rate; it simply defines the maximum number of events a trigger can 
handle at a given moment. The actual processing rate depends on the logic within the 
trigger function and the volume of incoming events. To increase a trigger’s through-
put, you can

¡	Optimize the trigger function’s execution, such as minimizing network calls

¡	Use a projection filter to reduce the size of each event object, ideally to 2 KB or 
less

¡	Apply a match filter to limit the events the trigger processes, firing only when 
specific conditions are met, such as changes to a particular field

NOTE  Defining a database trigger on a federated database instance is not pos-
sible; these instances do not support change streams.

19.2.2	 Writing Atlas Functions

Atlas Functions are serverless and essential for executing logic with Atlas Triggers. 
When a function is called, the request is routed to a managed server that runs your 
code and returns the result. This serverless model eliminates the need to handle 
server deployment or maintenance. Functions can execute any JavaScript code you 
define, allowing for a variety of tasks. Typical use cases include low-latency, short-
duration operations such as data transformations, validation, and data movement. 
They can also interact with external services, such as APIs, abstracting complex logic. 
Atlas Functions can invoke other functions, and they come with a built-in client for 

https://mng.bz/Qw8w


	 475Atlas Application Services

interacting with data in Atlas clusters. They also offer useful global utilities, support 
standard Node.js modules, and allow you to import and use external libraries from 
the npm registry.

When using triggers (section 19.2.1), you write functions that are executed automat-
ically in response to specific database events. When a database trigger detects a change, 
for example, it calls its associated function with the change event as an argument. Then 
this function can access the event details and take appropriate actions, such as updat-
ing other parts of the database or sending notifications. Here’s a simple function that 
returns a greeting:

exports = function(name) {
  return `Hello, ${name ?? "MongoDB-in-Action"}!`;
}

TIP  A function executes within a context that includes details about its envi-
ronment, such as the calling user, the method of invocation, and the app’s 
state at that time. This context allows you to run user-specific code and interact 
with other parts of your app.

You can use modern JavaScript features and import libraries to create more sophisti-
cated functions, as shown in the following listing. This example code is provided for 
learning purposes; the API URL is fictional.

Listing 19.2  Example Atlas function

// Using ES6 arrow functions
const calculateSum = (a, b) => a + b; // 

// Using async/await for handling Promises
exports = async function fetchUserData() { // 
  try { // 
    // Retrieve user-specific information
    const userId = context.user.custom_data.id; // 

    // Import Node.js modules and npm packages
    const { URL } = require('url'); // 
   // Add an API URL. Please note that this address is fictional.
   const apiUrl = new URL('https://api.example.com/user');
➥// 
    apiUrl.pathname += `/${userId}`; // 

    // Make an HTTPS request to an external API
    const response = await context.http.get({ // 
      url: apiUrl.toString(), // 
      headers: { Accept: 'application/json' } // 
    });

    // Check if the response is valid

Simple arrow function to calculate 
the sum of two numbers

Defines an async function 
to fetch user data

Starts a try block 
for error handling

Retrieves the user ID 
from the context

Imports the 
url module 
and constructs 
the API URL

Makes an HTTPS request 
to the external API



476 Chapter 19  Creating charts, database triggers, and functions

    if (!response || response.statusCode !== 200) { /
➥/ 
      console.error('Failed to fetch user data.');
➥// 
      return 'Error fetching user data'; // 
    }

    // Parse the response body
    const userData = JSON.parse(response.body.text());
➥// 
    const { name, email } = userData; // 

    // Return the formatted user information
    return `User Information:\nName: ${name}\nEmail: ${email}`;
➥// 

  } catch (error) { // 
    console.error(`Error in fetchUserData: ${error.message}`);
➥// 
    return 'Error fetching user data'; // 
  }
};

This function uses modern JavaScript features to fetch user data from an external API. 
It employs ES6 arrow functions for simplicity and async/await for handling asynchro-
nous operations. The function retrieves a user ID from the context, constructs a URL 
to request the user data, sends an HTTPS GET request, and processes the response to 
return the user’s name and email.

Atlas Functions can interact with your MongoDB databases, perform complex que-
ries, trigger on database events, call external APIs, and implement business logic. They 
are often used for tasks such as data synchronization, data validation, automation, and 
real-time processing while ensuring scalability and security.

Summary

¡	Atlas Charts is a tool for creating and sharing visualizations such as bar charts 
and line graphs directly from your MongoDB data. It offers a no-code interface, 
real-time data updates, and seamless integration with MongoDB, allowing you to 
embed charts in applications or dashboards for easy data analysis.

¡	Natural-language charts currently use Azure OpenAI. MongoDB sends your 
query, schema, and sample data to its backend and the AI provider without shar-
ing credentials or data with third parties. Queries are stored for up to a year to 
improve service and support.

¡	You can create a billing dashboard to visualize your billing data. Billing dash-
boards include ready-made charts that help you monitor your use. After loading 
your billing data, you can customize a dashboard to meet your requirements.

Validates the response 
and handles errors

Parses the API 
response

Extracts the 
user’s name and 
email from the 
response

Returns the formatted 
user information

Catches and 
logs errors



	 477Summary

¡	Atlas Application Services are managed backend services and APIs that simplify 
building cloud apps. They let you respond to Atlas data changes, integrate with 
other systems, and scale easily without server or infrastructure management.

¡	The three types of Atlas Triggers are database (for changes in a MongoDB collec-
tion), scheduled (for recurring tasks), and authentication (for user interactions 
with authentication providers). Each trigger is connected to a specific function. 
When the trigger detects an event that meets your defined criteria, it fires; then it 
passes the event object as an argument to the associated function.

¡	Database triggers are highly effective mechanisms for automating processes and 
enforcing rules without manual input. They react to data changes and ensure 
that the stored information adheres to established standards and complies with 
specific business rules.

¡	Triggers use MongoDB change streams to track real-time changes in a collection. 
A change stream is made up of a series of events, each describing an action taken 
on a document within the collection.

¡	Scheduled triggers enable you to execute server-side logic at predefined inter-
vals. They are ideal for tasks that need regular execution, such as updating a doc-
ument every hour, generating a daily performance report, or processing routine 
data analysis.

¡	Authentication triggers are triggered by events related to user authentication, 
such as login, account registration, or account deletion. When a user registers a 
new account, an authentication trigger can be used to send a welcome email or 
automatically subscribe the user to a mailing list.

¡	An Atlas Function is server-side JavaScript code that controls your app’s behavior. 
It can be run directly from the client app or triggered automatically. These func-
tions can call other functions, access Atlas data, and use built-in tools.

¡	Atlas Functions can call other functions, access data in Atlas clusters using a 
built-in client, and support global utilities, Node.js modules, and external npm 
packages.





Part 3

MongoDB security  
and operations

Imagine waking up to an alert that sensitive customer data has been exposed, 
or finding out that a misconfigured permission allowed someone to delete your 
production database, or realizing too late that your backups stopped running 
a week ago. Security and operational excellence aren’t technical requirements 
alone; they’re also the foundation of trust between your application and your 
users.

As applications grow more complex and teams become more distributed, keep-
ing your data secure and your systems healthy becomes more important and more 
difficult. MongoDB Atlas was built with this reality in mind. It helps you develop 
quickly—and safely.

This part of the book focuses on the critical aspects of security, monitoring, 
backup, and performance optimization in MongoDB and Atlas. You’ll learn how 
to build systems that are fast, scalable, resilient, compliant, and auditable.

In chapter 20, you’ll dive deep into the security features offered by MongoDB 
and Atlas, from authentication and authorization to encryption at rest and in tran-
sit. You’ll see how Atlas helps you enforce best practices by default. You’ll explore 
field-level encryption, key management integration (KMS), private networking, 
and features such as Queryable Encryption that let you search over encrypted 
data while meeting strict compliance standards.

Chapter 21 shifts the focus to operational best practices. You’ll learn how to 
monitor and alert on system health using Atlas’s built-in tools. Whether you’re 



480  MongoDB security and operations

tracking slow queries, watching replication lag, or receiving alerts when resource use 
spikes, Atlas gives you deep visibility into your cluster’s behavior.

You’ll also dive into backup and restore strategies, an essential layer of opera-
tional safety. You’ll learn the differences between cloud backups and snapshots for 
Flex clusters. You’ll see how to restore data, even to a precise point in time. You’ll also 
see how to encrypt backups and meet compliance requirements while ensuring data 
durability.

The chapter ends with practical guidance on performance tuning. You’ll learn 
how to identify and resolve common performance problems, such as slow queries, 
missing indexes, suboptimal schema designs, and resource bottlenecks. These tech-
niques can dramatically improve the user experience of your application and reduce 
infrastructure costs.

This part is about keeping your MongoDB environment strong and secure even 
under pressure. Whether you’re managing one cluster or an enterprise fleet, these 
chapters will help you stay in control, react quickly, and sleep better at night.



481

20Understanding  
Atlas and MongoDB  

security features

This chapter covers

¡	Learning Atlas’s shared responsibility model
¡	Using authentication, authorization, and auditing
¡	Encrypting data using customer-managed keys
¡	Securing network connections
¡	Defending Atlas in depth

In the digital age, cybersecurity is essential for protecting sensitive information 
from a wide range of advanced threats. Strong security measures help maintain data 
confidentiality (keeping information private), integrity (ensuring that data isn’t 
altered without permission), and availability (keeping data accessible). These three 
elements are the foundation for building customer trust, securing personal and 
business data, and meeting legal requirements across industries. Without effective 
cybersecurity, data breaches can lead to serious financial loss, regulatory penalties, 
and lasting reputational damage. Also, with remote work and cloud-based systems 
becoming the norm, the risk of cyberattacks is higher than ever, making cybersecu-
rity a critical priority for every organization.



482 Chapter 20  Understanding Atlas and MongoDB security features

Atlas offers robust security features designed to safeguard your data at every stage of 
its life cycle. The platform is built with strong security defaults, ensuring that your data 
is protected from the moment it’s ingested to the time it’s archived or deleted. Over the 
years, MongoDB has undergone extensive evaluations to meet stringent industry stan-
dards and regulatory requirements. It has achieved certifications such as the Health 
Insurance Portability and Accountability Act (HIPAA), General Data Protection Regu-
lation (GDPR), International Organization for Standardization (ISO), Payment Card 
Industry (PCI), and FedRAMP Moderate (which certifies cloud security for US govern-
ment data). These certifications highlight MongoDB’s commitment to data protection 
and compliance across industries; they reinforce Atlas as a reliable solution for busi-
nesses handling sensitive and regulated information while adhering to data localization 
and security controls.

 Knowing the security capabilities of Atlas will significantly help you secure your data-
base and protect sensitive data. In this chapter, you’ll learn about key features that will 
help you prepare your environment for security audits.

20.1	 Understanding the shared responsibility model
In today’s cloud computing landscape, security is a key concern for businesses migrat-
ing from on-premises systems to cloud services. Atlas operates under a shared respon-
sibility model in which security tasks are divided among MongoDB, cloud providers 
(such as Amazon Web Services [AWS], Google Cloud Platform [GCP], and Microsoft 
Azure), and customers. This division is essential for ensuring the security of data and 
infrastructure.

Atlas operates under the Software as a Service (SaaS) model, in which Atlas manages 
platform security, database operations, and essential security controls, and cloud pro-
viders focus on physical security and infrastructure. Customers are responsible for data 
access, identity management, and certain security settings. Figure 20.1 shows a high-
level overview of Atlas’s shared responsibility model.

At the top of the hierarchy, your responsibilities focus primarily on data manage-
ment and access control. You are responsible for data management, user accounts, 
roles, identity providers, and multifactor authentication (MFA). You also control the 
selection and configuration of cloud providers, geographic regions, and appropriate 
infrastructure tiers for their databases. Essentially, you control how data is accessed and 
ensure that proper authentication mechanisms are in place.

The middle layer represents shared responsibilities between the customer and 
MongoDB. This layer is divided into two key stages:

¡	Initial configuration/setup—At this stage, you play a central role in configuring 
important security and operational settings. This role includes setting up federa-
tion/Lightweight Directory Access Protocol (LDAP)/MFA for identity manage-
ment, choosing data residency policies, enabling database encryption through 
services such as Key Management Service (KMS) and Bring Your Own Key 



	 483Understanding the shared responsibility model

Manage: Data, user accounts, roles, identity providers, and MFA
Configure: Cloud providers, regions, and tiers

Initial configuration/
setup by

customers:

Configure
federation/
LDAP/MFA

Physical security by cloud providers
(AWS. GCP. and Azure)

M
on

go
D

B’
s 

re
sp

on
si

bi
lit

y
C

us
to

m
er

’s
 

re
sp

on
si

bi
lit

y
Sh

ar
ed

 
re

sp
on

si
bi

lit
ie

s

Data residency/ 
data policies

Database
encryption

(KMS and BYOK)

Network 
connectivity

Auditing 
filters

Continuous
enforcement
by MongoDB:

Backup 
schedule

Authentication
always on

Data 
localization

Encryption
in-transit,
volume

Network 
isolation

Platform
security

High
availability

Autoscaling Distributed
architecture

Granular
auditing

Data 
backup

Figure 20.1  The shared responsibility model in Atlas divides security and operational tasks among customers, 
MongoDB, and the underlying cloud providers (AWS, GCP, and Azure). (Image © MongoDB 2024 CC BY-NC-SA 3.0)

(BYOK), configuring network connectivity, setting auditing filters, and deter-
mining backup schedules.

¡	Continuous enforcement by MongoDB—When setup is complete, MongoDB takes 
over continuous enforcement of essential security features. It ensures that key 
security mechanisms such as always-on authentication, data localization, encryp-
tion (in transit and at rest), network isolation, granular auditing, and regular 
data backups are operational and enforced. MongoDB is responsible for main-
taining these security standards throughout the life cycle of the customer’s data-
base, ensuring ongoing protection without requiring further intervention from 
the customer.

The MongoDB responsibility section covers areas in which MongoDB is fully account-
able. MongoDB ensures platform security, high availability, autoscaling, and a robust 
distributed architecture. These tasks are automated and embedded in Atlas.

At the base of the model, physical security is managed by the cloud providers 
themselves (AWS, GCP, and Azure). These providers are responsible for the physical 
infrastructure, including providing data center security, maintaining hardware, and 
ensuring a secure environment for MongoDB’s services. Table 20.1 lists the detailed 
responsibilities in the shared responsibility model.



484 Chapter 20  Understanding Atlas and MongoDB security features

Table 20.1  The Atlas shared responsibility model

Responsibility area Customer responsibilities MongoDB responsibilities

Cloud infrastructure Select cloud provider, region and tier.

Select MongoDB version and auto-
scaling options.

Provision and deploy cluster in dedi-
cated virtual private cloud (VPC) and 
firewalls.

Ensure configuration changes without 
service disruption.

Provision and deploy cluster in dedi-
cated VPC and firewalls.

Customer data, 
accounts, and 
identities

Provide and manage customer data.

Maintain accounts and identities.

Provide secure access to customer 
data.

Provide tools to upload/store data 
securely.

Network isolation and 
connectivity

Configure network connectivity 
(options include IP access list, VPC 
peering connections, and private 
endpoints).

Provision peering containers.

Provision private endpoint resources.

Allow connections to the cluster only 
from entries in a project’s access list.

Database access Configure user authentication.

Assign user and role privileges.

Manage certification authority.

Configure AWS identify and access 
management (IAM) and LDAP 
integration.

Configure Data API access keys.

Maintain always-on authentication 
(SCRAM, x509 certificates).

Provide role-based access controls 
(RBAC) with predefined roles.

Provide audit log access.

Atlas access Create users and access.

Configure MFA and federated 
authentication.

Configure API keys.

Maintain always-on authentication.

Provide integration interfaces with 
identity providers and MFA tools.

Data encryption (in 
transit and at rest)

Configure cloud provider (KMS).

Set minimum Transport Layer Security 
(TLS) version.

Ensure that encryption is always on 
(in transit and at rest).

Ensure that data is stored on 
encrypted volumes with cloud- 
provider–managed keys.

Encrypt data at rest using customer-
provided keys.

Data encryption (in 
use, BYOK)

Configure client-side field-level 
encryption.

Configure cloud-provider KMS.

Provide tools, drivers, and shared 
libraries for field-level encryption.

Provide drivers to communicate with 
KMS.

Granular auditing Enable granular database auditing.

Configure audit filters.

Maintain database access history.



	 485Managing authentication

Responsibility area Customer responsibilities MongoDB responsibilities

Data locality Set up and enforce data locality rules. Support multiple regions and global 
clusters.

Ensure that cloud snapshots for 
backup are located in the origin 
regions.

Security patches and 
maintenance

Set maintenance window. Apply minor version upgrades.

Apply security patches.

20.2	 Managing authentication
Atlas provides various authentication methods in the Atlas UI and the Atlas database 
clusters, ensuring secure access and flexibility:

¡	Atlas UI—You use this web interface to manage clusters, user roles, and permis-
sions. To access the Atlas UI, you can authenticate using a username/password 
combination or federated authentication via external identity providers. For 
increased security, you can add MFA and enforce it for all users with options such 
as Short Message Service (SMS), voice calls, authentication apps, and hardware 
devices such as YubiKey.

¡	Atlas database clusters—Authentication for the actual database clusters is enabled 
by default, ensuring a secure environment. Administrators can define roles for 
users or applications to specify what data can be accessed and modified. Tempo-
rary users can be set up for specific periods, and their access is revoked automati-
cally when the time expires.

Table 20.2 provides an overview of the key authentication features of Atlas, highlight-
ing the various methods and tools available to ensure secure access and management 
of user credentials.

Table 20.2  Authentication features in Atlas

Feature Description 

Atlas Federated Authentication Supports login through external identity providers such as Okta, GitHub, 
Google, Ping Identity, and Microsoft Entra ID

Database authentication Ensures secure database access with Salted Challenge Response 
Authentication Mechanism (SCRAM), X.509 certificates, LDAP, OpenID 
Connect (OIDC), and passwordless authentication with AWS IAM

Integrates with HashiCorp Vault for dynamic user creation

MongoDB Federated Authentication in Atlas uses the Federated Identity Manage-
ment (FIM) model for authentication. Atlas is set up to authenticate users based on 

Table 20.1  The Atlas shared responsibility model (continued)



486 Chapter 20  Understanding Atlas and MongoDB security features

information provided by your identity provider (IdP). With this model, your organiza-
tion manages user credentials through the IdP, enabling authentication across multi-
ple online services. For more information, visit https://mng.bz/X75G.

20.2.1	 Choosing an Atlas database cluster authentication method

You can authenticate to a MongoDB database using methods such as SCRAM, X.509 
certificates, LDAP, OIDC, and authentication through AWS IAM without a password.

WARNING  Beginning with MongoDB 8.0, LDAP authentication and autho-
rization are deprecated. Although LDAP functionality is fully supported and 
unchanged in MongoDB 8, it will be phased out in a future major release.

Salted Challenge Response Authentication Mechanism)

SCRAM is Atlas’s default password-based authentication mechanism. It functions by 
ensuring that passwords are never transmitted over the network in plain text. Instead, 
the client and server exchange a series of cryptographic challenges to verify the user’s 
identity securely. The process involves hashing the password with a unique, random 
salt and iterating the hash multiple times to enhance security. This approach effec-
tively mitigates the risk of brute-force attacks, password interception, and replay 
attacks. SCRAM is widely supported across MongoDB drivers and frameworks, making 
it a versatile, robust choice for securing applications of all sizes.

X.509 certificates

Atlas allows the use of X.509 certificates to authenticate clients and cluster nodes. 
These certificates rely on public-key infrastructure (PKI), using encryption and dig-
ital signatures to provide high levels of security. Atlas supports Atlas-managed and 
self-managed X.509 certificates. In high-trust environments such as finance, health 
care, and government, X.509 certificates are particularly valuable, as they ensure that 
only authenticated and trusted entities can access the system. Also, X.509 provides 
mutual authentication capabilities, which means that the client and server can verify 
each other’s identities before establishing a secure connection.

OpenID Connect

OAuth 2.0 and OIDC are protocols that Atlas integrates with to provide secure 
authentication through third-party identity providers such as Google, Microsoft, 
and custom enterprise systems. OAuth 2.0 facilitates the delegation of access with-
out requiring the user to share their credentials, instead using access tokens issued 
by the identity provider. OIDC, an extension of OAuth 2.0, adds a layer for obtain-
ing user identity information, enabling secure and efficient single sign-on (SSO). 
This system simplifies identity management by providing centralized control of user 
access while reducing the need for users to manage multiple sets of credentials. Sup-
port for MFA further enhances security by adding a layer of protection beyond the 
user’s password.

https://mng.bz/X75G


	 487Managing authentication

Amazon Web Services identity and access management

For cloud-native applications hosted on AWS, Atlas seamlessly integrates with AWS 
IAM, allowing services to authenticate using IAM roles. This eliminates the need for 
traditional credentials such as passwords and API keys. Instead, services such as EC2 
and Lambda can assume IAM roles to connect securely to Atlas, streamlining access 
management and reducing operational complexity. With IAM role-based authentica-
tion, organizations benefit from automatic key rotation and centralized permissions 
management. This approach reduces the surface area for credential exposure, making 
it an ideal solution for environments in which security and efficiency are critical, such 
as DevOps and cloud-native architectures.

Lightweight Directory Access Protocol

LDAP allows Atlas to authenticate and authorize users by connecting to an external 
LDAP server. This method enables centralized identity management, meaning that 
user credentials and access permissions are stored and managed in an LDAP direc-
tory, such as Active Directory. By using LDAP, Atlas can authenticate users via their Dis-
tinguished Names (DN) and authorize their actions based on roles mapped to LDAP 
groups.

LDAP operates over TLS (LDAP Secure [LDAPS]) to ensure that all communica-
tions between Atlas and the LDAP server are securely encrypted. This approach is espe-
cially useful for organizations with existing LDAP infrastructure, providing seamless 
integration with Atlas for managing user access and roles centrally. Through LDAP, 
Atlas can apply enterprise-level authentication and authorization policies, streamlining 
access control across teams and departments.

20.2.2	 Integrating with HashiCorp Vault

Atlas integrates seamlessly with HashiCorp Vault to generate database credentials 
dynamically, providing a secure automated solution for managing access to Atlas 
databases. HashiCorp, known for its open source tools in infrastructure automation, 
security, and management, provides products such as Vault, Terraform, and Consul 
that secure and optimize cloud and on-premises infrastructure. This integration uses 
Vault’s database secrets engine to create on-demand credentials based on predefined 
roles within Vault. These dynamically generated credentials have a limited lifespan, 
mitigating security risks tied to long-lived credentials. They can be used to grant a 
developer read-only access for a defined period, for example. When the time to live 
(TTL) expires, Vault automatically removes the associated user account from the 
MongoDB database, ensuring that no unauthorized access persists. This functionality 
is particularly beneficial for granting temporary or project-specific database access, 
balancing strict security measures with controlled developer access.

Using Vault, you can configure roles that map directly to Atlas permissions, allow-
ing you to generate database credentials on demand. You can create roles with spe-
cific permissions such as read, readAnyDatabase, or atlasAdmin to suit various access 
needs. Each set of credentials is generated with a defined TTL, after which they expire 



488 Chapter 20  Understanding Atlas and MongoDB security features

automatically, enhancing security by ensuring that access is available only for the 
required duration. This approach provides precise control of database access and mini-
mizes security risks associated with long-lived credentials.

To learn more, see the Vault documentation at https://mng.bz/yNdG. You can also 
learn about Vault and MongoDB integration at https://mng.bz/Mwl7.

20.2.3	 Choosing the authentication method

When you decide which authentication method to use in MongoDB, your choice 
depends largely on your organization’s needs and the environment in which your 
applications operate. SCRAM is a strong option for general-purpose applications that 
require password-based authentication. It’s easy to configure, widely supported, and 
offers robust protection by hashing and salting user credentials. For environments 
with strict security requirements, such as financial services and health care, X.509 cer-
tificates are a better fit; they provide mutual authentication between clients and serv-
ers, using PKI for highly secure communications.

OAuth 2.0 and OIDC are ideal for organizations that integrate with third-party iden-
tity providers such as Google and Microsoft, especially when SSO is required. These 
protocols streamline identity management through access tokens and MFA, making 
them suitable for user and application authentication. If your enterprise already uses 
corporate identity solutions such as Okta or Entra ID, these methods can integrate 
seamlessly with your existing setup.

For cloud-native applications hosted on AWS, using AWS IAM roles is the most secure 
and efficient method. It eliminates the need to manage traditional credentials and 
provides a seamless way to authenticate AWS-hosted services such as EC2 and Lambda. 
Last, for large enterprises with an existing LDAP infrastructure, LDAP is the optimal 
solution. It enables centralized management of user authentication and authorization, 
making it particularly useful for controlling access across departments and teams.

Choosing the right authentication method requires balancing your security needs, 
compliance requirements, and operational environment to ensure that Atlas integrates 
into your infrastructure securely and efficiently. Using dynamic Vault credentials with 
HashiCorp Vault offers another level of security by allowing on-demand generation of 
short-lived database credentials, significantly reducing the risk of credential misuse. 
This approach is especially advantageous for organizations looking to automate and 
streamline credential management while ensuring that credentials are valid for only 
the required period. You can learn more about available authentication options at 
https://mng.bz/a9Mz.

20.3	 Handling authorization
Authentication verifies your identity, ensuring that the user or service attempting to 
access the database is legitimate, typically using credentials such as a username and 
password, LDAP, or certificate-based authentication. Authorization, on the other 
hand, determines what actions you are allowed to perform when you’re authenticated, 

https://mng.bz/yNdG
https://mng.bz/Mwl7
https://mng.bz/a9Mz


	 489Handling authorization

defining your permissions and access levels such as read, write, or administrative 
privileges.

Atlas uses RBAC to manage access to its cloud resources and MongoDB deploy-
ments. Users are assigned roles that define their permissions within an Atlas organiza-
tion or project. These roles control what actions they can take. Fine-grained roles can 
be assigned to users for specific database operations. With identity federation, access 
to Atlas can be managed through your identity provider, linking user groups with Atlas 
roles. Beyond Atlas, MongoDB clusters offer access control through their own RBAC 
system. They provide detailed role-based permissions for specific actions on databases 
and collections.

20.3.1	 Understanding the principle of least privilege

The principle of least privilege (PoLP) is a security concept that recommends giving 
users, applications, or systems the minimum level of access necessary to perform their 
tasks. This reduces the risk of accidental or intentional misuse of privileges by limiting 
access to what is essential for completing a specific function, improving security and 
minimizing potential damage from breaches or human errors. If a user needs to read 
data from only a specific database, they should not be granted write or administrative 
access. Similarly, a service responsible for backups should have access to only the 
databases it needs to back up rather than all databases in the system. Remember to 
apply this principle when assigning permissions to your users in Atlas and within the 
MongoDB database.

20.3.2	 Differentiating Atlas user roles

Atlas user roles define the actions users can perform within organizations and projects, 
offering granular control over access and permissions. Organization and project own-
ers can manage user roles, ensuring that the correct permissions are assigned at both 
levels.

Permissions can be applied at the organization or project level, so it’s essential to 
plan your organizational and project hierarchy carefully to ensure the correct alloca-
tion of roles and access:

¡	Organization roles—Include the organization owner, who has root access to 
all aspects of the organization, including management of users, settings, and 
projects. Other roles include organization project creator, billing admin, bill-
ing viewer, read-only, and member, each offering different levels of access and 
administrative capabilities.

¡	Project roles—Determine what actions can be performed within a specific project. 
The project owner can create clusters, manage project settings, and handle data-
base access, for example, whereas the project cluster manager can manage clus-
ters without creating new ones. Roles such as project stream processing owner, 
data access admin, data access read/write, and read-only provide varying degrees 
of control of data and resources.



490 Chapter 20  Understanding Atlas and MongoDB security features

Each role offers privileges tailored to specific responsibilities, ensuring secure and effi-
cient management of users and resources within Atlas. For more information about 
user roles, visit https://mng.bz/gmJl.

20.3.3	 Using MongoDB RBAC

MongoDB uses RBAC to manage access to its system. Each user is assigned roles that 
determine what actions they can perform on the database. Without a role, a user has 
no access to the system.

A role defines specific privileges, allowing the user to perform certain actions on a 
given resource. Privileges can be defined explicitly in a role or inherited from another 
role. If a user has multiple roles, the role with the greatest access level takes precedence. 
If a user has both the read role and the readWriteAnyDatabase role, the latter allows 
write access, overriding the read role.

Atlas provides several built-in database roles tailored to common access needs:

¡	atlasAdmin—Grants full administrative rights across the cluster. This role is suit-
able for administrators managing high-level tasks such as balancing and updat-
ing configurations.

¡	readWriteAnyDatabase—Allows read and write access to all databases. This role 
is ideal for developers and administrators who need broad data access across the 
cluster.

¡	readAnyDatabase—Provides read-only access to all databases. This role is 
designed for users or applications that need only to query data without making 
modifications.

¡	clusterMonitor—Enables access to various monitoring functions. This role is 
useful for users who need to oversee cluster performance and health without 
altering data or settings.

¡	read—Offers read-only access to a specific database, allowing data querying and 
analysis without modification. This role is ideal for applications, reporting tools, 
or users focused on data analysis, following PoLP by restricting access to read-
only actions within a designated database.

The full list of built-in roles in Atlas, along with their specific permissions, is at https://
mng.bz/5v1z.

These roles provide a foundation for managing access in a MongoDB environment, 
covering most standard needs, but they sometimes grant broader permissions than nec-
essary. Custom roles provide a more tailored approach, enhancing security and effi-
ciency by restricting permissions to only what each user or application truly requires. 
This aligns with PoLP, allowing administrators to set precise access levels such as permis-
sions limited to specific collections. Custom roles are especially useful when you need 
temporary project-based access or when regulatory requirements demand strict control 
of data exposure.

https://mng.bz/gmJl
https://mng.bz/5v1z
https://mng.bz/5v1z


	 491Handling authorization

When creating roles, it’s important to determine whether to define them in the 
admin database or within a specific application database:

¡	Admin database—Roles created in the admin database are available across all data-
bases within the MongoDB instance, making them suitable for users who need 
broader access, such as database administrators and developers who require per-
missions across multiple databases.

¡	Specific database—Roles created within a particular database are valid only within 
that database, making them ideal for users who need limited access to a specific 
database, such as an application service or user restricted to managing data 
within a single database. This approach aligns with PoLP by granting users only 
the permissions they need for their specific tasks, minimizing potential security 
risks associated with broader access.

Roles created outside the admin database are restricted to containing privileges spe-
cific to their own database and can inherit permissions only from roles within that 
same database.

To create a custom role, Atlas provides the atlas customDbRoles create command, 
enabling you to define precise permissions for each role. Begin by specifying the 
privilege actions the role should include, such as find, insert, or update, and the 
databases or collections these permissions will apply to. Privilege actions define the 
operations that a user or application is permitted to execute on a resource; each 
privilege in MongoDB connects a resource with its allowed actions. You can find a full 
list of available privileges at https://mng.bz/641y.

Here’s an example of creating a custom role:

atlas customDbRoles create customReadUpdateRole \
--privilege 'UPDATE@sample_training.routes' \
--privilege 'FIND@sample_supplies.sales'

The custom role named customReadUpdateRole is designed to meet specific access 
needs. This role grants UPDATE permissions on the routes collection within the 
sample_training database, allowing the user to modify documents in that collection. 
Also, it grants FIND access on the sales collection in the sample_supplies database, 
providing read-only access to that collection. Including only the explicitly defined 
privileges allows precise control of permissions, closely adhering to PoLP.

You can also inherit privileges from other roles, default or custom, to build on exist-
ing access configurations without redundancy. Here’s an example of creating a custom 
role that inherits privileges from an existing read role:

atlas customDbRoles create readWriteAnalyticsRole \
--privilege 'INSERT@sample_analytics' \
--inheritedRole 'read@sample_analytics'

readWriteAnalyticsRole inherits privileges from the existing read role on the 
sample_analytics database and adds INSERT permissions. This setup is useful for 

https://mng.bz/641y


492 Chapter 20  Understanding Atlas and MongoDB security features

users who need general read access across all collections in sample_analytics but 
also require specific write permissions in certain collections. By inheriting from the 
read role and adding only the required INSERT action, this approach ensures efficient, 
straightforward access management.

The atlas customDbRoles list command in Atlas displays all custom roles within 
a project, showing each role’s specific permissions, including actions and associated 
resources:

customRoleName        INSERT     N/A   sample_analytics   ALL COLLECTIONS
customRoleName        N/A        read  sample_analytics   N/A           
customReadUpdateRole  UPDATE     N/A   sample_training    routes       
customReadUpdateRole  FIND       N/A   sample_supplies    sales         

The customReadUpdateRole has UPDATE permission on the routes collection in the 
sample_training database, allowing modifications to documents in that collection, 
and FIND permission on the sales collection in the sample_supplies database, 
granting read-only access to that collection. The customRoleName includes INSERT 
permission across all collections within the sample_analytics database, enabling 
document insertion in any collection. This role also inherits the read role for the 
sample_analytics database, allowing read-only access across the entire database.

You can create new users in the Atlas UI or Atlas command-line interface (CLI) by 
using the atlas dbusers create command, or you can add roles to existing users with 
the atlas dbusers update command.

TIP  To prevent potential security risks and enhance manageability, avoid 
shared accounts by creating a unique user for each application or service 
account per application or service. This practice allows for more granular 
access control, making it easier to track activity, enforce PoLP, and manage 
permissions independently. For more information, see https://mng.bz/oZJM.

20.4	 Auditing Atlas
Atlas provides Control Plane auditing, which lets you monitor all events initiated from 
the Atlas UI at both the project and organization levels. These logs capture actions per-
formed by users within the Atlas interface, helping them maintain oversight of admin-
istrative activities. You can access these logs directly within the Atlas UI or retrieve them 
via the Atlas API, offering flexible options for reviewing and integrating audit data into 
broader monitoring workflows.

You can also use MongoDB database auditing in your Atlas cluster; it allows you to 
monitor database activities and user actions within a project. This feature enables selec-
tion of specific actions (such as read and write), users, roles, and LDAP groups to 
track. Audit logs for users and modifications are not available, however, because Atlas 
performs these actions in the admin database.

NOTE  The auditing feature is unavailable for M0 and Flex clusters.

https://mng.bz/oZJM


	 493Auditing Atlas

The MongoDB auditing log captures different event types to monitor database inter-
actions, focusing primarily on authCheck and authenticate events. authenticate 
events track attempts to log in, recording details such as timestamp, IP addresses of 
local and remote systems, user information, associated roles, and authentication mech-
anism (such as SCRAM-SHA-256). These events document successful and failed login 
attempts, with the result indicating the outcome (0 for success).

authCheck events go beyond authentication to cover actions such as data access 
attempts, logging successful and failed reads and writes to the database. By default, only 
failed attempts are recorded to minimize performance effect, though you can enable 
full logging for successful actions by using the auditAuthorizationSuccess option. 
MongoDB auditing tracks specific database operations such as aggregate, insert, 
update, and delete. Whenever one of these actions is performed, it gets logged.

WARNING  Enabling auditAuthorizationSuccess logs every successful read 
and write, which creates a high volume of logs in busy clusters. This extra pro-
cessing can slow performance, so it’s best to enable it only if necessary.

Here’s an example of an authCheck event in the audit log in JSON format, referencing 
the sample_training database and routes collection:

{
  "atype": "authCheck",
  "ts": {"$date": "2024-10-28T10:15:30.123Z"},
  "local": {
    "ip": "192.168.1.1",
    "port": 27017
  },
  "remote": {
    "ip": "203.0.113.42",
    "port": 53245
  },
  "param": {
    "ns": "sample_training.routes",
    "command": "find",
    "args": {},
    "result": 0
  },
  "users": [
    {
      "user": "sampleUser",
      "db": "admin"
    }
  ],
  "roles": [
    {
      "role": "readWrite",
      "db": "sample_training"
    }
  ]
}



494 Chapter 20  Understanding Atlas and MongoDB security features

This authCheck log shows an access attempt on the sample_training.routes name-
space. The server IP and port, along with the client’s IP and port, are recorded while 
sampleUser attempts a find command successfully (result: 0). The user, authenti-
cated in the admin database, has a readWrite role on sample_training.

You can limit the number of logged events by refining filter conditions to capture 
only essential actions or specific operations. Atlas supports a custom JSON audit filter 
that allows precise targeting of specific users, commands, and namespaces, granting 
full control of logged events. This bypasses the default UI filter builder, enabling more 
detailed and tailored audit configurations. Atlas checks only the JSON syntax, so the 
filter logic needs to be crafted carefully.

With this filter, you can include or exclude specific usernames by using condi-
tions such as {"users.user": { "$nin": ["backup", "admin"] }} to omit these 
users from logs. You can also filter event types (atype) to focus on actions such as  
authenticate, dbAccess, and authCheck, and you can log specific commands such 
as find, insert, and delete selectively with {"param.command": { "$in": ["find", 
"insert", "delete"] }} to capture only relevant operations. Also, you can narrow log-
ging to particular namespaces or databases, excluding namespaces such as config and 
local using {"param.ns": { "$nin": [{ "$regex": "^config\\." }, { "$regex": 
"^local\\." }] }}. Here’s an example filter that combines several of these options:

{
  "users.user": { "$nin": ["backup", { "$regex": "^sa_" }, "__system"] },
  "$or": [
    { "atype": "authenticate" },
    {
      "atype": "authCheck",
      "param": {
        "command": { "$in": ["find", "insert", "delete", "update"] },
        "ns": { "$nin": [{ "$regex": "^config\\." },
➥{ "$regex": "^local\\." }] }
      }
    }
  ]
}

This filter excludes actions from specific users such as "backup", any usernames begin-
ning with sa_, and the __system user. It logs only authenticate and authCheck events, 
focusing on commands such as find, insert, delete, and update, and it excludes events 
in the config and local namespaces. By narrowing to these conditions, the audit logs 
capture only relevant activities, reducing noise and enhancing audit efficiency. For a 
complete explanation of all terms and a detailed overview of the auditing process, see 
https://mng.bz/nZJK.

TIP  You can use atlas auditing describe to return the auditing config-
uration for the specified project or atlas auditing update to update the 
auditing configuration for the specified project. You can access audit logs by 

https://mng.bz/nZJK


	 495Encrypting data in Atlas

downloading them directly from the Atlas UI or viewing them through the 
Atlas CLI.

20.5	 Encrypting data in Atlas
Information generated, exchanged, and stored within a company is one of its core 
assets. Ensuring the security of this data—particularly sensitive details such as personal 
identifiers, financial records, health care data, and government-related information—
is essential to prevent unauthorized access and breaches. Although authentication and 
authorization help protect data access, encryption is necessary to safeguard critical 
workloads. MongoDB provides advanced encryption solutions, including built-in tools 
within its Atlas developer data platform.

20.5.1	 Encrypting data in transit

Encryption in transit is a security measure designed to protect data during transfer 
across networks or between devices, ensuring confidentiality and integrity throughout 
the process. By encoding data so that only authorized users or systems can decrypt it, 
encryption prevents unauthorized access and modification during transmission. This 
approach defends against attacks like Man in the Middle (MITM), in which an attacker 
intercepts or alters the data in transit. In these attacks, a third party positions itself 
between the sender and receiver to eavesdrop or manipulate information.

In Atlas, encryption in transit is ensured by automatically applying TLS to secure 
all connections with MongoDB clusters. TLS, a cryptographic protocol, protects data 
during transmission by establishing an encrypted channel, ensuring that data remains 
confidential and unaltered throughout transfer. All network traffic, including customer 
data sent to Atlas and data exchanged between nodes in an Atlas cluster, is protected by 
TLS, which is enabled by default and cannot be disabled. You can select the TLS version 
for your clusters; TLS 1.2 is the recommended default with a minimum key length of 
128 bits. This setup guarantees that all data moving to and between cluster nodes stays 
encrypted, providing secure end-to-end communication.

Atlas enforces encryption in transit through strict key management practices using 
the OpenSSL FIPS Object Module, a cryptographic suite certified to meet Federal 
Information Processing Standards (FIPS). FIPS is a set of U.S. government-developed 
standards for protecting sensitive data in high-security environments, ensuring certi-
fied encryption and secure key handling. MongoDB uses these standards to enhance 
data security during transmission, with practices covering secure key generation, dis-
tribution, storage, and replacement. Detailed guidelines outline key activation and 
deactivation timelines, limiting access to authorized people. In a case of key compro-
mise, MongoDB promptly revokes and replaces the affected key. TLS certificates are 
sourced from trusted authorities, and ephemeral session keys—generated per session 
during TLS negotiations—are never stored on disk. Also, keys are protected in storage 
by encryption and are stored separately from encrypted data, ensuring strong end-to-
end protection for data in transit.



496 Chapter 20  Understanding Atlas and MongoDB security features

20.5.2	 Encrypting data at rest

Encryption at rest protects data stored on physical media (such as disks, including data 
managed by databases) by encrypting it to prevent unauthorized access. This process 
ensures that even if the storage medium is compromised, the data remains unread-
able without the correct decryption key. Commonly used in databases, filesystems, and 
cloud storage, encryption at rest safeguards sensitive information by keeping it secure 
whenever it is stored and not actively accessed or transmitted. In MongoDB, encrypted 
data means that the information within collections, documents, or backups is encoded 
to prevent unauthorized access. This encryption typically occurs at the storage level 
(encryption at rest); in some cases, it occurs at the individual field level (explained in 
section 20.5.4), adding an extra layer of security for highly sensitive data, such as credit 
card numbers and personal identifiers. MongoDB manages encryption and decryption 
automatically, allowing authorized users to access readable data while keeping it secure 
from unauthorized access or breaches.

20.5.3	 Managing encryption keys yourself

When you create an Atlas cluster, customer data is automatically encrypted at rest using 
AES-256, an advanced encryption standard with a 256-bit key length that is known for 
strong security, securing all disk-stored data. This encryption is handled seamlessly 
through the cloud provider’s transparent disk encryption (AWS, GCP, or Azure), with 
the provider also managing the encryption keys. Also, you can opt for database-level 
encryption through the WiredTiger Encrypted Storage Engine, which also uses AES-
256. This option enables you to bring your own encryption key via AWS KMS, GCP 
KMS, or Azure Key Vault—secure key management tools provided by Amazon, Google, 
and Microsoft, respectively, that allow users to create, store, and manage encryption 
keys securely.

By using your own encryption key, you gain greater control of your data security, 
ensuring that only you have access to the key that protects your sensitive information. 
This capability enhances privacy and reduces the risk of unauthorized access by third 
parties. Being able to manage the key life cycle, including rotation and revocation, 
allows you to maintain compliance with regulatory standards and internal security pol-
icies. If you ever need to change providers or discontinue your service, you can easily 
revoke access to the key, making the data unreadable and protecting it from unautho-
rized access. Figure 20.2 shows the architecture for using your own encryption key in 
Atlas on AWS.

AWS KMS provides a customer master key (CMK), which Atlas uses to create an 
encrypted data encryption key (DEK) for each Atlas deployment. Each MongoDB data-
base within the cluster has a unique encryption key (e.g., db1 uses key1, and db2 uses 
key2), and these keys are further encrypted by the MongoDB master key.

When MongoDB Server starts, Atlas’s security layer communicates with AWS KMS to 
decrypt the DEK. Then this decrypted DEK is provided to MongoDB Server, enabling 
it to access the database keys for data stored in the WiredTiger Storage Engine. In a



	 497Encrypting data in Atlas

Atlas database

MongoDB Atlas

MongoDB Server

KMS

AWS Primary master key
db1 > key1
db2 > key2
db3 > key3

Secondary

Secondary

Figure 20.2  Atlas’s encryption architecture shows the interaction between MongoDB Server, AWS 
KMS, and Atlas’s internal security layers. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

multinode replica set, each node has its unique DEK, stored on disk within the Atlas 
cluster. The DEK is decrypted at startup, ensuring that each node can access the nec-
essary database encryption keys securely. This layered approach maintains encrypted 
data across primary and secondary nodes in the cluster, ensuring secure data replica-
tion. You can find more information about these products at https://mng.bz/vZ1M.

20.5.4	 Encrypting during processing

Atlas In-Use Encryption ensures that sensitive fields in customer data are encrypted 
on the client side before they reach the database. With options like client-side field-
level encryption (discussed in the next section) and Queryable Encryption, data is 
encrypted by the application, and Atlas never has access to the plain text. Decryption 
occurs only when the data returns to the client, keeping encryption keys exclusively 
accessible to the application.

Encryption keys are managed using strong symmetric encryption through exter-
nal key management services like AWS KMS, Azure Key Vault, and GCP KMS and can 
also integrate with Key Management Interoperability Protocol (KMIP). KMIP is an 
open-standard protocol developed by the Organization for the Advancement of Struc-
tured Information Standards (OASIS), a global not-for-profit consortium that devel-
ops and promotes open standards. KMIP facilitates encryption key management across 
diverse systems and devices, enabling the secure exchange of keys, certificates, and 
other cryptographic data, especially between key management servers and applications 
that require these keys. For added security, you can use KMIP-compliant key managers 
or tools like HashiCorp Vault.

Understanding client-side field-level encryption

Client-side field-level encryption (CSFLE) allows sensitive data fields to be encrypted 
on the client side before being sent to the database. If an application needs to store 
personal data such as a Social Security number, CSFLE encrypts this field within the 

https://mng.bz/vZ1M


498 Chapter 20  Understanding Atlas and MongoDB security features

application before sending it to MongoDB. Here’s what the unencrypted document 
before CSFLE might look like:

{
  "name": "Name Surname",
  "socialSecurityNumber": "123-45-6789",
  "email": "user@example.com"
}

With CSFLE enabled, only the encrypted form of sensitive fields is stored in MongoDB:

{
  "name": " Name Surname",
  "socialSecurityNumber": { "$binary": "AE4F0F9DE7..." },
  "email": "user@example.com"
}

In this encrypted document, the socialSecurityNumber field is encrypted on the 
client side, so MongoDB never sees the unencrypted value. Only authorized clients 
with access to the appropriate decryption keys can view or modify this field, providing 
enhanced security and privacy. Even database administrators with full access cannot 
view the encrypted data. CSFLE ensures that sensitive data remains encrypted through-
out its life cycle within MongoDB, even during storage and transmission.

NOTE  CSFLE supports only equality queries on deterministically encrypted 
fields. Deterministically means that the same plain-text value, encrypted with the 
same key, always produces the same output. This enables the database to per-
form equality matches on encrypted data. It does not support range, prefix, 
suffix, or substring queries, which require comparisons beyond exact equality.

TIP  You can find a detailed description of CSFLE at https://www.mongodb 
.com/docs/manual/core/csfle.

Querying encrypted fields without decrypting them

Queryable Encryption allows you to query encrypted fields without decrypting them 
first. It enables secure search operations, such as equality matches and encrypted range 
queries, on sensitive data that remains encrypted in the database. This is the biggest 
difference compared to CSFLE, which supports equality queries only on determinis-
tically encrypted fields. Queryable Encryption supports prefix, suffix, and substring 
searches, making it more versatile for secure data searches.

Queryable Encryption is particularly useful for applications that need to protect 
sensitive information—such as Social Security numbers, credit card numbers, and 
email addresses—while allowing searches. Queryable Encryption uses advanced cryp-
tographic techniques to index and search encrypted data, ensuring that MongoDB 
can execute queries on the encrypted fields without exposing the plain-text data. 

https://www.mongodb.com/docs/manual/core/csfle
https://www.mongodb.com/docs/manual/core/csfle


	 499Encrypting data in Atlas

Encryption and decryption occur on the client side, so MongoDB never has access to 
the unencrypted values, enhancing data security and privacy.

Figure 20.3 shows the operation flow for MongoDB’s Queryable Encryption.

MongoDB driver MongoDB 
data platform

Customer provisioned 
key provider

{
 payer:
 cardNum:
 email: 
 phone:
 ssn:
}

"Jones Glee",
"2223-0031-2200-3222",
"jones-glee@example.nwt",
"+1-212-555-1234"
"901-10-4312"

"f72a9a1103d88b6"

"er493grtee4erw"

 payer:
 cardNum:
 email: 
 phone:
 ssn:

"Jones Glee",
"r6EaUcgZ41Gerrwd",
"iu233oh35sdso743",
"oR72Cw4WferrSE3j"
"d76b3ad038c0e0ed"

Authenticated client query

db.billing.find (
 {
 ssn:"90-10-4312"
 }

Figure 20.3  An authenticated client (1) submits a query containing sensitive information, such as a Social 
Security number (SSN). The MongoDB driver (2) analyzes the query and identifies that it targets an encrypted field, 
prompting a request for encryption keys from a customer-provisioned key provider. Using these keys (3), the driver 
encrypts the query and sends it to MongoDB Server (4), where it is processed without decryption, ensuring that 
sensitive data remains secure and hidden. The server returns encrypted results (5) to the driver, which decrypts 
them and provides the plain-text data to the client (6), maintaining end-to-end security throughout the process. 
(Image © MongoDB 2024 CC BY-NC-SA 3.0)

Let’s take a closer look at figure 20.3. The process follows this flow:

1	 Query submission and analysis—The application submits a query containing sensi-
tive data (e.g., SSN) to the MongoDB driver. The driver begins by analyzing the 
query to determine whether it involves fields that require special handling due to 
encryption.

2	 Recognition of encrypted field and key request—The driver determines that the 
query targets an encrypted field. To proceed, it requests encryption keys from a 
customer-provisioned key provider, which can include services like these:

–	 AWS AWS KMS

–	 GCP KMS)

–	 Azure Key Vault



500 Chapter 20  Understanding Atlas and MongoDB security features

–	 KMIP-compliant key providers such as HashiCorp Vault, Thales CipherTrust, 
and IBM Key Protect

3	 Submission of encrypted query—After receiving the necessary keys, the driver 
encrypts the sensitive query fields, converting them to cipher text. This encrypted 
version of the query is sent to MongoDB Server, where the sensitive fields remain 
hidden as encrypted text.

4	 Server processing with Queryable Encryption—MongoDB’s Queryable Encryption 
uses an advanced, searchable encryption scheme. This scheme allows the server 
to perform search operations directly on the encrypted data without decrypting 
it, ensuring full confidentiality. The server processes the query in this encrypted 
form; it never has access to the unencrypted values of sensitive data.

5	 Return of encrypted results—After processing, MongoDB Server returns the results 
of the query, still in encrypted form, to the driver. The server remains unaware of 
the actual content of the query and the result data.

6	 Decryption for the client—The driver decrypts the encrypted results using the previ-
ously obtained keys, making the data readable as plain text. Then the decrypted 
data is provided to the client application, ensuring that sensitive data is exposed 
only on the client side, not on the server side.

You can find more information on Queryable Encryption at https://mng.bz/4n1V.

20.6	 Securing the network
Atlas offers strong network security through IP whitelisting, VPC peering, private 
endpoints, and network access controls. IP whitelisting restricts access to specific IP 
addresses, ensuring that only trusted networks can connect to the database. VPC peer-
ing and private endpoints allow secure private connections within your cloud environ-
ment, keeping data off the public internet. Network access controls give you detailed 
control of who can access the network, enabling strict security policies and enhanced 
monitoring.

20.6.1	 Using an IP access list

Atlas clusters are initially locked down from internet access; they’re deployed in a 
VPC with no inbound traffic allowed. To manage access, users can create IP access lists 
that specify which IP addresses have permission to connect to the database. Without 
inclusion in this list, application servers cannot reach the database, ensuring that only 
trusted IPs have access.

Atlas also allows temporary access entries that expire after a set time, making it con-
venient for users who need short-term access from temporary locations.

TIP  You should allow access only from small, specific IP ranges (such as indi-
vidual /32 addresses) and avoid broad Classless Inter-Domain Routing (CIDR) 
blocks, keeping potential exposure to a minimum.

https://mng.bz/4n1V


	 501Securing the network

To set up an IP access list for your project via the Atlas CLI, use the following 
command:

atlas accessLists create –currentIp

Alternatively, you can configure the IP access list through the Atlas UI.

20.6.2	 Peering networks

Network peering in Atlas lets you connect your own VPC to an Atlas VPC, allowing pri-
vate routing of traffic without exposure to the public internet. Network peering is avail-
able for dedicated clusters on AWS, GCP, and Azure as well as for multicloud sharded 
clusters. You can enable access only via private IPs or also allow connections through 
public IPs as defined by the IP access list.

NOTE  Network peering is unavailable for clusters on the M0 and Flex tiers.

Figure 20.4 illustrates an Atlas VPC connected via VPC peering to an AWS VPC hosting 
a customer’s application servers.

Atlas VPC

CIDR block: 172.31.248.0/21

Customer VPC

CIDR block: 10.0.0.0/16

10.0.0.0/16

172.31.248.0/21

Data silo Data silo Data silo

Elastic LB

AZ 1 AZ 2 AZ 3

Figure 20.4  Atlas VPC peered to an AWS VPC (Image © MongoDB 2024 CC BY-NC-SA 3.0)

In figure 20.4, a customer’s AWS VPC, labeled Customer VPC, is peered with an Atlas 
VPC in Atlas. The Customer VPC includes multiple application servers, with traffic 
managed by an Elastic load balancer (LB). The Customer VPC has a CIDR block of 
10.0.0.0/16, which allows its internal network to route traffic securely within this range.



502 Chapter 20  Understanding Atlas and MongoDB security features

The Atlas VPC, on the other hand, is organized across three availability zones (AZ 1, 
AZ 2, and AZ 3), each containing an Atlas cluster node. The CIDR block for the Atlas 
VPC is set to 172.31.248.0/21, defining its network space.

Use cases for network peering include organizations that need secure direct access 
to Atlas from their internal applications hosted within private VPCs. It’s ideal for 
companies handling sensitive data, as it ensures that data never traverses the public 
internet. Network peering is also valuable for enterprise environments with strict com-
pliance needs; it helps them achieve regulatory standards by keeping data traffic private 
and controlled. It also benefits applications that require low-latency connections to the 
database because private routing improves network performance compared with pub-
lic internet routing. To learn how to set up network peering, see https://mng.bz/Qw8j.

20.6.3	 Using private endpoints

Private endpoints in Atlas allow secure one-way connections from your VPC to an Atlas 
VPC without exposing traffic to the public internet. This setup ensures that Atlas can 
receive connections from your VPC but cannot initiate connections back, which keeps 
your network boundary-controlled and enhances security.

By using private endpoints, you reduce the risk of data exposure to external threats 
because traffic remains within the internal network of your cloud provider. This 
approach is particularly beneficial for industries with strict compliance requirements, 
such as finance, health care, and government, in which data privacy and secure access 
are essential.

NOTE  Network peering is unavailable for clusters on the M0 and Flex tiers.

With transitive connections, you can extend access to your Atlas clusters across dif-
ferent parts of your organization’s infrastructure. In a transitive connection, other 
VPCs that are peered with the VPC containing the private endpoint can access Atlas 
indirectly through that private endpoint. In other words, if a VPC has a direct peer-
ing connection with the VPC containing the private endpoint, it can communicate 
with Atlas without needing its own private endpoint connection. This setup enables 
seamless integration between services spread across multiple VPCs within the same 
network.

This approach is especially useful in hybrid cloud environments because on-premises 
data centers connected to your cloud VPC via DirectConnect can also reach the 
private endpoint. This setup allows organizations that use both cloud and on-premises 
resources to maintain a smooth connection between systems located in different places.

Private endpoints are particularly valuable for applications that handle sensitive data 
because they provide secure private access to Atlas without exposing the connection to 
the public internet. This setup enhances data privacy and boosts performance by keep-
ing traffic within the private network, ensuring lower latency and reducing potential 
bottlenecks associated with public internet traffic. To learn more about private end-
points, check out https://mng.bz/X756.

https://mng.bz/Qw8j
https://mng.bz/X756


	 503Implementing defense in depth

20.7	 Implementing defense in depth
Defense in depth is a security strategy that layers multiple defensive mechanisms to 
protect data and systems. In this approach, each layer of defense is designed to slow or 
block an attacker, even if they breach one or more security controls.

Defense in depth in a cloud environment might include firewalls, network segmen-
tation, MFA, intrusion detection systems, and data encryption. If an attacker bypasses 
one layer, they still encounter additional barriers, reducing the likelihood of full system 
compromise. This strategy improves resilience against attacks, as it relies on a combina-
tion of preventive, detective, and corrective controls to protect assets at various levels of 
the infrastructure.

Implementing defense in depth in Atlas involves layering multiple security mea-
sures to protect different aspects of the data infrastructure. Here are some specific 
examples:

¡	Network isolation and access control—Start by isolating your Atlas cluster in a VPC 
and controlling access through IP access lists. Allow traffic only from specific 
trusted IP addresses or network ranges, keeping unwanted traffic out. For addi-
tional isolation, enable private endpoints so that traffic between your applica-
tion and Atlas remains within the cloud provider’s private network, bypassing the 
public internet.

¡	Authentication and authorization—Use federated identity providers such as Okta 
and Entra ID for SSO in the Atlas UI, and enforce MFA for an added security 
layer. For database access, choose a strong authentication method such as 
SCRAM or X.509 certificates to ensure that only authenticated users can con-
nect. Employ RBAC to assign granular permissions, ensuring that users can per-
form only actions relevant to their roles.

¡	Data encryption—Secure data at rest by enabling encryption through a customer-
managed key using AWS KMS, GCP KMS, or Azure Key Vault (BYOK). This way, 
encryption keys are under the customer’s control, adding a layer of security 
even if the storage is compromised. Also use CSFLE for highly sensitive fields, 
encrypting them within the application so that Atlas never sees the plain-text 
values. For searchable encrypted data, implement Queryable Encryption to allow 
secure querying of encrypted fields.

¡	Intrusion detection and auditing—Enable database auditing to monitor access and 
track operations on sensitive collections or actions by specific users. You can 
configure audit logs to capture all authCheck events, for example; these events 
include every attempt to read or write to the database, providing insight into 
both successful and failed access attempts. Implement Control Plane auditing in 
the Atlas UI to log administrative actions at the project and organization levels, 
enabling you to monitor activities such as user management and configuration 
changes.



504 Chapter 20  Understanding Atlas and MongoDB security features

¡	Secure configuration and change management—During initial setup, ensure that all 
network peering connections, IP access lists, and private endpoint configurations 
align with your security policies. Configure minimal TLS version requirements 
(preferably TLS 1.2 or later) for all cluster connections, ensuring encrypted data 
in transit. Use automated tools within Atlas to enforce these configurations con-
sistently across environments, and apply security patches regularly to mitigate 
newly discovered vulnerabilities.

¡	PoLP—Apply this principle by creating custom database roles in MongoDB that 
grant only necessary permissions for specific tasks. A role limited to read-only 
access on a specific collection or database, for example, can be assigned to report-
ing tools, whereas more advanced roles with write permissions are reserved for 
developers who need data modification capabilities. By controlling access tightly, 
you limit exposure and reduce the potential effect of any compromised creden-
tials. Carefully define each role to provide only the permissions required for spe-
cific users or applications, ensuring that no one has more access than necessary. 
This approach helps prevent accidental or malicious actions that could harm 
data security or disrupt operations.

¡	Automated backups—Implement regular automated backups to provide a reliable 
recovery point in case of data loss, corruption, or security breach. (Chapter 21 
discusses backups.) Atlas offers continuous backups and scheduled snapshots, 
ensuring that you can restore your data to a previous state if necessary. By stor-
ing backups separately and securing access to them, you protect your data from 
potential attacks or failures, providing an essential safety layer in your defense-in-
depth strategy. Atlas encrypts all snapshots using your cloud provider’s standard 
storage encryption method, ensuring the security of cluster data at rest. Backup 
encryption prevents unauthorized access, ensures compliance, and strengthens 
security by keeping data protected even if storage is compromised.

¡	Monitoring and alerting—Implementing robust monitoring and alerting is cru-
cial for maintaining security in Atlas. By continuously tracking database activity, 
you can detect and respond to suspicious behavior in real time. Set up alerts for 
unusual access patterns, failed login attempts, and changes to critical settings. 
Atlas provides built-in monitoring tools and integrates with third-party solutions, 
enabling you to customize alerts based on security needs (chapter 21). With 
proactive monitoring, you can swiftly identify and mitigate threats, ensuring the 
ongoing security and integrity of your data infrastructure.

By implementing defense in depth across network isolation, authentication, encryp-
tion, auditing, secure configurations, and access control, Atlas provides a layered 
security strategy that protects data at every stage. This structured approach makes it 
significantly harder for attackers to gain access or compromise data; each layer adds 
an obstacle that must be overcome, thereby reinforcing overall data security and 
resilience.



	 505Summary

Summary
¡	Atlas, as a SaaS platform, relies on cloud providers for physical security and 

infrastructure, whereas MongoDB ensures platform security and database man-
agement. Customers manage data access, identity, and certain security settings, 
following the shared responsibility model.

¡	Atlas has two primary authentication areas: the Atlas UI and Atlas database clus-
ters. The Atlas UI is used to manage clusters, user permissions, and configura-
tions. Atlas database clusters handle data security by assigning roles to users or 
applications, controlling what actions they can perform, such as reading or mod-
ifying data.

¡	Federated authentication in Atlas UI uses the FIM approach to user authentica-
tion. In this setup, Atlas relies on your IdP to authenticate users. With this system, 
your organization controls user credentials via the IdP, allowing seamless authen-
tication across various online platforms.

¡	MongoDB database clusters support multiple authentication methods for data-
base access, including SCRAM, X.509 certificates, LDAP, OIDC, and AWS IAM 
for login.

¡	Atlas integrates with HashiCorp Vault to securely generate time-limited database 
credentials on demand, reducing security risks from long-lived credentials. This 
is part of Vault’s database secrets engine, using predefined roles in Vault.

¡	Atlas uses RBAC to govern access to its cloud resources and MongoDB deploy-
ments by assigning roles to users, specifying their access rights within an Atlas 
organization or project. Similarly, MongoDB databases use RBAC to regulate spe-
cific actions on databases and collections.

¡	PoLP advises granting users, applications, or systems only the access they need 
to complete their tasks. By limiting permissions to the bare minimum, PoLP 
reduces the risk of misuse, enhances security, and minimizes potential damage 
from breaches or errors.

¡	MongoDB controls access to its system using RBAC; users are granted specific 
roles that define what they can do within the database. If a user isn’t assigned any 
role, they have no permissions to access or interact with the system.

¡	MongoDB custom roles enable precise access control, enhancing security by 
granting only the necessary permissions, unlike default roles that may overex-
pose sensitive data or functions.

¡	To minimize security risks and streamline management, avoid shared accounts 
by setting up dedicated users or service accounts for each application. This 
approach ensures finer access control, simplifies tracking of actions, and enables 
enforcement of PoLP, keeping permissions well defined and isolated.

¡	Database auditing allows administrators to monitor system activity in deploy-
ments with multiple users. In Atlas, administrators can choose the actions, data-
base users, and roles they want to audit.



506 Chapter 20  Understanding Atlas and MongoDB security features

¡	Atlas secures all connections with clusters using TLS, which encrypts data during 
transmission to maintain confidentiality and integrity. All network traffic, includ-
ing data sent to Atlas and between cluster nodes, is safeguarded by TLS, enabled 
by default; it cannot be disabled.

¡	When you create an Atlas cluster, customer data is encrypted at rest using AES-
256, securing all disk-stored data through the provider’s transparent disk encryp-
tion. You can also use database-level encryption with the WiredTiger Encrypted 
Storage Engine, which allows you to bring your own encryption key via AWS KMS, 
GCP KMS, or Azure Key Vault for secure key management.

¡	CSFLE allows sensitive fields to be encrypted on the client side, ensuring that 
they are protected before reaching MongoDB. If an application stores an SSN, 
CSFLE encrypts it within the application so that only encrypted data is sent to the 
database.

¡	Queryable Encryption in MongoDB allows secure searches on encrypted fields 
without decryption. It’s ideal for protecting sensitive data like SSN and credit 
card info while enabling queries such as equality matches.

¡	Atlas clusters are protected from internet access by default, residing in a VPC 
with inbound traffic blocked. Users can create IP access lists to allow only specific 
IP addresses to connect, ensuring that access is limited to approved sources.

¡	In Atlas, network peering enables you to link your VPCs directly to an Atlas VPC, 
allowing traffic to flow privately without being exposed to the public internet. 
This feature is supported for dedicated clusters in AWS, GCP, and Azure and in 
multicloud sharded clusters.

¡	Private endpoints in Atlas enable a secure private link from your VPC directly 
to an Atlas VPC, isolating all data traffic from the public internet. This config-
uration ensures that although your VPC can reach Atlas, Atlas cannot initiate 
connections back to your network, preserving a strict network boundary and bol-
stering security.

¡	Defense in depth is a security approach that uses multiple layers of protective 
measures to safeguard data and systems. With this method, each security layer is 
intended to deter or obstruct an attacker, ensuring that even if one control fails, 
additional defenses remain in place to prevent unauthorized access.



507

21Operational excellence 
with Atlas

This chapter covers

¡	Discovering Atlas’s cloud backup capabilities
¡	Restoring an Atlas cluster
¡	Monitoring Atlas database cluster metrics
¡	Executing MongoDB diagnostic commands
¡	Using Atlas alerting and logging

Atlas provides easy-to-use tools for managing databases. It includes automatic back-
ups that protect your data and allow quick recovery if a problem occurs. Real-time 
monitoring and alerting tools help teams catch and fix problems early, keeping 
systems running smoothly without interruptions. Atlas also offers detailed health 
metrics, providing insights that make it easier to plan resources and improve perfor-
mance over time.

For performance tuning, Atlas has tools to identify slow queries, optimize indexes, 
and refine database structure and schemas, making sure that it can handle heavy 
workloads with ease. All together, these features help companies reduce costs, com-
ply with regulations, and ensure a smooth and reliable user experience, supporting 



508 Chapter 21  Operational excellence with Atlas

growth and stability over the long run. Using these Atlas tools, you can manage data-
bases securely and efficiently.

21.1	 Crafting backup strategies and practices
Database backups are essential for maintaining data integrity and operational resil-
ience, especially in unexpected situations. Suppose that someone accidentally deletes 
a collection containing critical customer records. Having a recent backup allows for 
swift restoration, minimizing disruptions and helping the business maintain continuity.

For cybersecurity, backups are equally vital. In the event of a ransomware attack, 
which involves malicious software encrypting files or locking systems to demand a ran-
som, secure offline backups offer a recovery option. These backups bypass ransom 
demands, ensuring data recovery and safeguarding the organization’s reputation. 
Backups offer a safeguard against data corruption by providing a clean previous version 
of the data, which can be restored if the current set becomes compromised.

Regulatory compliance in many industries heightens the need for consistent back-
ups. Financial institutions, for example, are often legally required to retain transac-
tional records for auditing and compliance. Reliable regular backups ensure that 
sensitive information is preserved and accessible to meet these standards, supporting 
the organization’s legal and operational obligations.

21.1.1	 Discovering Atlas backup methods

Atlas offers a managed cloud backup service that automatically creates and stores back-
ups of your MongoDB clusters hosted on the Atlas platform. Cloud Backup uses the 
native snapshot capabilities of cloud providers such as Amazon Web Services  (AWS), 
Microsoft Azure, and Google Cloud Platform (GCP). Backups are stored in the same 
region as the cluster, ensuring data proximity and compliance with data residency 
requirements. For multiregion clusters, snapshots are stored in the cluster’s preferred 
region. All managed snapshots and images are encrypted automatically. If encryption 
key management integration with AWS Key Management Service (KMS), Azure Key 
Vault, or GCP KMS is enabled, your AWS customer master key (CMK), Azure Key Vault 
Secret Key, or CCP Service Account Key and identity and access management (IAM) 
credentials are required to perform restores of backup snapshots. Cloud Backup also 
offers customizable snapshot schedules and retention policies, supporting multiyear 
retention to meet compliance obligations.

Backing up M0 clusters

Atlas Cloud Backup is not available for M0 free clusters. As an alternative, you can use 
your own tools, such as mongodump for creating backups and mongorestore for restor-
ing data. mongodump creates a logical backup of MongoDB data, extracting the database 
content and saving it as Binary JSON (BSON) files instead of copying the physical data 
storage layer. This method is useful for transferring data between MongoDB instances 
or creating an external data copy, but it is not optimal for large databases because it 



	 509Crafting backup strategies and practices

requires significant time and processing power to export and import large amounts of 
data.

The mongodump tool has certain limitations when used in Atlas, with some options 
being unsupported. The --dumpDbUsersAndRoles option, which normally allows the 
export of users and roles specific to a database, is not supported, so users and roles must 
be handled separately if they need to be re-created. The --oplog option, typically used 
to include the oplog during the dump for point-in-time snapshots, is also unsupported. 
Point-in-time captures using the oplog cannot be created directly with mongodump in 
Atlas.

For detailed information on how to back up your data manually, see https://mng 
.bz/yNdq.

Backing up flex clusters

Atlas Cloud Backup is available for Flex clusters, but its functionality is limited. 
On-demand snapshots aren’t available for Flex clusters. Atlas automatically captures 
daily snapshots for these shared clusters, starting 24 hours after the cluster’s setup. 
These snapshots use the cloud provider’s native snapshot functionality, which captures 
the data state at a specific moment, enabling quick restoration if necessary. To reduce 
effect on cluster performance, snapshots are always taken from a secondary node.

NOTE  The Atlas command-line interface (CLI) does not support Flex backup 
snapshots.

Atlas retains the eight most recent daily snapshots, providing a secure, efficient backup 
solution. Restoration to the point in time is not available for Flex instances.

To learn how to create a backup of these instances using the Atlas UI, see https://
mng.bz/Mwln.

Backing up dedicated clusters (M10+)

Dedicated clusters (M10 and higher) offer the most advanced Cloud Backup options, 
providing access to a wide range of features. Cloud Backup uses the native snapshot 
capabilities of cloud providers to create full-copy snapshots stored locally within the 
same region as the cluster. These snapshots can be scheduled at regular intervals, and 
you can configure retention policies to meet your data protection requirements. Atlas 
also supports on-demand snapshots, allowing you to create backups at any time.

You can create an M10 cluster with Cloud Backup enabled by using the Atlas CLI 
with the flags –backup and --tier M10:

atlas cluster create "MongoDB-in-Action-M10" \
--backup --provider GCP --region CENTRAL_US \
--tier M10

The command returns the following information:

Cluster 'MongoDB-in-Action-M10' is being created.

https://mng.bz/yNdq
https://mng.bz/yNdq
https://mng.bz/Mwln
https://mng.bz/Mwln


510 Chapter 21  Operational excellence with Atlas

Now your cluster has backups, which will run according to the schedule. To display 
the backup schedule, use the Atlas CLI and the command atlas backup schedule 
describe:

atlas backups schedule describe MongoDB-in-Action-M10

The command should return the current backup schedule:

CLUSTER NAME           AUTO EXPORT ENABLED   NEXT SNAPSHOT
MongoDB-in-Action-M10  false                 2024-06-22 14:49:20 +0000 UTC

ID   Frequency Interval  Frequency Type   Retention Value  Retention Unit
6676900fe259a12fa8ccfc73   6        hourly           7                days
6676900fe259a12fa8ccfc74   1        daily            7                days
6676900fe259a12fa8ccfc75   6        weekly           4                weeks
6676900fe259a12fa8ccfc76   40       monthly          12               months
6676900fe259a12fa8ccfc77   12       yearly           1                years

The output tells you that the MongoDB cluster has its next snapshot scheduled for June 
22, 2024, at 14:49 Coordinated Universal Time (UTC). The backup schedule includes 
multiple frequencies and retention periods: hourly and daily snapshots retained for 
7 days, weekly snapshots kept for 4 weeks, monthly snapshots retained for 12 months, 
and yearly snapshots preserved for 1 year. Each backup entry is assigned a unique ID, 
facilitating easy management and reference for different backup intervals and reten-
tion durations.

You can also create an on-demand backup. If necessary, you can trigger a backup 
immediately using the Atlas CLI command atlas backups snapshots create:

atlas backups snapshots create "MongoDB-in-Action-M10" \
--desc "Atlas on-demand"
Snapshot '66731653c782c81efb877f7e' created.

Next, use the command atlas backups snapshots list to monitor the progress of the 
backup process. Wait until the command returns a status-completed message:

atlas backups snapshots list "MongoDB-in-Action-M10"

The command returns a completed on-demand backup snapshot:

ID      TYPE STATUS     CREATED AT EXPIRES AT
➥66769417cca8491bfe9fa771 onDemand completed 2024-06-22
➥09:08:58 +0000 UTC 2024-06-23 09:10:58 +0000 UTC

To back up single-region M10 and higher clusters, Atlas determines the order of 
MongoDB nodes for snapshots based on a specific algorithm. First, it tries to snapshot 
a secondary node. If that is not possible, it selects the node with the lowest priority. If 
there is still a tie, it attempts an incremental snapshot from one node to the next, using 



	 511Crafting backup strategies and practices

the same storage disk if feasible. If no clear choice is made, it defaults to the node with 
the lexicographically smallest hostname.

When the order of nodes is set, Atlas attempts to create a snapshot. If the chosen 
node is unhealthy, it moves to the next preferred node. The snapshots are stored in the 
same cloud region as the cluster and are retained according to the specified retention 
policy.

If the current snapshot storage volume becomes invalid, Atlas creates a new snapshot 
volume within the same region as the cluster’s primary node. This process includes tak-
ing a full-copy snapshot to ensure backup continuity, allowing Atlas to maintain backup 
availability and support incremental snapshots in the corresponding region. Figure 
21.1 illustrates a single-region backup strategy.

SecondarySecondary

PrimaryPrimary SecondarySecondary

Region 1 Region 1

Secondary

Region 2

Primary

Region 3

Figure 21.1  The primary node (P) and secondary nodes (S) are located within the same region (Region 
1). Backups are created by taking snapshots of these nodes, prioritizing secondary nodes where possible 
to reduce effect on the primary node. If a new snapshot storage volume is required, it is created within 
the same region. This setup ensures that all backups remain in the same geographic area as the original 
data, following Atlas’s single-region backup policy. (Image © MongoDB 2024 CC BY-NC-SA 3.0)

With multiregion cluster backups, Atlas follows an algorithm to determine the order of 
nodes for snapshots. First, it attempts to snapshot a node in the highest-priority region. 
If nodes are tied in priority, Atlas compares them in descending order to determine 
the preferred node. If snapshotting in the highest-priority region isn’t possible, Atlas 
moves on to snapshot a secondary node. When there’s a tie at this step, it proceeds 
to the next criterion. If neither attempt succeeds, it selects the node with the lowest 
priority, preferring nodes that allow incremental snapshots from previous ones, spe-
cifically nodes on the same disk. If there’s still a tie, Atlas defaults to the node with the 



512 Chapter 21  Operational excellence with Atlas

lexicographically smallest hostname. When the order of nodes is set, Atlas begins the 
snapshot on the chosen node. If the selected node is unhealthy, it moves to the next 
node in priority order.

NOTE  If a snapshot fails, Atlas automatically tries to create another one. Fall-
back snapshots are available for restoring a cluster, but they should be used 
only when necessary. Created through a different, more manual process, fall-
back snapshots may not be as reliable or consistent as regular snapshots, mak-
ing them less accurate for data recovery.

Continuous cloud backups

Continuous cloud backups in Atlas provide robust data protection by allowing you to 
restore your clusters to any specific moment within a defined retention window. This 
feature continuously captures the oplog, which is a real-time log of all write operations, 
over a specified time frame. By storing these write operations, MongoDB enables pre-
cise point-in-time recovery, ensuring that users can revert the database to the exact 
state at any chosen minute within the retention period.

NOTE  Clusters with continuous cloud backups use object storage for oplog 
data, depending on the cloud provider. In AWS, this data is stored in Amazon 
S3; in Azure, it’s kept in Azure Blob Storage; in GCP, it’s maintained in Google 
Cloud Storage.

TIP  Atlas enables you to secure backups with encryption using a CMK from 
your cloud provider’s KMS. You can set up encryption for backups via the Atlas 
dashboard or through the API.

If you want to enable continuous cloud backup for your Atlas cluster, see the documen-
tation at https://mng.bz/a9MB. If you are looking for advanced config options, see 
https://mng.bz/gmJE.

21.1.2	 Restoring an Atlas cluster

Cluster restoration is critical, ensuring that data can be recovered quickly in case of 
failure, data corruption, or accidental deletion.

TIP  Test restore procedures regularly to ensure their reliability and identify 
potential problems. Testing reduces the risk of data loss and downtime during 
an actual recovery.

NOTE  Restoring data to an alternative cluster is an option for handling com-
plex scenarios, providing a valuable approach for testing setups or preparing 
for disaster recovery.

Restoring data in Atlas from scheduled or on-demand snapshots lets you revert a clus-
ter to a previous state or restore to a different cluster. The process includes specific 

https://mng.bz/a9MB
https://mng.bz/gmJE


	 513Crafting backup strategies and practices

requirements and limitations depending on the cluster type, such as M0 and Flex or 
M10 instances.

Restoring data from Cloud Backup
During a restore in Atlas from Cloud Backup, the target cluster undergoes a process 
that ensures that it returns to the exact state defined by the chosen snapshot or 
backup point. To accomplish this task, Atlas first removes all existing data from the 
target cluster to prevent conflicts or data inconsistencies. This initial wipe prepares 
the cluster for an accurate restoration of data as it existed at the backup time.

After clearing the data, Atlas begins loading the snapshot or replaying the oplog 
entries, depending on whether the restore is from a scheduled snapshot or a con-
tinuous backup. This sequential loading or replaying process rebuilds the database 
to reflect each operation performed up to the backup point, ensuring data accuracy. 
While these actions occur, the cluster is temporarily taken offline to prevent client 
access, which could disrupt data integrity if reads or writes occur midrestore. When 
the data is fully restored and verified, the cluster is brought back online, allowing nor-
mal operations to resume.

Restoring M0 clusters

Because free M0 clusters do not offer cloud backup snapshots, the recommended 
method for restoring data is using the mongorestore tool, which restores a dump 
created with mongodump. But the mongorestore used in Atlas has certain limitations 
and does not support several options. The --restoreDbUsersAndRoles option, which 
typically restores users and roles specific to a database, is not supported, so users and 
roles must be re-created separately if necessary. The --oplogReplay option, used to 
replay operations from an oplog for point-in-time recovery, is also unsupported, so 
you cannot use it for incremental backups or changes since the last backup. Finally, 
--preserveUUID, which normally keeps the unique identifiers for collections intact 
during restoration, is unavailable, so restored collections are assigned new universally 
unique identifiers (UUIDs).

Restoring Flex clusters

Atlas automatically creates daily snapshots for Flex shared clusters, starting 24 hours 
after the cluster is created. Because Atlas CLI restoration is not supported for Flex 
clusters, you must use the Atlas UI to restore. Navigate to the Clusters page, select 
your project, and open the cluster’s Backup tab. Locate the snapshot you want, choose 
Restore from the Actions menu, and select the target cluster. Confirm the restore, and 
restart your application to connect to the updated cluster.

NOTE  Flex snapshots can be restored only to replica sets, not to sharded clusters.

restoring dedicated clusters (M10+)
The Atlas CLI allows you to restore Atlas dedicated clusters with the atlas backups 
restores start command, which initiates a restore job for M10 or higher clusters. 



514 Chapter 21  Operational excellence with Atlas

When performing an automated restore, Atlas first deletes all existing data in the 
target cluster to ensure that it mirrors the state saved in the selected snapshot. This 
command has three primary options: Automated Restore, Point-in-Time Restore, and 
Download Restore.

Automated Restore restores a cluster to the state saved in a specific snapshot. Specify 
the source cluster name, the snapshot ID, the target cluster, and the project ID.

In the first scenario, suppose that you want to restore data within the same cluster. 
You would specify the source cluster name, snapshot ID, target cluster name, and pro
ject ID. Here’s an example command:

atlas backups restores start automated \
--clusterName "MongoDB-in-Action-M10" \
--targetClusterName "MongoDB-in-Action-M10" \
--snapshotId 6725be13eae896510f35a553 \
--targetProjectId 65d70c5bc9b5633e80a9c998

This command restores the cluster "MongoDB-in-Action-M10" to the state of the snap-
shot with ID 6725be13eae896510f35a553, retaining it as the original cluster.

In the second scenario, you may want to restore data to a different cluster, perhaps 
for testing or validation purposes. You still specify the source cluster and snapshot 
ID, but you change the target cluster and project ID to avoid overwriting the original 
data:

atlas backups restores start automated \
    --clusterName "MongoDB-in-Action-M10" \
    --snapshotId 6725be13eae896510f35a553 \
    --targetClusterName myRestoreDemo \
    --targetProjectId 1a2345b67c8e9a12f3456de7

In this case, "MongoDB-in-Action-M10" is the source cluster, 6725be13eae896510f35a553 
is the snapshot ID, myRestoreDemo is the target cluster, and 1a2345b67c8e9a12f3456de7 
is the project ID where the restored data will be directed, ensuring that the original 
cluster remains unchanged. The restore sets up a new cluster from the backup snap-
shot; this process can take some time, depending on the size of your cluster and snap-
shot. When the restore is complete, your restored cluster is ready for regular use.

Point-in-Time Restore restores data to a specific time within the past 24 hours by 
specifying the UNIX timestamp. Useful for more precise recovery needs, this option 
requires the cluster name, point-in-time timestamp, target cluster, and target project 
ID. This command is explained in the next section.

Download Restore downloads the specified snapshot data. Use the download option 
with the snapshot ID. To download a snapshot, you can run

atlas backups restores start download \
    --clusterName MongoDB-in-Action-M10 \
    --snapshotId 6725be13eae896510f35a553



	 515Crafting backup strategies and practices

In this case, MongoDB-in-Action-M10 is the cluster from which you are downloading, 
and 6725be13eae896510f35a553 is the snapshot ID to download.

NOTE  When the restore is finished, Atlas creates a new snapshot of the 
restored cluster. This snapshot is retained for a period matching the continu-
ous Cloud Backup window set for the cluster.

TIP  Use the Atlas CLI command atlas backups restores watch <restore 
job id> --clusterName "MongoDB-in-Action-M10” to watch the current 
restore status.

Restoring from continuous Cloud Backup

Atlas enables precise data restoration from continuous Cloud Backup by allowing you 
to select an exact date and time or a specific oplog entry as the restore point. This fea-
ture provides greater flexibility and control, enabling you to recover your data to the 
exact moment required, which is especially valuable for resolving data inconsistencies 
or reverting unintended changes.

NOTE  This feature is available for M10 and higher dedicated clusters.

Point-in-time recovery
During a point-in-time restore, the system replays the captured oplog entries—
recorded write operations—over the backup snapshot from the defined start point 
up to the specified moment within the retention window. The restore process begins 
by applying the latest snapshot as the baseline; then it sequentially replays the oplog 
entries to rebuild the database state exactly as it was at the chosen moment. This 
approach ensures that all changes up to that specific time are reflected accurately 
while keeping read operations unaffected. The result is a precise reconstruction of 
the database, aligned to the exact state required for restoration.

Recovery-point objectives (RPO) define the maximum acceptable amount of data that 
can be lost measured in time. With continuous cloud backup, you can achieve RPOs 
as short as 1 minute, providing a high level of data recovery accuracy. You can con-
figure the continuous backup window to align with your data retention and recovery 
goals. Enabling this feature, however, may increase monthly costs due to the addi-
tional storage and processing needed to maintain the oplog and facilitate smooth 
on-demand restoration.

To restore data to a specific point in time, you can use the atlas backups restores 
start pointInTime Atlas CLI command:

atlas backups restores start pointInTime \
    --clusterName MongoDB-in-Action-M10 \
    --pointInTimeUTCSeconds 1588523147 \
    --targetClusterName myRestoreDemo \
    --targetProjectId 1a2345b67c8e9a12f3456de7



516 Chapter 21  Operational excellence with Atlas

Here, MongoDB-in-Action-M10 is the source cluster, 1588523147 is the time-
stamp for the desired point in time, myRestoreDemo is the target cluster, and 
1a2345b67c8e9a12f3456de7 is the project ID of the target cluster.

Use this command to restore data to a specific point in time. This is helpful for recov-
ering from unintended changes or data loss that happened at a specific moment. The 
process creates a copy of the database at that exact time on a separate target cluster, so 
the main live data is not affected. It’s an ideal way to fix problems from accidental dele-
tions, updates, or other mistakes, allowing you to return to a stable state safely without 
touching the primary database.

TIP  You can use the --oplogTs and --oplogInc flags together to restore 
data to an exact point in time, down to a specific second. The --oplogTs 
flag specifies the target time as a UNIX timestamp (in seconds), whereas 
the --oplogInc flag is a 32-bit incrementing value that identifies the precise 
operation within that second, allowing highly granular restoration.

To learn about advanced restore strategies, see https://mng.bz/eBJv.

21.2	 Inspecting the performance of your Atlas cluster
Atlas offers built-in tools for monitoring and alerting to help you oversee your clusters 
and enhance performance. You can analyze slow queries using Performance Advisor, 
monitor collection-level query latency with Namespace Insights, and track real-time 
performance through the Real-Time Performance Panel. To ensure optimal cluster 
performance, Atlas allows you to configure alerts based on specific conditions related 
to your databases, users, and accounts. When these conditions are met, Atlas sends 
notifications via email, Short Message Service (SMS), or third-party services like Pager-
Duty and Slack. Atlas also provides deployment metrics for historical throughput, per-
formance, and use, helping you with continuous improvement and capacity planning. 
For comprehensive monitoring, you can integrate Atlas with third-party services and 
access MongoDB logs for detailed insights.

21.2.1	 Finding slow queries

To optimize query performance in Atlas, you can use the following built-in tools.

Using Performance Advisor

Performance Advisor monitors queries that are considered slow and suggests new 
indexes to improve query performance. The threshold for slow queries varies based 
on the average time of operations in your cluster to provide recommendations perti-
nent to your workload. Recommended indexes are accompanied by sample queries, 
grouped by query shape, run against a collection that would benefit from the sug-
gested index.

NOTE  Indexes improve the performance of queries. If you are trying to opti-
mize write/insert performance, extra indexes can affect performance of those 
operations.

https://mng.bz/eBJv


	 517Inspecting the performance of your Atlas cluster

TIP  By default, Atlas activates the Atlas-managed threshold for slow oper-
ations. You can disable it using atlas performanceAdvisor slowOperation
Threshold disable. To enable it again, use atlas performanceAdvisor 

slowOperationThreshold enable. Atlas does not support the Atlas-managed 
slow query operation threshold for M0 and Flex clusters.

Atlas sets a dynamic slow-query threshold by default, adjusting according to operation 
times across your cluster. If you turn off this dynamic adjustment, MongoDB instead 
applies a fixed threshold of 100 milliseconds (ms) for slow queries. I generally advise 
that you not set this fixed threshold below 100 ms.

To use Performance Advisor with the Atlas CLI, first display the available nodes 
(called processes). With the node names, you can connect to each one with the Atlas CLI 
and use its capabilities for performance optimization. To list Atlas processes, use the 
following command:

atlas processes list

The command returns a list of processes (Atlas nodes):

ID                       REPLICA SET NAME   SHARD NAME         VERSION
atlas-rr5vne-shard-00-00.a7niyd4.mongodb.net:27017
➥atlas-rr5vne-shard-0 8.0.4 atlas-rr5vne-shard-00-
➥01.a7niyd4.mongodb.net:27017  atlas-rr5vne-shard-0 8.0.4
➥atlas-rr5vne-shard-00-02.a7niyd4.mongodb.net:27017
➥atlas-rr5vne-shard-0 8.0.4

This list of processes includes details like the ID, which is the unique identifier for 
each process; the REPLICA SET NAME, indicating the name of the replica set for high 
availability; the SHARD NAME, specifying the shard to which the process belongs if the 
cluster is sharded; and the VERSION, which shows the MongoDB version running on 
each instance. Having a list of processes rather than relying on a connection string is 
essential because a connection string connects to the entire cluster as a whole without 
allowing direct access to individual nodes.

Monitoring node metrics
In MongoDB, each node has a distinct role. Some nodes are part of sharding, and 
others function as replicas. Each node can process queries. The primary node han-
dles reads and writes, and secondary nodes handle read operations. Performance 
problems can vary significantly between nodes, so analyzing performance on a per-
node basis enables more precise identification and resolution of problems.

With a node-specific list, you can focus on the exact node experiencing slow queries 
rather than query the entire cluster. This targeted approach helps you isolate perfor-
mance bottlenecks more accurately; certain problems may affect only one part of the 
cluster rather than the system as a whole.



518 Chapter 21  Operational excellence with Atlas

Now you can retrieve a list of up to 20 namespaces (in the format database 
.collection) that have slow queries for a specified node. To list these namespaces, use 
the following command:

atlas performanceAdvisor namespaces list \
    --processName atlas-rr5vne-shard-00-00.a7niyd4.mongodb.net:27017

This command returns a set of namespaces that are experiencing slow queries, allow-
ing you to focus on specific areas within your database that may need optimization. 
The specified node name in the command, such as atlas-rr5vne-shard-00-00 
.a7niyd4.mongodb.net:27017, refers to one of the nodes listed in the previous out-
put. You can examine each node.

You can also get a list of suggested indexes to optimize query performance for collec-
tions with slow queries. To get a list of suggested indexes, use the following command:

atlas performanceAdvisor suggestedIndexes list \
    --processName atlas-rr5vne-shard-00-00.a7niyd4.mongodb.net:27017

Each index recommendation comes with an average query targeting score, which 
shows the ratio of documents read to documents returned for the queries that use the 
suggested index. A score of 1 indicates highly efficient query patterns, in which every 
document read was a match and included in the results. Implementing any suggested 
index gives you a chance to enhance query performance.

Use the following command in the Atlas CLI to retrieve log entries for slow queries 
identified by the Performance Advisor and Query Profiler:

atlas performanceAdvisor slowQueryLogs list \
    --processName atlas-rr5vne-shard-00-00.a7niyd4.mongodb.net:27017

Using those commands regularly helps you stay on top of performance problems 
before they affect users or system stability. This approach also provides proactive data-
base management by identifying problem areas as they arise, ensuring that your Atlas 
environment remains efficient and responsive. You can also use Performance Advisor 
with Atlas UI. Learn how in the official documentation at https://mng.bz/pZd8.

Using Query Profiler

Atlas Query Profiler is designed to diagnose and monitor performance problems in 
your database clusters. It identifies slow-running queries and provides key performance 
statistics in the Atlas UI. By collecting and displaying statistics from your mongod 
instances, Query Profiler helps you pinpoint inefficient queries based on log data. 
This data is presented on the Query Insights tab in the Query Profiler section of an 
instance. It shows operations across your entire cluster by default, with options on the 
Host Selector drop-down menu that allow you to view operations from specific shards 
or nodes within a shard. The Query Insights tab reveals slow database operations over 
a set time frame, displaying metrics such as Operation Execution Time and Server 

https://mng.bz/pZd8


	 519Inspecting the performance of your Atlas cluster

Execution Time in chart and table formats. You can filter this data by aspect and time 
frame, allowing detailed analysis.

NOTE  Query Profiler is available only for M10 and higher clusters. Query Pro-
filer and MongoDB Database Profiler serve different functions. Query Profiler 
helps identify slow-running queries based on log data. Database Profiler cap-
tures detailed information about all database operations, depending on the 
profiling level set, and it works independently of Query Profiler settings.

Query Profiler organizes data with options for filtering by time frame and query type. 
It supports the management of slow operation thresholds, which you can adjust as nec-
essary. Query Profiler may capture sensitive query data, so use it in alignment with 
your security practices. With its ability to highlight inefficient queries, Query Profiler is 
essential for optimizing Atlas cluster performance. To learn more about using Query 
Profiler with the Atlas UI, see https://mng.bz/OwpR.

Viewing the Real-Time Performance Panel

The Real-Time Performance Panel (RTPP) is a powerful monitoring tool that provides 
live insights into key operational metrics, supporting proactive management of data-
base performance. With RTPP, you can track metrics such as CPU, memory, and disk 
use, which allows you to monitor resource consumption and quickly identify potential 
bottlenecks or capacity problems. Network metrics provide visibility into data flow, dis-
playing incoming and outgoing traffic to help you manage load and identify spikes 
that could affect performance.

TIP  When you’re working on improving performance, it’s always important 
to know what the current bottleneck is. There’s no point in making changes to 
reduce CPU use if your database is using all the available I/O throughput you 
have configured, for example.

NOTE  RTTP is available only for M10 and higher clusters.

RTPP offers insights into query execution times and identifies slow-running queries, 
providing an immediate view of performance at the query level. This enables data-
base administrators to troubleshoot and optimize problematic queries in real time. 
The panel also highlights replication lag for secondary nodes in replica sets, helping 
ensure data consistency and smooth failover operations.

With customizable time ranges and metric charts that autorefresh, RTPP allows you 
to maintain continuous oversight of your database’s health. This panel is invaluable 
for teams that need real-time monitoring to maintain high performance, optimize 
resource use, and address problems before they affect application performance or user 
experience. You can learn more at https://mng.bz/OwpR.

Monitoring collection-level latency with Namespace Insights

Namespace Insights provides detailed metrics on query latency at the collection level, 
allowing teams to monitor the response times and performance of specific collections 

https://mng.bz/OwpR
https://mng.bz/OwpR


520 Chapter 21  Operational excellence with Atlas

within a database. This feature helps identify collections experiencing high latency or 
inefficient query patterns, enabling targeted optimizations to improve overall database 
performance.

NOTE  The Namespace Insights page is available only for M10 and higher 
clusters.

With Namespace Insights, you gain access to real-time latency data, which is especially 
useful for diagnosing problems related to indexes, query patterns, or data structure 
that could be causing delays. The tool allows granular monitoring, showing which col-
lections require attention and providing insights into query execution times for each 
collection. This detailed level of visibility helps database administrators make data-
driven adjustments, optimize resource allocation, and maintain consistent perfor-
mance across high-traffic or complex collections. You can learn more at https://mng 
.bz/GwRv.

21.2.2	 Improving your schema

Atlas offers schema suggestions designed to improve database structure and optimize 
performance. Performance Advisor analyzes high-traffic collections and those with 
slow-running queries, offering targeted recommendations to address inefficiencies in 
data modeling. By identifying patterns that contribute to performance bottlenecks, 
Atlas suggests schema modifications aligned with MongoDB’s best practices, such as 
restructuring fields, optimizing indexes, and adjusting data types to suit your query 
patterns better.

Atlas samples documents from collections to understand their structure and suggest 
improvements where data organization may be inefficient. If a collection has deeply 
nested fields or excessive arrays, Atlas may recommend changes to flatten the structure, 
reducing the complexity of query execution. Similarly, if a collection has fields that vary 
widely in data type or size, schema suggestions might include recommendations to nor-
malize data types, which can improve query performance and storage efficiency.

Another key aspect of schema suggestions is improving data access patterns. Atlas can 
detect collections in which queries frequently filter on fields that lack suitable indexes 
or use fields prone to high cardinality. In such cases, schema recommendations may 
include adding indexes on frequently queried fields or adjusting field arrangements 
to optimize query execution plans, thereby reducing latency and improving response 
times. By proactively addressing these problems, schema suggestions not only enhance 
performance but also reduce resource consumption, making it easier to scale applica-
tions efficiently.

These recommendations are accessible in the Atlas UI, allowing you to evaluate and 
implement them easily. With a focus on actionable insights, schema suggestions serve as 
an ongoing resource for maintaining and improving database performance, adapting 
as your workloads and data structures evolve. You can learn more at https://mng.bz/
z2mB.

https://mng.bz/GwRv
https://mng.bz/GwRv
https://mng.bz/z2mB
https://mng.bz/z2mB


	 521Inspecting the performance of your Atlas cluster

21.2.3	 Using native MongoDB diagnostic commands

Apart from Atlas’s built-in monitoring tools, you can use native MongoDB diagnos-
tic commands. These commands provide direct insights into the server’s performance 
and operational status, allowing you to track resource use, analyze query execution, 
and identify potential bottlenecks within your MongoDB environment. Many of Atlas’s 
built-in tools rely on these commands, using them under the hood to gather and dis-
play critical performance metrics.

Viewing serverStatus

The serverStatus command returns a document that provides an overview of the 
database’s state. Running db.serverStatus() in MongoDB Shell (mongos ) retrieves 
key metrics on various operational aspects of the server, including instance informa-
tion (such as hostname, MongoDB version, and uptime), memory use (tracking mem-
ory allocation and use by MongoDB), connections (showing the number of active and 
available connections), network statistics (data on incoming and outgoing network 
traffic), and operation counters (counts of inserts, queries, updates, and deletes). In 
addition, serverStatus provides information on WiredTiger Storage Engine tickets, 
which are limits for concurrent read and write operations managed by WiredTiger. 
These tickets help you control the number of simultaneous operations, preventing 
excessive load on the server and ensuring stable performance. The WiredTiger Stor-
age Engine has separate tickets for reads and writes. In MongoDB 7.0 and later, the 
storage engine dynamically adjusts the number of concurrent tickets to optimize per-
formance under load. A ticket availability of 0 for a prolonged period does not indi-
cate an overload because of this dynamic adjustment. In MongoDB 6.0 and earlier, a 
prolonged 0 ticket availability likely indicates an overload because tickets are statically 
configured. To check current ticket use, you can run db.serverStatus().wiredTiger 
.concurrentTransactions in the mongosh.

Queue metrics in serverStatus show the number of operations waiting for 
resources, indicating potential contention points. High values in db.serverStatus() 
.globalLock.currentQueue, especially if read or write queues consistently exceed 
100, suggest that operations are delayed due to limited resource availability, which may 
affect performance.

Using currentOp

The currentOp command in MongoDB is a valuable tool for monitoring active 
operations on a server. It provides a snapshot of all ongoing operations, including  
queries, updates, inserts, and administrative tasks. It is particularly useful for identify-
ing long-running or potentially problematic operations that may be causing perfor-
mance bottlenecks or blocking other tasks.

To use currentOp, execute db.currentOp() in mongosh. This command returns a 
document containing detailed information about each active operation, such as oper-
ation type, namespace (database and collection), client details, duration, and resource 
use:



522 Chapter 21  Operational excellence with Atlas

{
  "active" : true,
  "opid" : 12345,
  "secs_running" : 45,
  "ns" : "myDatabase.myCollection",
  "command" : {
    "find" : "myCollection",
    "filter" : { "status" : "active" }
  },
  "client" : "127.0.0.1:56789",
  "desc" : "conn123",
  "waitingForLock" : false
}

In this example, secs_running: 45 indicates that the operation has been running for 
45 seconds, and waitingForLock: false shows that it is not waiting for a lock.

You can also filter the output to focus on specific operations. To see only long-
running operations, you can specify a threshold:

db.currentOp({ "secs_running" : { "$gt" : 60 } })

This command lists operations that have been running for more than 60 seconds, 
which can help you pinpoint tasks that may need attention or optimization. If you want 
to view only insert operations, use

db.currentOp({ "op" : "insert" })

If you identify a long-running or problematic operation using currentOp, you can ter-
minate it using the killOp command. This command is helpful for stopping opera-
tions that are consuming excessive resources, causing bottlenecks, or blocking other 
tasks. To use killOp, retrieve the operation ID (opid) from the currentOp output. 
Each active operation has a unique opid, which you’ll need to pass to killOp. If you see 
an operation with opid : 12345 that you want to terminate, run

db.killOp(12345)

This command stops the specified operation.

WARNING  Use killOp cautiously; ending operations abruptly could lead to 
partial writes or incomplete tasks. It’s best applied to noncritical operations, 
long-running queries, and maintenance tasks that have exceeded expected 
run times and are affecting overall performance.

Executing top

The top command in MongoDB provides detailed statistics on the time spent reading 
and writing in different collections. This command helps you identify which collec-
tions or resources are most heavily used, offering insights into potential bottlenecks or 
areas that may need optimization.



	 523Inspecting the performance of your Atlas cluster

The top command tracks the cumulative time MongoDB spends on each collection, 
displaying separate statistics for reads, writes, and total operations. This breakdown 
enables you to understand workload distribution across collections and make informed 
decisions on indexing, sharding, and other optimizations. To use top, execute

db.runCommand({ top: 1 })

The command returns a document with an entry for each database and collection, 
showing the time spent on each operation type:

sample_training.routes': {
  total: { time: 12000, count: 150 },
  readLock: { time: 7000, count: 80 },
  writeLock: { time: 5000, count: 70 },
  queries: { time: 7000, count: 80 },
  getmore: { time: 2000, count: 40 },
  insert: { time: 3000, count: 50 },
  update: { time: 4000, count: 60 },
  remove: { time: 1000, count: 20 },
  commands: { time: 500, count: 15 }}

In this output, total.time indicates that the collection sample_training.routes is 
heavily used, with high times and counts across readLock, writeLock, queries, insert, 
and update. This level of activity suggests that the collection is under substantial load, 
likely serving numerous read and write operations, and may require optimization to 
improve efficiency.

Discovering dbStats and collStats

The dbStats command provides statistics for a specific database, including its size, data 
and index use, and storage efficiency. To retrieve these stats, run

db.runCommand({ dbStats: 1 })

The collStats command offers detailed information on a particular collection, such 
as the number of documents, data size, index count, and index performance. To see 
details, run

db.runCommand({ collStats: "collection_name" })

Both commands are essential for monitoring resource use and performance, allowing 
administrators to optimize storage and identify potential areas for improvement at the 
database and collection levels.

Monitoring replication

You can use rs.printReplicationInfo() to check the overall replication status of a 
MongoDB replica set. This command provides information on the oplog, including its 
size and the time range of operations it holds, which is critical for understanding how 



524 Chapter 21  Operational excellence with Atlas

long secondary members can go offline while still being able to catch up with the pri-
mary. If the oplog is too small, secondaries may fall out of sync and require a full resync 
after downtime.

rs.printSecondaryReplicationInfo() also offers insights into the status of sec-
ondary members in the replica set. This command shows details such as replication 
lag, which is the delay between when an operation occurs on the primary and when 
it is applied to a secondary. Monitoring replication lag is important because signifi-
cant lag can result in secondaries serving outdated data, which can affect applications 
that rely on up-to-date reads. By keeping track of these metrics, you can ensure that 
replica set members remain synchronized, enabling consistent data availability and 
performance.

TIP  db.runCommand({ listCommands: 1 }) returns a list of all available com-
mands in MongoDB along with their descriptions, which is useful for explor-
ing the full capabilities of the server.

You can read about more diagnostic commands at https://mng.bz/0zyN.

21.3	 Alerting and logging
Logging and alerting are crucial for database cluster health and security. Logging 
tracks system activities, user actions, and application events, providing a history for 
troubleshooting, performance checks, and detecting security problems. Alerting noti-
fies admins of critical events such as slow performance or security threats, preventing 
small problems from becoming larger problems. Together, they help you maintain 
performance, reliability, and security compliance by constantly monitoring and analyz-
ing database activities.

21.3.1	 Setting alert conditions

Atlas provides flexible alerts to notify you automatically if certain conditions in your 
cluster go outside defined limits. These alerts help you manage performance without 
continually checking everything manually. Alerts are automated notifications that let 
you know when something unusual is happening in your system. When an alert is trig-
gered, Atlas displays a warning icon on your cluster and sends a notification (via email, 
SMS, webhook, PagerDuty, or other channels) based on your chosen settings. This lets 
you respond quickly to potential problems before they affect performance. Your site 
reliability engineering (SRE) team should keep close watch on those alerts and react 
quickly. You can set alerts for specific conditions and thresholds, each designed to 
monitor important performance metrics:

¡	CPU steal—This metric applies to environments such as AWS EC2 clusters with 
burstable performance that use shared CPU cores. It measures the percentage by 
which CPU use exceeds the guaranteed baseline CPU credit accumulation rate. 
CPU credits represent units of CPU use that accumulate at a constant rate, ensur-
ing a guaranteed level of performance. These credits can be used to boost CPU 

https://mng.bz/0zyN


	 525Alerting and logging

performance beyond the baseline. When the credit balance is depleted, only the 
baseline CPU performance is maintained, and any additional use appears as steal 
percent. High CPU steal values (above 10%) indicate potential strain on the sys-
tem’s capability to meet demand, which can affect performance. Atlas alerts you 
to these conditions, prompting considerations such as scaling resources or opti-
mizing workloads.

¡	Queues—This metric tracks operations waiting for access to resources (known as 
locks). If too many operations are queued (more than 100), it signals potential 
delays, and an alert helps you manage resource allocation.

¡	Query targeting—This metric identifies inefficient or slow database queries. Alerts 
at high values (50 or more) help you improve performance by highlighting 
queries that may require optimization.

¡	Connection limits—This metric alerts you when the cluster is nearing its connec-
tion capacity (80%–90%), letting you address scaling needs or avoid connection 
problems.

You can learn more about conditions that can trigger an alert and how to set them up 
in the Atlas UI at https://mng.bz/Kwlj and https://mng.bz/9yD7.

You can also use the Atlas CLI to create specific alerts. If you want to create an alert 
that triggers when the number of scanned objects per returned query exceeds a set 
threshold, you could use the following command:

atlas alerts settings create --event OUTSIDE_METRIC_THRESHOLD --enabled \
--metricName QUERY_TARGETING_SCANNED_OBJECTS_PER_RETURNED \
 --metricOperator GREATER_THAN --metricThreshold 1000 \
--metricUnits RAW --notificationType EMAIL --notificationEmailEnabled \
--notificationEmailAddress your-email@example.com \
--notificationIntervalMin 15

After successful creation, Atlas confirms with a message like this:

Alert configuration 672712f476c13d0e1dd98d28 created.

This alert targets the QUERY_TARGETING_SCANNED_OBJECTS_PER_RETURNED metric, 
which monitors the efficiency of query execution. Setting --metricThreshold 1000 
means that the alert will trigger if the query scans more than 1,000 objects for each 
object returned. This threshold helps you identify potential inefficiencies. When the 
scanned-to-returned ratio is high, it often points to suboptimal index use or poorly 
structured queries. Exceeding this threshold could lead to increased resource use 
(CPU, I/O) and longer query response times. Configuring this alert with a threshold 
enables proactive monitoring and allows adjustments to improve query performance 
and resource allocation.

To display information about newly created alert, you can use

atlas alerts settings describe 67271087cc3c1c55ff7867a1

https://mng.bz/Kwlj
https://mng.bz/9yD7


526 Chapter 21  Operational excellence with Atlas

You can also execute atlas alerts settings list to display information about all 
alerts currently available:

atlas alerts settings list

The following output shows a limited list of alerts:

ID                        TYPE                      ENABLED
67271087cc3c1c55ff7867a1   OUTSIDE_METRIC_THRESHOLD    true
65d70c5bc9b5633e80a9c99f   NO_PRIMARY                  true
65d70c5bc9b5633e80a9c9a4   CLUSTER_MONGOS_IS_MISSING   true
65d70c5bc9b5633e80a9c9b8   HOST_HAS_INDEX_SUGGESTIONS  true
65d70c5bc9b5633e80a9c9bb   HOST_MONGOT_CRASHING_OOM    true
6659e725bd53995b6b4ffd5f   SYNC_FAILURE                true
6659e725bd53995b6b4ffd63   REQUEST_RATE_LIMIT          true
6659e725bd53995b6b4ffd67   LOG_FORWARDER_FAILURE       true

You can also update an alert setting with the Atlas CLI by using the atlas alerts 
settings update <alert id> command or delete an alert by using the atlas alerts 
settings delete <alert id> command.

21.3.2	 Logging in Atlas

Atlas offers comprehensive logging capabilities to monitor and manage your database 
deployments. Logs available in Atlas include

¡	Database logs—Each mongod and mongos instance maintains its own log file, 
recording activities such as slow queries, connections, and system events. Atlas 
retains these logs for 30 days.

¡	Audit logs—For clusters with database auditing enabled, audit logs capture 
detailed records of database activities, including authentication attempts and 
data access events. These logs are essential for tracking user actions and ensuring 
compliance with security policies.

¡	Trigger logs—Atlas logs events related to triggers, functions, and change streams, 
providing insights into application-level operations. These logs are retained for 
10 days.

If you want to access or manage logs in Atlas, you can do so via the Atlas UI or CLI. In 
the Atlas UI, navigate to your cluster’s Logs tab to view and download logs. You can 
filter logs by type, status, timestamp, user, and request ID to focus on relevant entries.

If you want to use the Atlas CLI, the atlas logs download command allows you to 
download MongoDB logs from specific hosts in an Atlas project. The general syntax is

atlas logs download <hostname> <log-type> [flags].

Replace <hostname> with the hostname and <log-type> with the type of log file 
you need. Common log types include mongodb.gz, mongos.gz, mongosqld.gz, 



	 527Upgrading your Atlas cluster

mongodb-audit-log.gz, and mongos-audit-log.gz. You can find the hostname with 
the help of the atlas process list command. This command lists all hostnames for 
the project, making it easy to find the one you need:

atlas logs download atlas-123abc-shard-00-00.111xx.mongodb.net mongodb.gz

NOTE  Downloadable logs are not available for M0 free clusters and Flex 
shared clusters.

Regular analysis of logs helps you identify performance bottlenecks such as slow  
queries or resource contention and detect potential security problems, including 
unauthorized access attempts. Using tools like Performance Advisor and Query Pro-
filer can further help you optimize database operations.

Atlas also lets you send logs to other tools for better monitoring and analysis, making 
it easier to keep track of what’s happening in your database. You can set up automatic 
log forwarding; logs are sent directly to other services without your having to  download 
them manually. You could send logs to AWS CloudWatch to view them alongside other 
data from your AWS resources, for example. This way, you have one place for all your 
logs, helping you monitor everything together.

If you use Datadog for monitoring, you can also connect it to Atlas. Datadog is a mon-
itoring and analytics platform that offers real-time visibility into your infrastructure, 
applications, and logs, providing comprehensive dashboards and alerting capabilities. 
By setting up a function in Atlas to send logs to Datadog, you’ll get alerts and insights 
about your MongoDB database directly in Datadog’s dashboard.

Atlas also allows you to store logs in Amazon S3 if you need long-term storage. By 
connecting Atlas to an S3 bucket, you can keep your logs in one place for as long as you 
need, making it easy to look back at historical data.

Another popular option is sending logs to Elasticsearch, a powerful search engine 
where you can analyze and search large amounts of data quickly. When your logs are in 
Elasticsearch, you can use Grafana to create dashboards, helping you visualize trends 
and spot problems in your database over time.

These integrations make it easy to monitor Atlas along with other tools you may 
already be using, allowing you to manage and analyze your database logs in a way that 
best fits your needs.

21.4	 Upgrading your Atlas cluster
Regular upgrades in Atlas are crucial for maintaining security and performance and 
accessing new features. Atlas makes these upgrades straightforward, offering minor 
and major version upgrades, each with distinct purposes and effects.

Minor upgrades involve updates within the same major version (from 8.0.3 to 8.0.5, 
for example). These upgrades focus on security patches, bug fixes, and minor improve-
ments, ensuring that your clusters are secure and up to date without changing core func-
tionality. Atlas applies minor version upgrades automatically during the maintenance 



528 Chapter 21  Operational excellence with Atlas

window, with little to no downtime, via a process called rolling upgrades, in which nodes 
are updated one at a time to maintain cluster availability. You can use the Atlas CLI 
and manage the maintenance window with commands like atlas maintenanceWindows 
create, atlas maintenanceWindows update, and atlas maintenanceWindows delete, 
or you can use the Atlas UI. To learn how to set up maintenance windows, go to https://
mng.bz/jZPr.

Major upgrades, such as moving from MongoDB 7.0 to 8.0, introduce new features 
and significant changes to the database engine. To upgrade the major version of 
MongoDB in an Atlas cluster, the cluster must be in a healthy state, and any on-demand 
snapshots should be completed before starting. The upgrade can proceed only one 
major version at a time; version skipping is not allowed. MongoDB doesn’t apply an 
upgrade to a major version of your cluster automatically; that is your responsibility.

NOTE  Atlas upgrades to the next major version automatically only if the cur-
rent version reaches end of life. Shared tiers (M0/Flex) upgrade automatically 
shortly after a few patch releases of the new version.

Each new version may introduce non-backward–compatible features, so review the 
release notes to understand potential effects on your application. To learn how to 
upgrade your Atlas cluster to the latest version, see https://mng.bz/Wwza.

Major version upgrades
When performing a major upgrade, it’s essential to verify that your MongoDB driver is 
compatible with the new database version. Different versions of MongoDB may intro-
duce changes that affect how the driver interacts with the database, and outdated 
drivers can lead to unexpected behavior or even errors. Atlas provides documentation 
to help you check for any breaking changes introduced in the upgrade that might 
affect driver functionality. If your current driver version is incompatible, you should 
plan to upgrade the driver along with the database. Testing the driver and database 
in a staging environment before deploying to production is highly recommended. This 
testing phase allows you to identify and resolve any problems that might arise due 
to new behaviors or changes in the database performance and driver interaction. By 
verifying driver compatibility and reviewing any breaking changes, you can ensure a 
stable, seamless transition when upgrading to a new major version in Atlas.

NOTE  Upgrading to the latest version enhances security with critical patches 
and new features, keeping your data protected from vulnerabilities. Atlas clus-
ters benefit from built-in security, such as encryption at rest and network iso-
lation, that is updated regularly to meet standards. Staying current with minor 
and major upgrades ensures that your clusters are secure against new threats.

TIP  Using the Stable API ensures API stability, shielding applications from 
unexpected behavior changes.

https://mng.bz/jZPr
https://mng.bz/jZPr
https://mng.bz/Wwza


	 529Summary

Summary
¡	Database backups are crucial for data integrity and resilience. They allow quick 

recovery if data is accidentally deleted and maintaining business continuity 
in case of corruption. In cybersecurity, backups are key to recovery, especially 
during ransomware attacks, because secure backups can help you restore data 
without paying a ransom.

¡	Atlas Cloud Backup is a managed service that automatically stores point-in-
time snapshots of clusters using AWS, Azure, or GCP. It supports scheduled and  
on-demand snapshots, offering options such as continuous backup with point-in-
time recovery to ensure data protection and policy compliance:

–	 Cloud Backup is not available for M0 free clusters. Instead, you can use tools 
like mongodump to create backups and mongorestore for data restoration. 
mongodump generates a logical backup by extracting database content and 
saving it as BSON files rather than copying the physical data layer.

–	 Atlas cloud backup for Flex clusters is limited to automatic daily snapshots, 
starting 24 hours after setup. On-demand snapshots aren’t supported, but 
cloud provider snapshots enable quick restoration.

–	 Dedicated clusters (M10 and higher) have advanced Cloud Backup options, 
using cloud providers’ native snapshot capabilities to create full-copy snap-
shots stored in the same region. Snapshots can be scheduled regularly, with 
configurable retention policies, and on-demand snapshots are available for 
backups anytime.

–	 Continuous cloud backups offer robust data protection with point-in-time 
recovery, continuously capturing database changes for restoration at any 
moment within a set retention window. Available for M10 and higher clusters, 
this feature may increase costs due to additional storage and processing. You 
can configure the backup window duration to meet specific recovery needs.

–	 In Atlas, mongorestore doesn’t support --restoreDbUsersAndRoles, 
--oplogReplay, or --preserveUUID, so users and roles must be re-created 
manually; restored collections receive new UUIDs, and there is no point-in-
time restore option.

¡	When you restore from a Cloud Backup, the target cluster is prepared to match 
the exact state of the selected snapshot or backup point. To achieve this, Atlas 
first clears all existing data on the target cluster, avoiding any potential conflicts 
or inconsistencies. This clean start ensures that the cluster can be restored accu-
rately to reflect the data as it was at the backup time.

¡	Atlas offers real-time monitoring and alerting for database performance, health, 
and resource use. You can track metrics like CPU, memory, disk I/O, and active 
connections to spot problems early. Custom alerts can be set for specific thresh-
olds, with notifications sent automatically via email, SMS, or integrations such as 
PagerDuty and Slack.



530 Chapter 21  Operational excellence with Atlas

¡	Performance Advisor monitors slow queries and suggests indexes to boost per-
formance, adjusting thresholds based on your cluster’s average operation time. 
Each index recommendation includes sample queries that would benefit from it, 
grouped by query structure.

¡	Query Profiler helps you diagnose and monitor database cluster performance. 
It identifies slow queries and provides key metrics such as execution time and 
server processing time, allowing in-depth analysis across clusters or individual 
nodes.

¡	RTPP is a live monitoring tool that tracks key metrics such as CPU and memory, 
disk, and network use, helping you identify bottlenecks and manage database 
performance proactively.

¡	Namespace Insights offers detailed collection-level metrics on query latency, 
helping teams monitor response times and pinpoint collections with high latency 
or inefficient queries for targeted optimizations.

¡	Atlas offers schema suggestions to optimize database performance by analyz-
ing high-traffic collections and slow queries. It recommends changes such as 
field restructuring, index optimization, and data type adjustments to reduce 
bottlenecks.

¡	You can also use native MongoDB diagnostic commands, which provide direct 
insights into server performance, resource use, and potential bottlenecks. Many 
Atlas tools use these commands under the hood. Key commands include server-
Status, dbStats, collStats, currentOp, top, and replSetGetStatus.

¡	Logging records system activities for troubleshooting and security, while alerting 
notifies admins of critical problems. Together, they ensure performance, secu-
rity, and reliability by tracking and responding to problems proactively.

¡	You can set alerts for specific conditions, including CPU steal, queues, query tar-
geting, and connection limits. Each condition monitors essential performance 
metrics to help you maintain cluster health.

¡	Enable an alert with atlas alerts settings enable <alertConfigId>, and  
delete it with atlas alerts settings delete <alertConfigId>. List all 
alerts using atlas alerts list, and view details with atlas alerts describe 
<alertId>.

¡	Atlas provides logging for effective database monitoring, including database logs 
for instance activities (kept for 30 days), audit logs for tracking database actions, 
and trigger logs for application events (kept for 10 days). Logs are accessible via 
the Atlas UI or CLI.

¡	Regular upgrades ensure security, performance, and new features. Minor 
upgrades are automatic during maintenance, focusing on patches and stability. 
Major upgrades require manual initiation and introduce significant changes, 
requiring a healthy cluster and completed snapshots.



531

index
Numbers
2d indexes  163
2dsphere indexes  162
8000 port  376

Symbols
$addFields stage  125
$addToSet operator  66
$all operator  80
$arrayElemAt  133
$currentOp pipeline stage  223
$each modifier  65
$elemMatch operator  80, 84
$emit stage  395
$graphLookup stage  99
$group stage  124, 131, 144, 421–423
$gt operator  80
$hoppingWindow command  414
$hoppingWindow stage  395
$[<identifier>] operator  69
$inc operator  62, 63, 189
$indexStats aggregation pipeline stage  172
$in operator  74
$jsonSchema operator  115
$limit operator  284
$limit stage  125, 287

$lookup operation  95, 131, 299
$lookup operator  131
$lookup stage  99, 125, 131–134, 144, 412
$match expression  469, 472
$match stage  124, 125, 131
$merge aggregation stage  118
$mergeObjects stage  133
$merge stage  130, 422–424
$meta:   282
$meta expression  319
$nin operator  74
$not operator  74
$or operator  73
$out aggregation stage  118
$out operation  130
$out stage  129
$planCacheStats stage  141
$pop operator  67
$project expression  469
$project operator  127
$project stage  319, 322, 332
$pull operator  66
$push operator  64–66
$replaceRoot stage  134
$search aggregation pipeline stage  279
$search facet operator  287, 290



532 index

$search fuzzy property  283
$searchMeta aggregation pipeline stage  294–297
$searchMeta stage  134, 268, 278
$search proximity search  284
$search stage  134, 268, 278, 293
$search text operator  281
$search wildcard search  286
$set operator  62, 63, 68, 127–129, 189, 330
$set stage  133, 287
$shardedDataDistribution  222
$size operator  81
$slice modifier  65
$sort modifier  65
$sort stage  124, 125, 287
$source aggregation stage  395–399
$source stage  394, 421–424
$sum operator  124
$ symbol, when not allowed  32
$text operator  159, 283
$tumblingWindow stage  395, 421–424
$unionWith operation  299
$unset operator  127–129
$unset stage  133, 287
$unwind stage  125
$validate aggregation stage  400
$validate stage  394, 407
$vectorSearch filter option  320, 322
$vectorSearch operator  323, 325, 326
$vectorSearch stage  315–319, 321, 322

A
accounts collection  131, 134, 189
accumulators  136
ACID (atomicity, consistency, isolation, and 

durability)  2
multidocument transactions, executing  185
transactions, defining  183

Active state  141
Add Connection button  419
addShard() operation  223
admin system database  172
aerocondorRoutesView  30
aggregation framework  9, 122–131
aggregation pipelines  11, 121

accumulators  136
Atlas SQL syntax  453

saving results of  129–131
structuring stream processor  394–400
using $set and $unset instead of $project   

127–129
using MongoDB Atlas builder  137
viewing stages  124
writing  123

aggregations  388, 460
AI (artificial intelligence) applications, developing 

locally with Atlas CLI
building first local Atlas cluster  340
configuring Docker  338
creating Atlas cluster locally with Atlas CLI   

337–341
displaying processes  349
executing into containers  350
local Atlas clusters  336, 341–352 

AI chatbots
AI-powered MongoDB chatbots  365
building  362–364
communicating programmatically with  381
LangChain CLI  363–364
retrieval-augmented generation, MongoDB Atlas 

Vector Search RAG template  362
testing with LangServe  376

alerting  524–527
Algolia  263
analytics nodes  256–257
ANALYTICS nodes  257
analyzers, handling data using  272
analyzeShardKey command  217– 219, 221
AND operator  267
ANN (approximate nearest neighbor)  355

searches  309
anomaly detection  388
antipatterns  119
Apache Kafka  386

broker  395
Apache Lucene  265–267
app directory  366
application and driver  7
applications, event-driven  402
Approximation pattern  102
arbiter, defined  198
archive-only instance  438
Archive pattern  103
archiving



	 533index

connecting and querying Online Archive   
444–446

initializing Online Archive  440–444
restoring archived data  446–448
with Atlas Online Archive  437–440

deleting archived documents  440
overview of  439

arrays 
adding elements to  64
multikey indexes with embedded fields in  158
querying  78–81
removing elements from  66
returning array of all documents  89
updating  64–69
using array filters  68

async/await  476
asyncio  362
Atlas

adding IP addresses to project access list  20
alerting  524–527
authorization, Atlas user roles  489
backup strategies and practices  508–516
loggin  524–527 g
querying MongoDB using SQL  453–457
shared responsibility model  482–485
upgrading clusters  527–528

atlasAdmin 
permission  488
role  21, 490

Atlas Application Services  466–476
triggering server-side logic with Atlas Database 

Database Triggers  467, 469–472
writing Atlas Functions  475–476

atlas auditing  495
atlas backup commands  510, 514, 515
Atlas CLI (command-line interface)  214, 242, 312, 

335, 451, 509
creating Atlas account  15
creating Atlas cluster  18
creating Atlas cluster locally with  337–341
creating Atlas project  17
creating organization  16
developing AI applications locally  336, 349, 350, 

352
developing AI applications locally with, creating 

search indexes  352–356
installing  15

managing local Atlas cluster  341–345
navigating Atlas user interface  19
setting up first cluster using  15–19
using with stream processing  402

atlas cluster commands  275, 277, 314, 442, 443
atlas clusters pause/start  214
Atlas command-line interface (CLI)  214, 242, 335, 

451
atlas customDbRoles create command  491
atlas customDbRoles list command  492
Atlas database clusters  485
Atlas Database Triggers  10, 467–474

configuring scheduled triggers  472
creating  469–472
event processing performance  474
trigger types  467
using authentication triggers  474

Atlas Data Federation  10, 430
architecture of  432
charges for  435
deploying Atlas Federated Database 

instance  433
limitations of  434
optimizing data processing with, querying 

Amazon S3 and Azure Blob Store data via 
Query API  431

atlas dbusers create commands  492
atlas deployments commands  336, 337, 340,  

342–345, 372, 375
Atlas Functions  475–476
Atlas Global Clusters  253
atlas--help command  23
atlas logs download command  526
atlas maintenanceWindows create commands  528
Atlas Online Archive  437–440
atlas organizations create command  16
atlas processes commands  517, 527
atlas process list command  527
atlas project commands  17
Atlas Search  9, 268–273, 359

Apache Lucene  265–267
architecture  268
building index  274–277
commands  297
full-text search  262–263
indexes  270–273
Nodes  269



534 index

Atlas Search Playground  298
Atlas SQL Interface  10

connecting to  451–452
limitations of  458

Atlas Stream Processing  10, 389–393, 402
capabilities  392
components  391–392
securing  426–427

atlas streams commands  403, 404, 419
Atlas Triggers  326–331, 468
Atlas UI  485
Atlas Vector Search  10, 371

creating index  375
embeddings with  309–314
executing with programming languages   

322–326
improving performance of  331
running queries  315–322

Attribute pattern  103
attributes, indexes  165–170
audio embeddings  304
auditing Atlas  492–494
audit logs  526
authCheck 

event  493
log  494

authenticate event  493
authentication  485–488

choosing authentication method  486–488
integrating with HashiCorp Vault  487
methods  434
triggers  468, 474

authorization  489–492
Atlas user roles  489
MongoDB RBAC  490–492
principle of least privilege  489

auth register command  15
autocomplete, defined  36
AUTOCOMPLETE environment  299
autoscaling 

clusters  249
storage  251

AWS (Amazon Web Services)  9, 18, 245, 433, 443, 
466, 508

IAM (identity and access management)  434, 487
AWS IOPS (input/output operations per 

second)  253

AWS S3 account  434
querying data via Query API  431

Azure Blob Store, querying data via Query API  431
Azure Key Vault  499

B
backup strategies and practices  508–516

Atlas backup methods  508–512
Atlas cluster restoration  512–516

backward compatibility  90
balancer  224
BaseModel  371
bash shell  350
batch document updates  205
BI (business intelligence) tools  242, 449
Bloated Documents  119
blocking queries  446
BSON (Binary JSON)  5, 29, 60, 99, 136, 167, 320, 

344, 434, 509
Bucket pattern  104
builds, indexes  170–172
bulkWrite() method  86
BYOK (Bring Your Own Key)  483

C
Callback API  184

using transactions with  187, 190, 192
callback function  187
capped collections  28
case insensitivity  159
cat command  351
chain, defined  371
chained replication  203
chain.py file  366, 369
change streams  9, 207–211

connections for  207
modifying output of  210
with Node.js  209

charts  459, 460
Atlas Application Services  466–476
types  460–462
view  460
visualizing data with Atlas Charts  460–466

chatbots. See AI chatbots
ChatOpenAI  370, 381
ChatPromptTemplate  371, 379, 381



	 535index

checkpoints  181
chunks

administrating  225, 227
balancing  224

CIDR (Classless Inter-Domain Routing)  500
class, defined  371
classpath  350
clearJumboFlag command  228
CLI (command-line interface)  15, 248, 274, 459
client, defined  371
clusterMonitor role  490
CMK (AWS customer master key)  496, 508
collections

managing data with  23
resharding  222

collMod command  114, 150, 151, 168, 169, 173
COLLSCAN stage  153
column and bar, chart type, defined  461
column-oriented storage  181
combined instance  438
combo  461
commitTransaction command  184
communicating with MongoDB, MongoDB 

Compass  43–45
comparison operators  74
compound condition  282
COMPOUND environment  299
compound 

indexes  151, 15, 155
multikey index  157
operator  281
query  73

compression, defined  182
config servers  8, 212

embedding in sharded clusters  230
config shard  215
config system database  172
connect command  337
connection limits  434

metric  525
connection properties, restoring archived data  447
Connection Registry  391
connections, establishing to MongoDB through 

MongoDB Shell  21
containers, executing into  350
contextual help  36

continuous cloud backups  512
restoring from  515

Core API  184
cosine similarity  312
cost, defined  264
count command  195
CPU steal metric  525
cron expressions  473
CRUD (create, read, update, and delete) 

operations  11, 44, 57
bulkWrite() method  86
connecting to mongosh for  58
cursors  88
deleting documents  85
inserting documents  58–61
executing  77
limiting  84, 85
querying arrays  78–81
querying embedded/nested documents  84
reading documents  71–77
regular-expression searches  77
replacing documents  70
skipping  84
sorting  84
Stable API  89
updating, arrays  64–69
updating documents  61–64

CSFLE (client-side field-level encryption)  498
CSRS (config server replica set)  224
curl command  344
cursors  88–89, 141, 208, 521
CUSTOM ANALYZER environment  299
customers collection  131–133, 157
custom query  438
customReadUpdateRole  491, 492
customRoleName  492

D
dashboards  46, 465–466
data

access  446
encryption  495–500
loading sample data set  19
managing with databases, collections, and 

documents  23, 24
databases



536 index

logs  526
managing data with  23–25
triggers  468

data consistency and availability, managing   
233–238

Read Concern  235
Read Preference  237
Write Concern  234–235

data models, document-oriented  4–6
data reshaping  11
data scan  446
data seek  446
data source  460
data synchronization  264
data transfer  446
date-based archiving  438
dateFacet field type  279
date field  167, 168
date type  167
DBaaS (Database as a Service)  4, 243

Atlas custom Write Concerns  259
Atlas Global Clusters  253
dedicated clusters  247–253
predefined replica set tags for querying  257–259
shared clusters  244

dbAccess event  494
dbAdmin permission  114
db global variable  25
DB_NAME  371
db object  37, 38
DBRefs  100
dbStats command  523
decryption

for the client  500
querying encrypted fields without  498

dedicated clusters  247–253
autoscaling clusters and storage  249–253
for high-traffic applications  249
for low-traffic applications  248

dedicated clusters (M10+)
backing up  509–511
restoring  514

dedicated nodes, workload isolation with  331
def, defined  371
default index  375, 376

name  367

defense in depth, defined  503–504
DEK (data encryption key)  496
delete operation  470
deleting

archived documents  440
documents  85

denormalized models  98
deployment, defined  17
deployments command  337
designing schema, Polymorphic pattern  109
deterministically, defined  498
diagnostic commands, native MongoDB

currentOp  521
dbStats  523
monitoring replication  524
serverStatus  521
top  522

direct indexing  67
DLQ (dead-letter queue)  425
DNS (Domain Name System)  207
Docker, configuring  338
docker commands  346, 348–350
document 

array  399
data handling  460
embeddings  304
joins  11
order in queries  434
size limitation  434

documentKey  329, 472
document-oriented data model  4–6
documents  399

deleting  85
managing data with  23–31
querying embedded/nested documents  81–84
reading  71–77
replacing  70

Document Versioning pattern  106
dot notation  82
dot product  313
doughnut, chart type, defined  461
Dremio, querying Iceberg tables in  447
drivers, defined  45
dropDatabase() operation  223
dropIndexes command  172
dynamic 



	 537index

mappings  270
queries  11
schema  24

E
EJSON (Extended JSON)  395
Elasticsearch  263
electable nodes, adding for high availability  256
elements 

adding to arrays  64
removing from arrays  66

embedded documents, querying  81–84
embedded fields, multikey indexes with embedded 

fields in arrays  158
embedded_movies collection  310, 312, 313, 328, 

330, 355
embedding

field  375, 376
key  374
LangChain in RAG ecosystem  361
vs. referencing  98–101

embeddings  303–309
Atlas Triggers for automated embeddings 

creation  326–331
converting text to  305–308
inserting into MongoDB Atlas  367
product  305
vector databases  308

encryption, in Atlas  495–500
ENN (exact nearest neighbor) search  309
equality, defined  154
EQUALS environment  299
equal volumes of data deletions and insertions  205
error messages  36
error setting  117
ESR (Equality, Sort, Range) rule  154
ETL (extract, transform, load)  258, 431, 450
Euclidean distance  312
event auditing  427
event-driven applications  384

adopting new stream processor methods  402
Atlas Stream Processing  389–393, 402
controlling stream processing flow  425–426
securing  426–427
setting up streams Connection Registry  419
stream processors  404–407, 410, 412, 414, 416

structuring stream processor aggregation 
pipeline  394–400

using Atlas CLI with stream processing  402
technology  385–387

event time, differentiating from processing 
time  387

executeTransaction function  184, 186
executionStats  143, 148
expireAfterSeconds option  167–169
explain plan  148, 155
expression, defined  399
EXPRESS stages  143–144
Extended Reference pattern  107

F

facet 
operator  279, 287, 289
stage  291

FastAPI  362
FETCH stage  143, 148, 156
fields  312

querying for  76
FIFO (first-in-first-out) feature  28
filtered positional operator  68
filters, array  68
FIM (Federated Identity Management)  486
FIND access  491
FIPS (Federal Information Processing 

Standards)  495
FLATTEN function  455–457
flex clusters

backing up  509
restoring  513

fragmentation, defined  231
frequent in-place updates  205
full collection scan  141
full-text search  11, 158, 262

Atlas Search  268–273
building Atlas Search index  274–277
executing locally  352–355
implementing  263
running Atlas Search queries  278
using Atlas Search Playground  298

fuzzy search  291



538 index

G

gauge, chart type, defined  461
GCP (Google Cloud Platform)  9, 18, 214, 508
GCP KMS  499
GDPR (General Data Protection Regulation)  482
GenAI (Generative AI)  45
general settings, restoring archived data  446
Generative Pretrained Transformer (GPT)  303
genres field  312
geospatial, chart type, defined  462
geospatial and graph-based queries  11
geospatial indexes  162, 163
getIndexes() method  147, 150
getParameter command  195
GPT (Generative Pretrained Transformer)  303
GUI (graphical user interface)  34

H

hashed 
indexes  164
sharding  217

HashiCorp Vault  487
hasNext( ) method  89
heatmaps, chart type, defined  461
help command  37
helper method  147
HH:MM  225
hidden indexes  169
hidden members, defined  199–200
high availability, ensuring with replication  197–206

distinguishing replica set members  197–200
electing primary replica-set member  200–206
logical initial sync process  206
oplog size  204
oplog window  205

hint() method  174
HIPAA (Health Insurance Portability and 

Accountability Act)  482
historyLength setting  41
HNSW (Hierarchical Navigable Small Worlds)  309
hopping windows  388
horizontal scaling  211
hot shard  216

I
IAM (identity and access management)  434, 484, 

508
Iceberg tables

creating BI dashboard from  448
querying in Dremio  447

IDLE status  342
IdP (identity provider)  486
image embeddings  304
IMDb (Internet Movie Database)  151, 175, 312
Inactive state  141
index creation  12

support  435
indexes  9, 140

attributes  165–170
builds  170–172
compound  151
creating wildcard  160
dropping  165
geospatial  162
hashed  164
managing  172–177
multikey  156–158
query planner  141–145
single-field  146, 148, 150
sorting query results  148
text indexes  158
types of  145
when not to use  178

indexing
for query performance  148, 150
vectors  332

index prefix  152
Index Sufficiency Warning message  439
INSERT action  492
insert command  118, 470
inserting documents  58–61
insert methods  25, 26, 58–61, 115
insert operation  470
INSERT permission  492
inspections collection  275–278
integration 

complexity  264
with Atlas  460

interacting via MongoDB Wire Protocol  35
i (operation sequence)  203



	 539index

IOPS (input/output operations per second)  244, 
439

IP addresses, adding to project access list  20
ISO (International Organization for 

Standardization)  482
IXSCAN stage  143, 148, 156

J

JavaScript, executing vector search with  322
j:<boolean>  234
JDBC (Java Database Connectivity) driver  452
job  439
JOIN operations  1, 107, 113
journaling, defined  182
JSON schema validation  114
jumbo chunks  227
jwt (JSON Web Token)  202

K

keyFile  351
keys, shard  216
killOp command  522
KMIP (Key Management Interoperability 

Protocol)  497, 500
KMS (AWS Key Management Service)  483, 508
k-NN (k-nearest neighbors)  355
knnVector  355

L

LangChain
application  366
capabilities of  363
CLI  364
embedding in RAG ecosystem  361

langchain-community  363
langchain-core  363
langchain database  367, 372, 373, 375
langchain-mongodb package  362, 363
langchain_openai module  366
langchain-openai package  363
LangGraph  363
LangServe  362, 363, 376
LangSmith  364
language-specific rules  159
LB (Elastic load balancer)  501

LDAP (Lightweight Directory Access 
Protocol)  483, 487

limiting  84
limit parameter  322
line and area, chart type, defined  461
linearizable Read Concern  236
LLaMA (Large Language Model Meta AI)  305
LLM (Large Language Model)  305
load() method  39
LocalSearchIndex index  354, 355
local system database  172
logging  524–527

in Atlas  526
setting alert conditions  524–526

logical initial sync process  206
logical operators  73
login command  16
logs collection  103
logs command  337
LRU (least recently used)  145

M
M0 clusters

backing up  509
restoring  513

majority Read Concern  233, 235
majority Write Concern  233
major version upgrades  528
manning user  21
manual iteration  88, 89
manual references  100
Massive Arrays  119
Match Expression field  472
materialized views  31
maxWriteBatchSize  60
merge commands  228, 229
message broker  386
metadata, checking table metadata  447
MFA (multifactor authentication)  482
Missing state  141
MITM (Man in the Middle)  495
mode, defined  371
modern web applications  1–2
MongoClient  371
MongoDB

Atlas overview of  14



540 index

communicating with
connecting to, using drivers  45
ecosystem  8–11
interacting via MongoDB Wire Protocol  35
mongosh  35–43
Motor  51
Node.js driver  46–49
PyMongo  49
PyMongo vs. Motor  53
Python drivers  49–53
querying using SQL  453–457
replication, chunk balancing  224
Ruby drivers  53
scaling data horizontally  6–8
sharding, chunk balancing  224
TCMalloc  11

MongoDB Atlas
aggregation pipeline builder  137
connecting to  36
creating sharded clusters via Atlas CLI  214
creating users  21
data platform  241
establishing connection to MongoDB through 

MongoDB Shell  21
inserting embeddings into  367
inspecting performance of cluster  516–524
loading sample data set  19
overview of  14
querying using SQL  449
setting up first cluster using Atlas CLI  15–19
SQL interface  450

MONGODB_ATLAS environment variables  17
MongoDB Atlas Vector Search  362, 370
mongodb collection  367
mongodb package  46
MongoDB Query API  6, 11
MongoDB Shell (mongosh)  35

establishing connection to MongoDB 
through  21

MongoDB Uniform Resource Identifier (URI)  43
MongoDB Wire Protocol  35
mongod process  212, 268, 337, 350, 352
mongodump  246
mongo gem  54, 325
Mongoid, defined  55
mongo library  194

mongo-rag template  377
mongo-ra template  362
mongorestore tool  509
mongos, defined  212
mongosh  35–43, 141, 199, 225

configuring  40
connecting to for CRUD operations  58
connecting to MongoDB Atlas  36
connecting to self-hosted deployments  36
.mongoshrc.js  42
performing operations  36
running scripts in  39–40
viewing logs  38

mongosql  10
mongos (query routers)  7–8
MongotCli class  350
mongot component  350
MONGO_URI environment variable  371
monitoring support  434
Motor  51

PyMongo vs.  53
moveChunk command  227
moveCollection command  211
movies collection  169, 174, 175, 176
MsgHeader header  35
multidocument ACID (atomicity, consistency, 

isolation, durability) transactions  181
Callback API  184
considerations for  194
Core API  184
executing, using transactions with mongosh  185
single-document transactions  182
using transactions with Callback API  187, 190, 

192
WiredTiger storage engine  181–182

multikey indexes  156–158
multiregion, workload isolation  254–256
must clause  282
MVCC (multiversion concurrency control)  181

N
namespace  27
Namespace Insights  520
natural language  461
NDJSON (Newline Delimited JSON)  38
ne operator  175



	 541index

network access, protecting  427
network security  500–502
next( ) method  89
NIN operator  175
Node.js

changing streams with  209
driver  46–49
transactions  187

non-TTL indexes, converting to TTL index  168
NOT operator  175, 267
null values  76–77
number, chart type, defined  462
numberFacet field type  279
numCandidates parameter  318, 322
numDimensions  312
num_mflix_comments field  312

O
OASIS (Organization for the Advancement of 

Structured Information Standards)  497
ObjectId  203
OCC (optimistic concurrency control)  183
ODBC (Open Database Connectivity) driver  452
ODM (object-document mapper)  55
OIDC (OpenID Connect)  485, 486
on-demand materialized views  31
Online Archive

connecting and querying  444–446
initializing  440–444

OpenAIEmbeddings  370
operational excellence  507

inspecting performance of Atlas cluster  516–524
operational overhead  264
operationType field  472
oplog (operations log)  201
OP_MSG opcode  35
ordered triggers  474
organization roles  489
ORM (object-relational mapping) layer  389
OR operator  267
OR queries  174
Outlier pattern  107
overlay2 storage driver  349

P
partial indexes  166

PATH environment variable  349
patterns. See schema design
pause command  337
PCI (Payment Card Industry)  482
Performance Advisor  516–518
persistence  4

ensuring in stream processing  421
PHI (protected health information)  16
PII (personally identifiable information)  16
pip3 package manager  364
PKI (public-key infrastructure)  486
plot_embedding  312, 313, 317, 330, 355
plot_embedding  313
point-in-time recovery  515
PoLP (principle of least privilege)  489
Polymorphic pattern  109
positional operator  68
Preallocation pattern  109
predefined replica set tags  257–259
PRIMARY state  198
printMongoDBDetailsSimplified function  39
priority, defined  200
private endpoints  502
privilege actions  427
processes, displaying  349
processing time, differentiating from event 

time  387
programming languages, executing vector search 

with  322–326
JavaScript  322
Python  323
Ruby  325

projections, defined  75
project roles  489
Project Stream Processing Owner role  427
prompt, defined  371
ps command  349
pub/sub (publish/subscribe) queues  386
PV1 (protocolVErsion:1)  201
pydantic  362
PyMongo  49

Motor vs.  53
pymongo library  192, 323
PyPDFLoader  370
Python

executing vector search with  323



542 index

transactions  190
Python drivers  49–53

Motor  51
PyMongo  49
PyMongo vs. Motor  53

Q
Queryable Encryption  499
Query API, querying Amazon S3 and Azure Blob 

Store data via  431
query 

challenge  264
covered  177
limitations  435
planner  141–145
sorting results  148
submission  499–500
targeting metrics  525

queryHash  148
querying

Atlas using SQL  449
MongoDB using SQL  453–457
predefined replica set tags for  257–259

Query Profiler  519
Question class  371
queues metric  525

R
rag-mongo template  365, 366
RAG (retrieval-augmented generation)  10, 242, 

359
AI chatbots  358–359

building  362–364
communicating programmatically with 

chatbot  381
creating Atlas Vector Search index  375
embedding LangChain in RAG ecosystem  361
inserting embeddings into MongoDB 

Atlas  367
LangChain capabilities  363
LangChain CLI  364
MongoDB Atlas Vector Search RAG 

template  362
setting up new applications  365

model  303
range, defined  155
RANGE environment  299

RBAC (role-based access control)  207, 433, 484
MongoDB  490–492

readAnyDatabase permission  488
Read Concern  235
README.md file  351
read-only nodes  256–257
read permission  488
Read Preference  237
read role  490–492
RecursiveCharacterTextSplitter  371
referencing, vs. embedding  98–101
regular-expression searches  77
reindexing in Atlas Search  273
replaceOne() method  61, 70, 71
replica sets

predefined tags for querying  257–259
secondaries  130

replication  196
administrating chunks  225, 227
automerging chunks  228
choosing shard key  217
chunk balancing  224
creating sharded clusters via Atlas CLI  214
ensuring data high availability with  197–206
managing data consistency and availability   

233–238
monitoring  524
scaling data horizontally through sharding  211
shard key  216–219

REPL (Read-Eval-Print Loop)  21, 35
resharding collections  222, 232
restaurants collection  462, 470, 472
restoring archived data  446–448
restoring Atlas clusters  512–516
ResultsByStatus group  287
ResultsByYear group  287
Retriever, defined  378
roles, discovering new  427
ROLLBACK state  198
rolling upgrades  528
routes collection  47, 54, 71, 82, 123, 128, 129, 131, 

229, 491, 492
row-oriented storage  181
RPO (recovery-point objectives)  515
RTPP (Real-Time Performance Panel)  519
Ruby



	 543index

drivers  53
executing vector search with  325
transactions  192

run function  189
RunnableLambda  371
RunnableParallel  371, 381
RunnablePassthrough  371, 379, 381

S
$$SEARCH_META variable  291–294
SaaS (Software as a Service)  482
sales collection  491, 492
sample_analytics database  131, 132, 167, 492
scaling

cluster tier and cluster storage in parallel  251
data horizontally  6–8

scatter, graph type, defined  461
scheduled triggers  468, 472
schema design, introduction  92–93

antipatterns  119
Approximation pattern  102
Archive pattern  103
Attribute pattern  103
Bucket pattern  104
Computed pattern  105
Document Versioning pattern  106
Extended Reference pattern  107
organizing data model  93–98
Outlier pattern  107
Polymorphic pattern  109
Preallocation pattern  109
Schema Versioning pattern  110
Subset pattern  111
Tree pattern  112
validations  113–119

schemas
embedding vs. referencing  98–101
improving  520

SCRAM (Salted Challenge Response Authentication 
Mechanism)  53, 485, 486

scripting  36, 39–40
search

Atlas Search, running queries  278
command  338
indexes, creating  352–356

SECONDARY state  198

SectorSummary group  287
security  479

auditing Atlas  492–494
authentication  485–488
authorization  489–492
encryption in Atlas  495–500
features  481
implementing defense in depth  503–504
network security  500–502

IP access lists  500
peering networks  501
private endpoints  502

shared responsibility model  482–485
SELECT statement  449
self-hosted deployments, connecting to  36
semantic techniques  302

embeddings  303–309
embeddings with Atlas Vector Search  309–314
running Atlas Vector Search queries  315–322

sentence embeddings  304
Separating Data Accessed Together  119
server processing with Queryable Encryption  500
server.py file  366
server-side logic, triggering with Atlas Database 

Triggers  467–474
serverStatus command  521
sessions collection  202
setDefaultRWConcern command  236
setup command  337
sharding  7, 196

administrating chunks  225, 227
automerging chunks  228
choosing shard key  217
chunk balancing  224
creating sharded clusters via Atlas CLI  214
detecting shard-data imbalance or uneven data 

distribution  222
features in MongoDB 8.0  229–233
resharding collections  222
scaling data horizontally through  211
sharded cluster architecture  212
shard key  216

shards  197, 212
shared clusters  244
shared responsibility model  482–485
short-form Atlas SQL syntax  454



544 index

show collections command  27, 373
show dbs command  22, 216, 372
similarity, defined  312
single-document transactions  182
single-field indexes  146

converting existing indexes to unique  150
sorting query results  148

sink, defined  390
skip operation  84
SKU (Stock Keeping Unit)  465
slow queries  516–520

monitoring collection-level latency with 
Namespace Insights  520

using Performance Advisor  516–518
using Query Profiler  519
viewing Real-Time Performance Panel  519

SMS (Short Message Service)  516
Snappy library  182
snapshot Read Concern  236
snapshots  181
snippets, defined  36
Solr  263
SORT environment  299
sorting  84, 155

query results  148
on multiple fields  176

source, defined  390
sparse indexes  166
special collections  9
spiColl collection  422–424
split command  226
sp.process() method  405
SQL (Structured Query Language)  431

Atlas SQL interface  450–452
querying Atlas using  449
querying MongoDB using  453–457

SRE (site reliability engineering) team  524
SRV (Service Record)  36
SSD (solid-state drive)  252
SSO (single sign-on)  486
Stable API  89
start command  337
startTransaction command  184
STARTUP states  198
stateful/stateless operations  394
static mappings  270

stats() function  423
sticky sessions  8
STOPPED state  342
storage capacity, changing  252
storage settings, restoring archived data  447
streaming queries  446
stream processing  12

concepts of  387–388
ensuring persistence in  421
structuring stream processor aggregation 

pipeline  394–400
using Atlas CLI with  402

stream processors  391, 406
$lookup stage  412
$validate stage  407
adopting new methods  402
components of  406
dead-letter queues  410
document array source  416
instances  391
time windows  414

streams Connection Registry, setting up  419
stringFacet field type  279
StrOutputParser  370, 371, 381
Subset pattern  111
switchToDatabase() function  42
SYNONYMS environment  299
syntax highlighting  36

T
tables, chart type, defined  462
TCMalloc  11
TCP/IP (Transmission Control Protocol/Internet 

Protocol)  35
testing

chatbots with LangServe  376
indexes  158
schema validation rules  115
search operator  282, 284

text embeddings  304
converting to  305–308

TEXT environment  299
time-series 

analysis  12
collections  9, 29

Time Travel, using with Iceberg snapshots  447



	 545index

time windows  388, 395
TLS (Transport Layer Security)  53, 484
toArray( ) method  89
tokens  266
top item  462
transactions  185, 189, 192, 194
transactions collection  131–134, 167–168
TransientTransactionError  186
Tree pattern  112
trial phase  141
trigger logs  526
triggers, Atlas Application Services  466–476

configuring scheduled triggers  472
creating  469–472
event processing performance  474
triggering server-side logic with Atlas Database 

Triggers  467–474
trigger types  467
unordered  474
using authentication triggers  474
writing Atlas Functions  475–476

try block  189
ts (timestamp)  203, 399, 421
TTL (time-to-live) indexes  9, 167–169
t (transaction identifier)  203
tumbling windows  388
type check  77

U
$unwind operator  134–136
unique 

constraint  150, 165
indexes  150
property  164

UnknownTransactionCommitResult error  186
Unnecessary Indexes  119
unsharding collections  232–233
UNWIND function  455–457
update operation  470
UPDATE permission  491, 492
updating 

arrays  64–69 
documents  61–64

upgrading Atlas clusters  527–528
URI (MongoDB Uniform Resource Identifier)  43
uri variable  189, 192, 194

use commands/methods  25, 27, 37, 58, 310, 341, 
373

user embeddings  305
user_id  202
users, creating  21
UTC (Coordinated Universal Time)  510
UTF (Unicode Transformation Format)  77
UUIDs (universally unique identifiers)  513
uvloop  362

V
validationAction  400
validations  113–119

bypassing  118
JSON schema validation  114
modifying schema validator behavior  117
testing schema validation rules  115

validator  400
vCPUs (virtual CPUs)  244
vector databases  308
vector search  11

database  308
executing locally  355
executing with programming languages  322–

326
workload isolation with dedicated nodes  331

vectorSearch collection  375
vector similarity search engine  308
verbosity mode  142
vertical scaling  211
views, defined  30
visualizing data  460–466

using billing dashboards  465
using natural language to build 

visualizations  462–464
v (MongoDB oplog version)  203
votes, defined  200
VPC (virtual private cloud)  427
VS Code (Visual Studio Code)  404

W
wall (exact time of operation)  203
warn setting  117
WHERE statement  449
wildcard indexes  160
winningPlan  148



546 index

WiredTiger storage engine  181–182
withTransaction method  187, 190
word, chart type, defined  462
workers, defined  391
workload isolation  331

multiregion  254–256

Write Concern  234–235, 259
WSL (Windows Subsystem for Linux)  15

X
X.509 certificates  53, 486



MongoDB Atlas Shared Responsibility Model

Manage: Data, user accounts, roles, identity providers, and MFA
Configure: Cloud providers, regions, and tiers

Initial configuration/
setup by

customers:

Configure
federation/
LDAP/MFA

Physical security by cloud providers
(AWS, GCP, and Azure)

M
on

go
D

B’
s 

re
sp

on
si

bi
lit

y
C

us
to

m
er

’s
 

re
sp

on
si

bi
lit

y
Sh

ar
ed

 
re

sp
on

si
bi

lit
ie

s

Data residency/ 
data policies

Database
encryption

(KMS and BYOK)

Network 
connectivity

Auditing 
filters

Continuous
enforcement
by MongoDB:

Backup 
schedule

Authentication
always on

Data 
localization

Encryption
in-transit,
volume

Network 
isolation

Platform
security

High
availability

Autoscaling Distributed
architecture

Granular
auditing

Data 
backup

The shared responsibility model in Atlas divides security and operational tasks among customers, MongoDB,  
and the underlying cloud providers (AWS, GCP, and Azure). (Image © MongoDB 2024 CC BY-NC-SA 3.0)



Arek Borucki

ISBN-13: 978-1-63343-607-7

M ongoDB is the database of choice for storing structured, 
semi-structured, and unstructured data like business 
documents and other text and image fi les. MongoDB 

8.0 introduces a range of exciting new features—from sharding 
improvements that simplify the management of distributed data, 
to performance enhancements that stay resilient under heavy 
workloads. Plus, MongoDB Atlas brings vector search and full-text 
search features that support AI-powered applications.

In MongoDB 8.0 in Action, Third Edition you’ll learn how to take 
advantage of all the new features of MongoDB 8.0, including the 
powerful MongoDB Atlas multi-cloud data platform. You’ll start 
with the basics of setting up and managing a document database. 
Th en, you’ll learn how to use MongoDB for AI-driven applications, 
implement advanced stream processing, and optimize performance 
with improved indexing and query handling. Hands-on projects 
like creating a RAG-based chatbot and building an aggregation 
pipeline mean you’ll really put MongoDB into action! 

What’s Inside
●  Th e new features in MongoDB 8.0
●  Get familiar with MongoDB’s Atlas cloud platform
●  Utilizing sharding enhancements
●  Using vector-based search technologies
●  Full-text search capabilities for effi  cient text indexing 
   and querying

For developers and DBAs of all levels. No prior experience with 
MongoDB required. 

Arek Borucki is a MongoDB Champion, certifi ed MongoDB and 
MongoDB Atlas administrator with expertise in distributed sys-
tems, NoSQL databases, and Kubernetes.

For print book owners, all digital formats are free:
https://www.manning.com/freebook

MongoDB 8.0 IN ACTION  Third Edition

SOFTWARE DEVELOPMENT/JAVASCRIPT

M A N N I N G

“An excellent resource with 
real-world examples and 
best practices to design, 

optimize, and scale 
  modern applications.”—Advait Patel, Broadcom

“Essential MongoDB
resource. Covers new features 

such as full-text search, 
vector search, AI, and 
 RAG applications.” 
—Juan Roy, Credit Suisse

“Refl ects author’s practical 
experience and clear teaching 

style. It’s packed with 
real-world examples and 

up-to-date insights.”—Rajesh Nair, MongoDB Cham-
pion & community leader

“Th is book will defi nitely 
make you a MongoDB star!”—Vinicios Wentz

JP Morgan & Chase Co.


	MongoDB 8.0 in Action, Third Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1 A database for modern 
	1 Understanding the world of MongoDB
	1.1	Examining the document-oriented data model
	1.2	Scaling data horizontally
	1.3	Exploring the MongoDB ecosystem
	1.3.1	Learning the core MongoDB server features
	1.3.2	Learning MongoDB Atlas concepts

	1.4	Enhancing the TCMalloc version
	1.5	Discovering MongoDB Query API

	2 Getting started with Atlas and MongoDB data
	2.1	Setting up your first Atlas cluster using Atlas CLI
	2.1.1	Installing the Atlas CLI
	2.1.2	Creating an Atlas account
	2.1.3	Creating an organization
	2.1.4	Creating an Atlas project
	2.1.5	Creating a MongoDB Atlas cluster
	2.1.6	Navigating the Atlas user interface

	2.2	Loading a sample data set
	2.3	Adding an IP address to the project access list
	2.4	Creating a user
	2.5	Establishing a connection to MongoDB through MongoDB Shell
	2.6	Managing data with databases, collections, and documents
	2.6.1	Working with dynamic schema
	2.6.2	Working with databases
	2.6.3	Working with collections
	2.6.4	Working with documents


	3 Communicating with MongoDB
	3.1	Interacting via MongoDB Wire Protocol
	3.2	Discovering mongosh
	3.2.1	Connecting to MongoDB Atlas
	3.2.2	Connecting to self-hosted deployments
	3.2.3	Performing operations
	3.2.4	Viewing mongosh logs
	3.2.5	Running scripts in mongosh
	3.2.6	Configuring mongosh
	3.2.7	Using .mongoshrc.js

	3.3	Playing with MongoDB Compass
	3.4	Connecting using MongoDB drivers
	3.5	Using the Node.js driver
	3.6	Employing Python drivers
	3.6.1	PyMongo
	3.6.2	Motor
	3.6.3	PyMongo vs. Motor

	3.7	Integrating Ruby drivers
	3.8	Learning Mongoid

	4 Executing CRUD operations
	4.1	Connecting to mongosh for CRUD operations
	4.2	Inserting documents
	4.3	Updating documents
	4.3.1	Using update operators
	4.3.2	Updating many documents

	4.4	Updating arrays
	4.4.1	Adding elements to an array
	4.4.2	Removing elements from an array
	4.4.3	Updating array elements
	4.4.4	Updating using array filters

	4.5	Replacing documents
	4.6	Reading documents
	4.6.1	Using logical operators
	4.6.2	Using comparison operators
	4.6.3	Working with projections
	4.6.4	Searching for null values and absent fields

	4.7	Performing regular-expression searches
	4.8	Querying arrays
	4.9	Querying embedded/nested documents
	4.9.1	Querying on a nested field with dot notation
	4.9.2	Matching an embedded/nested document
	4.9.3	Querying an array of embedded documents

	4.10	Sorting, skipping, and limiting
	4.10.1	The sort operation
	4.10.2	The skip operation
	4.10.3	The limit operation

	4.11	Deleting documents
	4.12	Using bulkWrite()
	4.13	Understanding cursors
	4.13.1	Using manual iteration
	4.13.2	Returning an array of all documents

	4.14	Employing MongoDB Stable API

	5 Designing a MongoDB schema
	5.1	Organizing the MongoDB data model
	5.1.1	Determining the workload of the application
	5.1.2	Mapping the schema relationship
	5.1.3	Applying a design pattern

	5.2	Embedding vs. referencing
	5.3	Understanding schema design patterns
	5.3.1	Approximation pattern
	5.3.2	Archive pattern
	5.3.3	Attribute pattern
	5.3.4	Bucket pattern
	5.3.5	Computed pattern
	5.3.6	Document Versioning pattern
	5.3.7	Extended Reference pattern
	5.3.8	Outlier pattern
	5.3.9	Polymorphic pattern
	5.3.10	Preallocation pattern
	5.3.11	Schema Versioning pattern
	5.3.12	Subset pattern
	5.3.13	Tree pattern

	5.4	Schema validations
	5.4.1	Specifying JSON schema validation
	5.4.2	Testing a schema validation rule
	5.4.3	Modifying schema validator behavior
	5.4.4	Bypassing schema validation

	5.5	MongoDB schema antipatterns

	6 Building aggregation pipelines
	6.1	Understanding the aggregation framework
	6.1.1	Writing an aggregation pipeline
	6.1.2	Viewing the aggregation pipeline stages
	6.1.3	Using $set and $unset instead of $project
	6.1.4	Scenarios for $set and $unset operators
	6.1.5	Scenario for the $project operator
	6.1.6	Saving the results of aggregation pipelines

	6.2	Joining collections
	6.2.1	Creating a MongoDB view using $lookup
	6.2.2	Using $lookup with $mergeobjects

	6.3	Deconstructing arrays with $unwind
	6.4	Working with accumulators
	6.5	Using the MongoDB Atlas aggregation pipeline builder

	7 Indexing for query performance
	7.1	MongoDB query planner
	7.1.1	Viewing query plan cache information
	7.1.2	MongoDB plan cache purges

	7.2	Supported index types
	7.2.1	Creating single field indexes
	7.2.2	Understanding compound indexes
	7.2.3	Using multikey indexes
	7.2.4	Using text indexes
	7.2.5	Creating wildcard index
	7.2.6	Geospatial indexes
	7.2.7	Hashed indexes

	7.3	Dropping indexes
	7.4	MongoDB index attributes
	7.4.1	Partial indexes
	7.4.2	Sparse indexes
	7.4.3	Time-to-live indexes
	7.4.4	Hidden indexes

	7.5	Understanding index builds
	7.5.1	Monitoring in-progress index builds
	7.5.2	Terminating in-progress index builds

	7.6	Managing indexes
	7.6.1	Discovering the $indexStats aggregation pipeline stage
	7.6.2	Modifying indexes
	7.6.3	Controlling index use with hint ()
	7.6.4	Using indexes with $OR queries
	7.6.5	Using indexes with the $NE, $NIN, and $NOT operators
	7.6.6	Ensuring that indexes fit in RAM
	7.6.7	Sorting on multiple fields
	7.6.8	Introducing covered queries

	7.7	When to not use an index

	8 Executing multidocument ACID transactions
	8.1	WiredTiger storage engine
	8.1.1	Snapshots and checkpoints
	8.1.2	Journaling
	8.1.3	Compression
	8.1.4	Memory use

	8.2	Single-document transaction
	8.3	Defining ACID
	8.4	Multidocument transactions
	8.4.1	Differentiating the Core and Callback APIs
	8.4.2	Using transactions with mongosh
	8.4.3	Using transactions with the Callback API

	8.5	MongoDB transaction considerations

	9 Using replication and sharding
	9.1	Ensuring data high availability with replication
	9.1.1	Distinguishing replica set members
	9.1.2	Electing primary replica-set member
	9.1.3	Understanding the oplog collection

	9.2	Understanding change streams
	9.2.1	Connections for a change stream
	9.2.2	Changing streams with Node.js
	9.2.3	Modifying the output of a change stream

	9.3	Scaling data horizontally through sharding
	9.3.1	Viewing sharded cluster architecture
	9.3.2	Creating sharded clusters via Atlas CLI
	9.3.3	Working with a shard key
	9.3.4	Choosing a shard key
	9.3.5	Using a shard-key analyzer
	9.3.6	Detecting shard-data imbalance or uneven data distribution
	9.3.7	Resharding a collection
	9.3.8	Understanding chunk balancing
	9.3.9	Administrating chunks
	9.3.10	Automerging chunks

	9.4	MongoDB 8.0 sharded cluster features
	9.4.1	Embedding config servers in sharded clusters
	9.4.2	Moving unsharded collections seamlessly between shards
	9.4.3	Fragmentation
	9.4.4	Faster resharding
	9.4.5	Unsharding collections

	9.5	Managing data consistency and availability
	9.5.1	Write Concern
	9.5.2	Read Concern
	9.5.3	Read Preference



	Part 2 MongoDB Atlas data platform
	10 Delving into Database as a Service
	10.1	Shared M0 and Flex clusters
	10.2	Dedicated clusters
	10.2.1	Atlas clusters for low-traffic applications
	10.2.2	Atlas clusters for high-traffic applications
	10.2.3	Autoscaling clusters and storage
	10.2.4	Customizing Atlas cluster storage

	10.3	Atlas Global Clusters
	10.4	Going multiregion with workload isolation
	10.4.1	Adding electable nodes for high availability
	10.4.2	Adding read-only nodes for local reads
	10.4.3	Using analytics nodes for workload isolation

	10.5	Using predefined replica set tags for querying
	10.5.1	Routing queries to analytics nodes
	10.5.2	Isolating normal application secondary reads from analytics nodes
	10.5.3	Routing local reads for geographically distributed applications

	10.6	Understanding the Atlas custom Write Concerns

	11 Carrying out full-text search using Atlas Search
	11.1	Implementing full-text search
	11.2	Understanding Apache Lucene
	11.3	Getting to know Atlas Search
	11.3.1	Learning Atlas Search architecture
	11.3.2	Using Atlas Search Nodes
	11.3.3	Atlas Search indexes

	11.4	Building an Atlas Search index
	11.5	Running Atlas Search queries
	11.5.1	Using the $search aggregation pipeline stage
	11.5.2	Executing the $searchMeta aggregation pipeline stage

	11.6	Learning Atlas Search commands
	11.7	Using Atlas Search Playground

	12 Learning semantic techniques and Atlas Vector Search
	12.1	Starting with embeddings
	12.1.1	Converting text to embeddings
	12.1.2	Understanding vector databases

	12.2	Using embeddings with Atlas Vector Search
	12.2.1	Building an Atlas Vector Search index
	12.2.2	Selecting a Vector Search source
	12.2.3	Defining your Vector Search index
	12.2.4	Creating an Atlas Vector Search index

	12.3	Running Atlas Vector Search queries
	12.3.1	Querying with embeddings
	12.3.2	Using prefiltering with Atlas Vector Search

	12.4	Executing vector search with programming languages
	12.4.1	Using vector search with JavaScript
	12.4.2	Using vector search and prefiltering with Python
	12.4.3	Using vector search with prefilters in Ruby

	12.5	Using Atlas Triggers for automated embeddings creation
	12.6	Workload isolation with vector search dedicated nodes
	12.7	Improving Atlas Vector Search performance

	13 Developing AI applications locally with the Atlas CLI
	13.1	Introducing local Atlas clusters
	13.2	Creating an Atlas cluster locally with Atlas CLI
	13.2.1	Configuring Docker
	13.2.2	Building your first local Atlas cluster

	13.3	Managing your local Atlas cluster
	13.3.1	Stopping, starting, checking, and deleting your local cluster
	13.3.2	Loading a sample data set

	13.4	Diving into a local Atlas cluster
	13.4.1	Displaying processes
	13.4.2	Executing into the container

	13.5	Creating search indexes
	13.5.1	Executing full-text search locally
	13.5.2	Executing vector search locally


	14 Building retrieval-augmented generation AI chatbots
	14.1	Gaining insight into retrieval-augmented generation
	14.2	Embedding LangChain in the RAG ecosystem
	14.3	Introducing the MongoDB Atlas Vector Search RAG template
	14.4	Getting started with AI chatbots
	14.4.1	Describing LangChain capabilities
	14.4.2	Starting with the LangChain CLI

	14.5	Creating an AI-powered MongoDB chatbot
	14.5.1	Setting up a new application
	14.5.2	Inserting embeddings into MongoDB Atlas
	14.5.3	Creating an Atlas Vector Search index
	14.5.4	Testing a chatbot with LangServe
	14.5.5	Communicating programmatically with a chatbot


	15 Building event-driven applications
	15.1	Understanding event-driven technology
	15.2	Examining the concepts of stream processing
	15.2.1	Differentiating event time and processing time
	15.2.2	Using time windows

	15.3	Starting with Atlas Stream Processing
	15.4	Exploring Atlas Stream Processing
	15.4.1	Discovering Atlas Stream Processing components
	15.4.2	Understanding Atlas Stream Processing capabilities

	15.5	Structuring a stream processor aggregation pipeline
	15.5.1	Taking a deep dive into the $source aggregation stage
	15.5.2	Using the stream processor $validate aggregation stage
	15.5.3	Viewing all supported aggregation pipeline stages

	15.6	Mastering Atlas Stream Processing
	15.6.1	Adopting new stream processor methods
	15.6.2	Using the Atlas CLI with stream processing
	15.6.3	Creating your first stream processor
	15.6.4	Learning the anatomy of a stream processor
	15.6.5	Setting up a streams Connection Registry
	15.6.6	Ensuring persistence in stream processing

	15.7	Controlling the stream processing flow
	15.7.1	Capturing the state
	15.7.2	Using a dead-letter queue

	15.8	Securing Atlas Stream Processing
	15.8.1	Discovering new roles
	15.8.2	Learning new privilege actions
	15.8.3	Protecting network access
	15.8.4	Auditing events


	16 Optimizing data processing with Atlas Data Federation
	16.1	Querying Amazon S3 and Azure Blob Store data via the Query API
	16.2	Learning Atlas Data Federation architecture
	16.3	Deploying an Atlas Federated Database instance
	16.4	Limitations of Atlas Data Federation
	16.5	Charges for Atlas Data Federation

	17 Archiving online with Atlas Online Archive
	17.1	Archiving your data
	17.1.1	Seeing how Atlas archives data
	17.1.2	Deleting archived documents

	17.2	Initializing Online Archive
	17.3	Connecting and querying Online Archive
	17.4	Restoring archived data

	18 Querying Atlas using SQL
	18.1	Introducing the Atlas SQL interface
	18.2	Connecting to the Atlas SQL interface
	18.2.1	Enabling the interface
	18.2.2	Accessing the interface

	18.3	Querying MongoDB using SQL
	18.3.1	Aggregation pipeline Atlas SQL syntax
	18.3.2	Short-form Atlas SQL syntax
	18.3.3	UNWIND and FLATTEN with Atlas SQL


	19 Creating charts, database triggers, and functions
	19.1	Visualizing data with Atlas Charts
	19.1.1	Using natural language to build visualizations
	19.1.2	Using billing dashboards

	19.2	Atlas Application Services
	19.2.1	Triggering server-side logic with Atlas Database Triggers
	19.2.2	Writing Atlas Functions



	Part 3 MongoDB security and operations
	20 Understanding Atlas and MongoDB security features
	20.1	Understanding the shared responsibility model
	20.2	Managing authentication
	20.2.1	Choosing an Atlas database cluster authentication method
	20.2.2	Integrating with HashiCorp Vault
	20.2.3	Choosing the authentication method

	20.3	Handling authorization
	20.3.1	Understanding the principle of least privilege
	20.3.2	Differentiating Atlas user roles
	20.3.3	Using MongoDB RBAC

	20.4	Auditing Atlas
	20.5	Encrypting data in Atlas
	20.5.1	Encrypting data in transit
	20.5.2	Encrypting data at rest
	20.5.3	Managing encryption keys yourself
	20.5.4	Encrypting during processing

	20.6	Securing the network
	20.6.1	Using an IP access list
	20.6.2	Peering networks
	20.6.3	Using private endpoints

	20.7	Implementing defense in depth

	21 Operational excellence with Atlas
	21.1	Crafting backup strategies and practices
	21.1.1	Discovering Atlas backup methods
	21.1.2	Restoring an Atlas cluster

	21.2	Inspecting the performance of your Atlas cluster
	21.2.1	Finding slow queries
	21.2.2	Improving your schema
	21.2.3	Using native MongoDB diagnostic commands

	21.3	Alerting and logging
	21.3.1	Setting alert conditions
	21.3.2	Logging in Atlas

	21.4	Upgrading your Atlas cluster


	index

